Hop Algebras in Combinatorics
TU Graz - Summer Semester 2024

Adrian Celestino March 2024

Graz, Austria

Intuitively, a Hop algebra is a vector space H with a multiplication $m: H \otimes H \rightarrow H$ and a comultiplication $\Delta: H \rightarrow H \otimes H$ satisfying several restricted rules:
there is $S: H \rightarrow H$ such that

In this course, we will focus on Hop algebras arising from combinatorial objects such as partitions, permutations, trees, graphs, etc.

1. Tensor Product of vector spaces

Throughout the course, we will only consider vector spaces over a field It of characteristic 0 (ie. $\forall a \in \mathbb{K}$, there is no $p \in \mathbb{N}$ such that $\underbrace{a+a+\cdots+a}_{p}=0)$.

Recall that, for any V vector space and $W \leq V$ vector subspace, we define the quotient V / W as the set of classes in V under the equivalence relation.

$$
x \sim y \Leftrightarrow x-y \in W
$$

The quotient is a vector space: if $\bar{x} \in V / w$ is the class of $x \in V$, define $\bar{x}+\bar{y}:=\overline{x+y}$ and $\lambda \bar{x}:=\overline{\lambda x}$, for any $x, y \in V$ and $\lambda \in \mathbb{K}$.

Lemma Let X be a set. There exists a vector space $\mathbb{K} X$ with basis X and this space is unique up to isomorphism fixing X.

We can interpret the elements of $\mathbb{K X}$ as formal linear combinations of elements of x : $\mathbb{K} X=\mathbb{K}-\operatorname{span}\{X\}=\left\{\sum_{x \in X} \lambda_{x} X: \lambda_{x} \in \mathbb{K}\right.$ and $\lambda_{x}=0$ for all but finitely many $\left.x \in X\right\}$.
Definition Let V_{1}, V_{2}, w be vector spaces. A map $f: V_{1} \times V_{2} \rightarrow W$ is bilinear if it is linear in each of its argument when the other is fixed, ie.

$$
f\left(a x+b y, a^{\prime} x^{\prime}+b^{\prime} y^{\prime}\right)=a b f(x, y)+a b^{\prime} f\left(x, y^{\prime}\right)+a^{\prime} b f\left(x^{\prime}, y\right)+a^{\prime} b^{\prime} f\left(x^{\prime}, y^{\prime}\right), \quad \forall x, y \in V_{1}, x^{\prime}, y^{\prime} \in V_{2}
$$ $a, b, a^{\prime}, b^{\prime} \in \mathbb{K}$:

Now, take $f: V_{1} \times V_{2} \rightarrow V$ bilinear. If $h: V \rightarrow W$ is a linear map, then
hof : $V_{1} \times V_{2} \rightarrow W$ is a bilinear map. One may ask whether it is possible to choose V and f such that every bilinear map of $V_{1} \times V_{2}$ can be obtained in this way. This is called the universal problem for bilineur functions. The next theorem gives is the pair that solves the problem.

Theorem Let V_{1} and V_{2} be two vector spaces. There exists a pair ($V,(\geqslant$) such that V is a vector space and $\otimes: V_{1} \times V_{2} \longrightarrow V$ is a bilinear map satisfying the $\left(v_{1}, v_{2}\right) \longmapsto v_{1}\left(\Delta v_{2}\right.$
following universal property: for any W vector space and $f: V_{1} \times V_{2} \rightarrow W$ bilinear map, there exists a unique linear map $F: V \rightarrow W$ such that the following diagram is commutative: $v_{1} \times v_{2} \xrightarrow{f} w^{w}$
(1)

