HOPF ALGEBRAS IN COMBINATORICS TU GRAZ, SUMMER 2024

EXERCISE SET 1

Definition. Let $f : V \to W$ be a linear map. The *image of* f is the vector subspace of W given by $\text{Im}(f) := \{f(v) : v \in V\}$. The *kernel of* f is the vector subspace of V given by $\text{Ker}(f) := \{v \in V : f(v) = 0\}$.

Exercise 1. Let $f: V \to V'$ and $g: W \to W'$ be two linear maps. Show that $\operatorname{Im}(f \otimes g) = \operatorname{Im}(f) \otimes \operatorname{Im}(g)$ and $\operatorname{Ker}(f \otimes g) = V \otimes \operatorname{Ker}(g) + \operatorname{Ker}(f) \otimes W$.

Exercise 2. Let U, V be vector spaces and $V' \subseteq V$ be a subspace. Show that $U \otimes (V/V') \cong (U \otimes V)/(U \otimes V')$.

Exercise 3. Let V and W be two vector spaces.

- (1) If $\sum_{i=1}^{n} v_i \otimes w_i = 0$ in $V \otimes W$ and $\{v_1, \ldots, v_n\}$ are linearly independent, show that $w_i = 0$, for any $1 \le i \le n$.
- (2) Let $W' \subseteq W$ be a subspace. If $\sum_{i=1}^{n} v_i \otimes w_i \in V \otimes W'$ and $\{v_1, \ldots, v_n\}$ are linearly independent, show that $w_i \in W'$, for any $1 \leq i \leq n$.

Exercise 4. Let V, W be two vector spaces, and assume that V has finite dimension. Show that $V^* \otimes W$ is isomorphic to $\text{Hom}(V, W) := \{f : V \to W : f \text{ is linear}\}.$

Exercise 5. Let X, Y be two indeterminates. Show that $\mathbb{K}[X] \otimes \mathbb{K}[Y] = \mathbb{K}[X, Y]$.

Definition. Let V be a vector space. The symmetric algebra S(V) of V is the quotient of the tensor algebra T(V) by the ideal generated by the elements $v_1v_2 - v_2v_1$, for any $v_1, v_2 \in V$.

Exercise 6. Let V be a vector space and consider its symmetric algebra S(V). Show that

- (1) S(V) is commutative.
- (2) S(V) satisfies the following universal property: for any linear map $f: V \to A$ where A is a **commutative** algebra, there exists a unique algebra morphism $F: S(V) \to A$ such that F(v) = f(v), for any $v \in V \subseteq S(V)$.
- (3) If $\{v_i\}_{i \in I}$ is a basis of V, then the set

$$\left\{\prod_{i\in I} v_i^{a_i} : a_i = 0 \text{ for all but finitely many } i \in I\right\}$$

is a basis of S(V). The elements of this basis are called *monomials* on the v_i 's.

Date: 19 March, 2024.

Exercise 7. Let $q \in \mathbb{K}$ be non-zero. Consider the algebra A_n with generators e_1, \ldots, e_{n-1} subject to the relations

$$e_i^2 = e_i \quad \text{for all } i,$$

$$e_i e_j = e_j e_i \quad \text{for all } i, j \text{ with } |i - j| > 1,$$

$$e_i e_j e_i = q e_i \quad \text{for all } i, j \text{ with } |i - j| = 1.$$

Prove that the dimension of A_n is the *n*-th Catalan number $C_n := \frac{1}{n+1} {\binom{2n}{n}}$.

Exercise 8. Let (C, Δ, ϵ) be a coalgebra and $c \in C$. Show that:

(1)
$$\sum_{(c)} c_{(1)} \otimes \cdots \otimes \Delta(c_{(i)}) \otimes \cdots \otimes c_{(n)} = \sum_{(c)} c_{(1)} \otimes \cdots \otimes c_{(n+1)}, \text{ for any } 1 \le i \le n.$$

(2)
$$\sum_{(c)} c_{(1)} \otimes \cdots \otimes \epsilon(c_{(i)}) \otimes \cdots \otimes c_{(n)} = \sum_{(c)} c_{(1)} \otimes \cdots \otimes c_{(n-1)}, \text{ for any } 1 \le i \le n.$$

Definition. Let (C, Δ, ϵ) be a coalgebra.

- We say that $c \in C$ is a group-like element if $\epsilon(c) = 1$ and $\Delta(c) = c \otimes c$. The set of group-like elements is denoted by $\Gamma(C)$
- We say that $f \in C^*$ is a *character* if f is an algebra morphism. The set of characters is denoted by $Alg(C^*, \mathbb{K})$.

Exercise 9. Let C be a finite-dimensional coalgebra. Show that there is a set bijection between $\Gamma(C)$ and $\operatorname{Alg}(C^*, \mathbb{K})$.