Risk theory and risk management in actuarial science Winter term 2018/19 4th work sheet

- 28. Construct two random vectors $(X_1, X_2)^T$ and $(Y_1, Y_2)^T$ with different joint distributions $F_{(X_1, X_2)}$, $F_{(Y_1, Y_2)}$, respectively, such that
 - (a) the variables X_1, X_2, Y_1, Y_2 are standard normally distributed, i.e. $X_1, X_2, Y_1, Y_2 \sim N(0, 1)$,
 - (b) the two X-variables and the two Y-variables are uncorrelated, respectively, i.e. $\rho_L(X_1, X_2) = 0$, $\rho_L(Y_1, Y_2) = 0$, and
 - (c) the α -quantiles of the corresponding sums are different, i.e. $F_{X_1+X_2}^{\leftarrow}(\alpha) \neq F_{Y_1+Y_2}^{\leftarrow}(\alpha)$ holds for some $\alpha \in (0, 1)$, where $F_{X_1+X_2}$, $F_{Y_1+Y_2}$ are the distributions of X_1+X_2 and Y_1+Y_2 , respectively.

Conclude that in general it is not possible to draw conclusions about the loss of a portfolio if only the loss distributions of the single assets in portfolio and their mutual linear correlation coefficients are known.

Hint: Choose (X_1, X_2) to be bivariate standard normally distributed, i.e. $(X_1, X_2) \sim N_2(0, I_2)$, where 0 denotes the zero vector in \mathbb{R}^2 and I_2 denotes the identity matrix in $\mathbb{R}^{2\times 2}$. Choose Y_1 to be standard normally distributed, $Y_1 \sim N(0, 1)$, and set $Y_2 := VY_1$, where V is a discrete random variable independent on Y_1 with values 1 and -1 taken with probability 1/2 each.

- 29. (Co-monotonicity and anti-monotonicity)
 - (a) Let Z be a random variable with continuous cumulative distribution function $F, Z \sim F$. Let f_1, f_2 be to monotone increasing functions on \mathbb{R} and let f_3 be a monotone decreasing function on \mathbb{R} . Let $X_i = f_i(Z)$, for i = 1, 2, 3. Show that the Fréchet upper bound M is a copula of (X_1, X_2) and the Fréchet lower bound W is a copula of (X_1, X_3) .
 - (b) Let W be the (unique) copula of the random vector (X_1, X_2) with continuous marginal distributions F_1 and F_2 , respectively. Show that $X_2 \stackrel{a.s.}{=} T(X_1)$ with $T = F_2^{\leftarrow} \circ (1 F_1)$.
 - (c) Let M be the (unique) copula of the random vector (X_1, X_2) with continuous marginal distributions F_1 and F_2 , respectively. Show that $X_2 \stackrel{a.s.}{=} T(X_1)$ with $T = F_2^{\leftarrow} \circ F_1$.
- 30. Prove the following equality for the rank correlation Spearman's rank correlation coefficient of a random vector $(X_1, X_2)^T$ with continuous marginal distributions and unique copula C: $\rho_S(X_1, X_2) = 12 \int_0^1 \int_0^1 (C(u_1, u_2) - u_1 u_2) du_1 du_2 = 12 \int_0^1 \int_0^1 C(u_1, u_2) du_1 du_2 - 3.$
- 31. The Gumbel family C_{θ}^{Gu} and the Clayton family C_{θ}^{Cl} are two one-parametric families of copulas given as

$$C_{\theta}^{\text{Gu}}(u_1, u_2) := \exp\left(-\left[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}\right]^{1/\theta}\right), \ \theta \ge 1, \text{ and}$$
$$C_{\theta}^{\text{Cl}}(u_1, u_2) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}, \ \theta > 0.$$