The pair (U, \otimes) is unique up to isomorphism.
Proof. Existence: Take $\mathbb{K}\left(V_{1} \times V_{2}\right)$ the vector space generated by the set $V_{1} \times V_{2}$. Also, consider I the vector subspace of $\mathbb{K}\left(v_{1} \times v_{2}\right)$ given by

$$
I:=\mathbb{K}\left\{\left(v_{1}+v_{1}^{\prime}, v_{2}\right)-\left(v_{1}, v_{2}\right)-\left(v_{1}^{\prime}, v_{2}\right),\left(v_{1}, v_{2}+v_{2}^{\prime}\right)-\left(v_{1}, v_{2}\right)-\left(v_{1}, v_{2}^{\prime}\right),\left(\lambda v_{1}, v_{2}\right)-\lambda\left(v_{1}, v_{2}\right),\left(v_{1}, \lambda v_{2}\right)-\lambda\left(v_{1}, v_{2}\right),\right\}
$$

Then we define $V:=\mathbb{K}\left(V_{1} \times V_{2}\right) / I$. Also, define the map
$\otimes V_{1} \times V_{2} \rightarrow \mathbf{V}$ $\left(v_{1}, v_{2}\right) \longmapsto v_{1} \otimes v_{2}:=\overline{\left(v_{1}, v_{2}\right)}$. By definition of I,

We will show that (V, \otimes) satisfies the universal property. Let w be a vector space and consider a bilinear map $g: V_{1} \times V_{2} \rightarrow W$. Notice that we can define a linear map $g^{\prime}: \mathbb{K}\left(v_{1} \times v_{2}\right) \rightarrow W$ by $g^{\prime}\left(v_{1}, v_{2}\right):=g\left(v_{1}, v_{2}\right) \quad\left(v_{1} \times v_{2}\right.$ is basis of $\mathbb{K}\left(v_{1} \times v_{2}\right)$. Define now $F: V \longrightarrow W$ by $F\left(\frac{v}{\left(v_{1}, v_{2}\right)}\right):=g^{\prime}\left(v_{1}, v_{2}\right), \forall\left(v_{1}, v_{2}\right) \in v_{1} \times v_{2}$. Notice that F is well-defined and linear since $I \subseteq \operatorname{ker}\left(g^{\prime}\right)=\left\{x \in k\left(v_{1} x v_{2}\right): \quad g^{\prime}(x)=0\right\}$. By definition, it satisfies that $F \circ D=g$.

It remains to prove that F is unique. Suppose that there is another linear map $F^{\prime}: V \rightarrow w$ such that $F_{0}^{\prime} \otimes=9$. Then

$$
F^{\prime}\left(\overline{\left(v_{1}, v_{2}\right)}\right)=F^{\prime} \circ \theta\left(v_{1}, v_{2}\right)=g\left(v_{1}, v_{2}\right)=F_{0} \otimes\left(v_{1}, v_{2}\right)=F\left(\overline{\left(v_{1}, v_{2}\right)}\right) ; \quad \forall\left(v_{1}, v_{2}\right) \in v_{1} \times v_{2}
$$

- Uniqueness: Assume that there is another $\left(V^{\prime}, \Delta^{\prime}\right)$. Since Δ^{\prime} is bilinear g there exits a unique linear map $\Phi: V \longrightarrow V^{\prime}$. Analogously, there is a linear map $\Phi^{\prime}: V^{\prime} \longrightarrow V$

$$
v_{1} \otimes v_{2} \longmapsto v_{1} \otimes^{\prime} v_{2}
$$

$$
v_{1} \otimes^{\prime} v_{2} \mapsto v_{1} \otimes v_{2}
$$

Obscene that $\Phi^{\prime} \circ \Phi: v \rightarrow V$ satisfies $\Phi^{\prime} \circ \Phi\left(v_{1} \otimes v_{2}\right)=\boldsymbol{Q}\left(v_{1}, v_{2}\right)$ By uniqueness, we have id $=\Phi^{\prime} \circ \Phi$. In the same way, we can show that id $v^{\prime}=\Phi \circ \Phi^{\prime}$ Therefore Φ and Φ^{\prime} are mutually inverse linear maps, ie. $V \cong v^{\prime}$ as vector spaces.

Definition The pair ($V,\left(\otimes\right.$) from the previous theorem is called the tensor product of V_{1} and V_{2} It will be denoted by $V_{1} \otimes V_{2}=V$. The image of $\left(v_{1}, v_{2}\right)$ through \otimes is denoted by $v_{1} \otimes v_{2}$. In the practice, we can consider $v_{1} \otimes v_{2}$ as a pals with the bilinear property; $\left(u_{1}+u_{2}\right) \otimes v=u_{1} \otimes v+u_{2} \otimes v \in V_{1} \otimes V_{2}$,
 Elements of the form $v_{1} \otimes v_{2}$ are called pure tensors.

Proposition (Tensor product of maps) Let $f: v \rightarrow v^{\prime}, g: w \rightarrow w^{\prime}$ be linear maps. There is a unique linear map $f \otimes g: V \otimes w \rightarrow v^{\prime} \otimes W, \quad v \otimes w \mapsto f(v) \otimes g(w)$.
Proof. The map $(v, w) \mapsto f(v) \otimes g(w)$ is bilinear.
Properties of tensor products.
Remark. In order to define linear maps $f: V_{1} \otimes V_{2} \rightarrow W$, it is useful to just find a bilinear map $f: V_{1} \times V_{2} \rightarrow W$ and then define $F: V_{1} \otimes V_{2} \rightarrow W$ by universality.

Proposition Let $\left\{e_{i}\right\}_{i \in I}$ be a busts of V and $\left\{f_{j}\right\}_{j \in T}$ be a basis of w. Then $\left\{e_{i} \otimes f_{j}\right\}_{(i, j) \in I \times T}$ is a basis of $V \otimes W$.
Proof. Since \otimes is bilinear, one can easily see that $\left\{e_{i} \otimes F ;\right\}(i, j) \in I \times J$ generates Vo r W. Now assume that $\sum a_{i, j} e_{i} \otimes f_{j}=0$. Fix $i_{0} \in I, j_{0} \in J$. Now consider the map $f: V \times w \rightarrow \mathbb{K}$ $(v, w) \longmapsto e_{i_{0}}^{*}(v) f_{j_{0}^{*}}^{*}(w)$ $e_{i_{0}}^{*}: V \longrightarrow K$
$e_{i} \longmapsto\left\{\begin{array}{l}i \quad i=i_{0} \text { and analogously } f_{0}^{*}: W \longrightarrow \mathbb{K}, ~ \\ 0\end{array}\right.$ $F_{j} \longmapsto \begin{cases}i \\ j & j=j_{0} \\ j \neq j\end{cases}$ f is bilinear, so then there exists $F: V \otimes W \rightarrow \mathbb{K}$ linear such that $F(v \otimes w)=e_{i_{0}^{*}}^{*}(v) f_{j 0}^{*}(w)$.
Hence $\quad 0^{\prime}=F(0)=F\left(\sum a_{i, j} e_{i} \otimes f_{j}\right)=\sum a_{i, j} e_{j}^{*}\left(e_{i}\right) f_{j}^{\prime}\left(f_{j}\right)=a_{i 0 i j 0}$.
Hence $\left\{e_{i} \otimes f ;\right\}_{(i, j) \in I \times \tau}$ is a linearly independent set.