- (a) Compute Kendall's tau ρ_{τ} as well as the coefficients λ_U , λ_L of the upper and lower tail dependence for the copulas C_{θ}^{Gu} , C_{θ}^{Cl} , respectively.
- (b) The independence copula Π is given by $\Pi(u_1, u_2) := u_1 u_2$, for $(u_1, u_2) \in [0, 1]^2$. Show that C_{θ}^{Gu} tends to the independence copula Π if θ tends to 1 and to the upper Fréchet bound M if θ tends to infinity. In this case we say that the lower limit of the Gumbel copula is the independence copula Π and its upper limit is the Fréchet upper bound M. Analogously show that the lower limit of the Clayton copula is the independence copula Π for $\theta \to 0^+$ and its upper limit is the independence copula Π for $\theta \to 0^+$ and its upper limit is the Fréchet upper bound M for $\theta \to +\infty$. Now considerer an extension of the Clayton copula C_{θ}^{Cl} for $\theta \in [-1, 0)$, defined as an Archimedian copula with generator $\phi_{\theta}(t) = \frac{1}{\theta}(t^{-\theta} 1)$ for $t \in (0, 1]$ and $\phi_{\theta}(0) = +\infty$. Show that for $\theta = -1$ the Clayton copula C_{-1}^{Cl} coincides with the Fréchet lower bound W.

32. (a) Let $(X_1, X_2)^T$ be a *t*-distributed random vektor with ν degrees of freedom, expected value (0, 0)and linear correlation coefficient matrix $\rho \in (-1, 1]$, i.e. $(X_1, X_2)^T \sim t_2(\vec{0}, \nu, R)$ where R is 2×2 matrix with 1 on the diagonal and ρ outside the diagonal. Show that the following equality holds for $\rho > -1$:

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-\rho}}{\sqrt{1-\rho}}\right)$$

Hint: Use the fact (no need to prove it!) that conditional on $X_1 = x$ the following holds

$$\left(\frac{\nu+1}{\nu+x^2}\right)^{1/2} \frac{X_2 - \rho x}{\sqrt{1-\rho^2}} \sim t_{\nu+1} \,.$$

Recall the stochatic representation of the bivariate *t*-distribution as $\mu + \sqrt{W}AZ$, where Z is bivariate standard normally distributed and W is such that $\frac{\nu}{W} \sim \chi^2_{\nu}$ while being independent on Z (cf. lecture).

(b) Apply (a) to conclude that for a random vector with continuous marginal distributions $(X_1, X_2)^T$ and a *t*-copula $C_{\nu,R}^t$ with ν degrees of freedom and a correlation matrix R as in (a) the following equalities holds:

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2t_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-\rho}}{\sqrt{1+\rho}}\right) \,.$$

Archimedian Copulas

33. (a) Show that for every $\theta \in \mathbb{R} \setminus \{0\}$ the function $\phi_{\theta}^{Fr}(t) = -\ln\left(\frac{e^{-\theta t}-1}{e^{-\theta}-1}\right)$ generates an Archmedian copula, the so-called Frank copula $C_{\theta}^{Fr}: [0,1]^2 \to [0,1]$. Check that the following equality holds $\forall u_1, u_2 \in [0,1]$:

$$C_{\theta}^{Fr}(u_1, u_2) = -\frac{1}{\theta} \ln \left(1 + \frac{(\exp(-\theta u_1) - 1)(\exp(-\theta u_2) - 1)}{\exp(-\theta) - 1} \right), \theta \in \mathbb{R} \setminus \{0\}.$$

(b) Show that for every $\theta > 0$ and for every $\delta \ge 1$ the function $\phi_{\theta,\delta}^{GC}(t) = \theta^{-\delta}(t^{-\theta}-1)^{\delta}$ generates an Archmedian copula, the so-called generalized Clayton copula $C_{\theta,\delta}^{GC}: [0,1]^2 \to [0,1]$. Check that the following equality holds $\forall u_1, u_2 \in [0,1]$:

$$C^{GC}_{\theta,\delta}(u_1, u_2) = \{ [(u_1^{-\theta} - 1)^{\delta} + (u_2^{-\theta} - 1)^{\delta}]^{1/\delta} + 1 \}^{-1/\theta}, \ \theta \ge 0, \delta \ge 1.$$

(c) Compute Kendall's tau ρ_{τ} as well as the coefficients λ_U , λ_L of the upper and lower tail dependency for the copulas C_{θ}^{Fr} and $C_{\theta,\delta}^{GC}$, respectively.