Proposition (Associativity) Let V_{1}, V_{2}, V_{3} be vector spaces. The following mus is an isomorphism of vector spaces: $\left(v_{1} \otimes v_{2}\right) \otimes V_{3} \longrightarrow V_{1} \otimes\left(v_{2} \otimes V_{3}\right)$. The two vector spaces will be identified $\left(v_{1} \otimes v_{2}\right) \otimes v_{3} \longmapsto v_{1} \otimes\left(v_{2} \otimes v_{3}\right) \quad$ and we will write $V_{1} \otimes V_{2} \otimes V_{3}$.
Proof. Fix $v_{3} \in V_{3}$. Define $\left.f_{v_{3}}: v_{1} \times v_{2} \rightarrow v_{1} \otimes C v_{2} \otimes v_{3}\right)$ such that $f_{v_{3}}\left(v_{1}, v_{2}\right)=v_{1} \otimes\left(v_{2} \otimes v_{3}\right)$.
It is easy to see that it is bilinear. By universal property, there is a unique linear map $F_{v_{3}}: V_{1} \otimes V_{2} \rightarrow V_{1} \otimes\left(V_{2} \otimes V_{3}\right)$ such that $F_{v_{3}}\left(v_{1} \otimes v_{2}\right)=v_{1} \otimes\left(v_{2} \otimes v_{3}\right)$. This the map

$$
f:\left(V_{1} \otimes V_{2}\right) \times V_{3} \rightarrow V_{1} \otimes\left(V_{2} \otimes V_{3}\right)
$$

$\left(v_{1} \odot v_{2}, v_{3}\right) \longrightarrow F_{v_{3}}\left(v_{1} \otimes v_{2}\right)$ is well-defined by extending by linearity on the fist argument. Also F is bilinear, so that there is a uigie linear map $F\left(V_{1} \otimes V_{2}\right) \otimes V_{3} \rightarrow V_{1} \otimes\left(V_{2} \otimes V_{3}\right)$ st. $\left(v_{1} \otimes v_{2}\right) \otimes v_{3} \longmapsto v_{1} \otimes\left(v_{2} \otimes v_{3}\right)$. Similarly we can construct a linear map the other nay around, inverse to F, hence the isomorphism.

By induction, we have:
Proposition Let $f: V, x \ldots \times V_{n} \rightarrow W$ be a n-multilinear map. Then there exists a mique linear map

$$
v_{1} \oplus \cdots \otimes v_{n} \rightarrow W
$$

$$
v_{1} \otimes \ldots \odot v_{n} \longmapsto f\left(v_{1}, \ldots, v_{n}\right) .
$$ we have then a bijection between the set of n-multilineur maps from $v_{1} \times \cdots \times v_{n} \rightarrow w$ and the set of linear maps from $V_{1} \otimes \cdots \otimes V_{n} \rightarrow W$.

Proposition. Let V be a vector space. The following maps are isomorphisms:

$$
\begin{array}{ll}
H \in V & V \\
\lambda \otimes V & V \otimes K K \\
V \otimes \lambda & \longmapsto \lambda v .
\end{array}
$$

Remark. Let V and W be vector spaces, and V^{\prime} and W^{\prime} vector subspaces of v and W, resp. The linear map $\quad V^{\prime} \otimes W^{\prime} \longrightarrow V \otimes W$ is injective. Then we can consider $v^{\prime} \otimes W^{\prime}$ as a subspace of $V \otimes W$.

Proposition let U, V vector spaces, V_{1}, U_{2} vector subspaces of U, V_{1}, V_{2} vector subspaces of V.
i) $\left(U_{1}+U_{2}\right) \otimes\left(U_{1}+V_{2}\right)=U_{1} \otimes V_{1}+U_{2} \otimes V_{1}+U_{1} \otimes V_{2}+U_{2} \otimes V_{2}$.
ii) $\left(U_{1} \otimes V_{1}\right) \cap\left(U_{2} \otimes V_{2}\right)=\left(U_{1} n U_{2}\right) \otimes\left(U_{1} n V_{2}\right)$
iii) If $U=U_{1} \oplus U_{2}$, then $U \otimes V=(U, \otimes V) \oplus\left(U_{2} \otimes v\right)$
iv) If $V=V, \oplus V_{2}$ then $U \otimes V=\left(U \otimes V_{1}\right) \oplus\left(U \otimes V_{2}\right)$

Proof. i) Both subspaces of are generated by tensors $w \otimes v$, with $w \in U_{1} v U_{1}, v \in V, \cup V_{2}$. Thus they are both equal.
ii) Clearly $\left(u_{1} n u_{2}\right) \otimes\left(v_{1} n v_{2}\right) \leq\left(u_{1} \otimes v_{1}\right) \cap\left(v_{2} \otimes v_{2}\right)$.

Now, consider $\left\{e_{i}\right\}_{i \in I}$ basis of $U_{1} \cap U_{2}$, and complete it to obtain basis $\left\{e_{i}\right\}$ i $\in I_{1}$ of
 basis of U. Anulogously, $\quad\left\{f_{j}\right\}_{j \in J}$ basis of $V\left(J^{\prime}, J_{1}, J_{2}\right)$.

Let $x \in\left(U_{1} \otimes V_{1}\right) n\left(u_{2} \otimes V_{2}\right)$, and write $x=\sum_{\substack{i \in I \\ j \in T}} a_{i} e_{i} \otimes f ;$
Let io l I^{\prime}. Assume $i_{0} \otimes I_{1}$. Then $e_{i_{0}^{*}}^{*}\left(U_{1}\right)=(0)$. Since $x \in U_{1} \in V_{1}$, we have $\left(e_{i_{0}}^{*} \otimes i d_{v}\right)(x)=0$. Then $\quad 0=\sum_{i \in \tau, j \in T} a_{i, j} e_{i}^{*}\left(e_{i}\right) f_{j}=\sum_{j \in J} a_{i 0 j} f_{j}$.
Since $\left\{F_{j}\right\}_{j \in T}$ is a basis of v, then $a_{i_{0}, j}=0 \quad \forall j \in J$. Analogously, if jo J^{\prime}, then $a_{i, j 0}=0 \quad \forall i \in I$. Therefore $x=\sum_{i \in I^{\prime},} a_{i, j} e_{i} \otimes f_{j} \in\left(U_{1} n U_{2}\right) \otimes\left(v_{1} n V_{2}\right)$.
iii) From i), $U \otimes V=\left(U_{1} \otimes V\right)_{+}\left(U_{2} \otimes V\right)$. From ii), $\left.\left(U_{1} \otimes V\right)_{n}\left(U_{2} \otimes V\right)=\left(U_{1} U_{2}\right) \otimes V=(0) \otimes V=10\right)$.
iv) Similady to iii)

Definition For any vector space V_{1} the dual is defined by $V^{*}:=\operatorname{Hom}(v, k):=\{f: v \rightarrow k: f$ is linear $\}$. For any $f: V \rightarrow w$ linear, the transpose $f^{*}: w^{*} \longrightarrow V^{*}$ is defined by $f^{*}(\alpha):=\alpha \circ f$. V^{*} is a vector space: $(f+g)(x):=f(x)+g(x), \quad(\lambda f)(x)=\lambda f(x), \quad \forall x \in V, f, g \in V^{*}, \lambda \in \mathcal{K}$. Proposition Let V, W be vector spaces. The following map in in injective
$\theta: V^{*} \otimes W^{*} \rightarrow(V \otimes W)^{*}$

$$
f \otimes g \longmapsto\left\{\begin{array}{l}
v \otimes w \longrightarrow \mathbb{K} \\
v \otimes w \longmapsto f(v) g(w)
\end{array}\right.
$$

Proof. We see that Θ is well-defined. Let $(f, g) \in V^{*} \times W^{*}$. Consider the nap $\left.\quad v \times w\right) \longrightarrow^{*}(v, w) \longmapsto f(v) g(w)$. It is bilinear. By universal property, there is a unique linear map $\theta^{\prime}(f, g): V \otimes W \xrightarrow{W} \mathbb{K}$
Then we have a bilinear map $\theta^{\prime}: V^{*} \times w^{*} \xrightarrow{\longrightarrow}(V \otimes w)^{*}$, and vow $\longmapsto f(v) g(w)$ again by universal property, $\theta^{:}{ }^{m} V^{*} \otimes W^{*} \rightarrow(V \otimes W)^{*}$ in the statement exists.

We prove θ is injective. Take $F \in V^{*} \otimes W^{*}$ non-rero sit. $\theta(F)=0$. Write $F=\sum_{i, j} a_{i, j} f_{i} \otimes g_{j}$, where $\left\{f_{i} b_{j \in I}\right.$ and $\left\{g_{j}\right\}_{j G T}$ are lin. indep sets. We know that for every $V \otimes n \in V \otimes W, \quad 0=F(v o w)=\sum_{i, j} a_{i, j} f_{i}(v) g_{j}(w)$ Fix $w \in W$. Then for every $v \in V$,

$$
\sum_{i \in I}\left(\sum_{j \in \tau} a_{i, j} g_{j}(w)\right) f_{i}(v)=0 \text { since }\left\{f_{i}\right\}_{j \in \tau} \text { are indep., then }
$$

$\sum_{j \in T} a_{i, j} g_{j}(w)=0 \quad \forall i \in I$. Since $\left\{g_{j}\right\}_{j \in J}$ are indef, we have $a_{i, j}=0, \forall i \in I, j \in J$, then $F=0$, so that θ is injective.

Now, assume V is finite-dimensional. Take $\left\{e_{i}\right\}_{i \in I}$ basis of V and $\left\{f_{j}\right\}_{j e T}$ basis of W. Also, $F \in(V \otimes W)^{*}$. For any $i \in I$, let $g_{i}: W \rightarrow \mathbb{K}$ linear map such that $g_{i}\left(f_{j}\right)=F\left(e_{i} \otimes f,\right), \forall j \in J$. Since I is finite, $\sum_{i \in L} e_{i}^{*} \otimes g_{i} \in V^{*} \otimes W^{*}$. Also $\quad \theta\left(\sum_{i \in I} e_{i}^{*} \otimes g_{i}\right)\left(e_{k} \otimes f_{l}\right)=\sum_{i \in I} e_{i}^{*}\left(e_{k}\right) g_{j}\left(f_{l}\right)=g_{k}\left(f_{l}\right)=F\left(e_{k} \otimes f_{l}\right)$.
Since $\left\{e_{k} \otimes f_{l}\right\}_{k \in I, l \in J}$ is a basis of $v \otimes W$, we have that $F \in I_{m}(\theta)$. The proof is similar in the case that W is finite-dimensiono? Example. i) $\mathbb{R}^{2} \otimes \mathbb{R}^{2} \equiv m_{2}(\mathbb{R})$ us vector spaces, with $m_{n}(\mathbb{R})=\{2 \times 2$ matrices with entries in $\mathbb{R}\}$ ii) $\mathbb{C} \otimes \mathbb{R}[x] \equiv \mathbb{C}[x]$ as \mathbb{R}-vector spaces, with $\mathbb{K}[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: n \geq 0, a_{i} \in \mathbb{K}\right\}$ Indeed, consider the bilinear map $\mathbb{C} x \mathbb{R}[x] \rightarrow C[x]$. Then there exists $F: \mathbb{C} \otimes \mathbb{R}[x] \rightarrow \mathbb{C}[x] \quad \mathbb{R}$-linear map: It is subjective and infective: Suri,ective: Any λx^{n} comes from $\left(\lambda, x^{n}\right)$. By linearity, we obtain all $\mathbb{C}[x]$. infective: Take $\sum_{k} \lambda_{k} \otimes p_{k}(x)$ sit. $F\left(\sum_{k} \lambda_{k} \otimes p_{k}\right)=0$. Write $\lambda_{k}=a_{k}+i b_{k}$.
By def of F_{1} we obtain $\sum_{k}\left(a_{k}+i b_{k}\right) p_{k}(x)=0 \Rightarrow \sum_{k} u_{k} p_{k}=0$ and $\sum_{k} b_{k} p_{k}(x)=0$. Hence $\quad \sum_{k} \lambda_{k} \otimes p_{k}(x)=\sum_{k}\left(a_{k}+i b_{k}\right) \otimes p_{k}(x)=1 \otimes \sum_{k} a_{k} p_{k}(x)+i \otimes \sum_{k} b_{k} p_{k}(x)=0$. Thus $\underset{\text { is injective. }}{F}$ 2. Algebras and Coalgebras

Intuitively, an algebra A is a vector space together with an associative product $m: A \times A \rightarrow A$ compatible with the vector space operations. This conditions imply that m is bilinear. Then ne can find a linear map $m: A \otimes A \rightarrow A$ st. $m(a \otimes b)=a \cdot b$. The associativity of m can be written as follows: id om a(bc) = (ab)c

For the axioms for the unit, consider $\eta: \mathbb{K} \longrightarrow A$ lInear. It is infective $(A \neq(0))$ and we can identify \mathbb{K} as a sibalgobra. $\lambda \longmapsto \lambda \longmapsto L_{A}$
identificutiars given in a previous the:
Then we can write $a \cdot 1_{A}=a=1_{A} a$

$$
K \otimes A \xrightarrow{n @ i d} A \otimes A \xlongequal{i d \otimes n} A \otimes \mathbb{K}
$$

$$
m \cdot(\eta \otimes i d)=i d=m \cdot(i d \otimes \eta) .
$$

$$
\mathrm{lm}_{\mathrm{m}}^{\mathrm{m}}
$$

Definition. An algebra is a triple (A, m, η) where A is a vector space, $m: A \otimes A \rightarrow A$ is a linear map called multiplication, $\cap: \mathbb{K} \rightarrow A$ is a linear mop called unit, that satisfy the following conditions:

- Associativity

$$
m \cdot(i d \otimes m)=m \cdot(m \otimes i d)
$$

Unity

$$
m \cdot(i d \otimes \eta)=i d=m_{0}(\eta \otimes i d)
$$

$\mathbb{K} \otimes A \equiv A \leqq A \otimes \mathbb{K} \xrightarrow{i d \otimes n} A \otimes A$
quid

Proposition Let (A, M, η) be an algebra.
i) A subalgebra of A is a subspace B of A such that $m(B \otimes B) \subseteq B$ and $\eta(k) \subseteq B$.
ii) A_{n} (bilateral) ideal of A is a subspace I of A st. $m(A \otimes I+I \otimes A) \leq I$.

Proposition Let A, B be algebras and $f: A \rightarrow B$ a linear map. Then f is an algebra morphism if and only if

$$
\begin{aligned}
& \text {) } \quad m_{B} \circ(f \otimes f)=f \circ m_{A} \\
& \text { ii) } f \circ \eta_{A}=\eta_{B} \quad 1+\eta_{B} \eta_{B} f
\end{aligned}
$$ $A \otimes A \xrightarrow{f \otimes P} B \otimes B$

Proposition A_{n} algebra A is commutative if and only if $m \cdot \tau=m$, where $\tau: A \otimes A \longrightarrow A \otimes A$ is the $a \otimes b \longmapsto b \otimes a$ flip.
Example. Let V be a vector space. For any $n \geq 1$, we write $V^{\otimes n}:=\underbrace{V \otimes \otimes V}_{\text {times }}$. By convention $V^{\otimes 0}:=1 K$. An element in $V^{\otimes n}$ is u linear combination of a times tensors of length n. Sch tensors are called words in the alphabet v of lenght n. Definition Let V be a vector space. The tensor algebra of V is $T(V)=\bigoplus_{n \geq 0} V^{\otimes n}$.
To simplify notation, we write $v_{1} \cdots v_{n}$ instead of $v_{1} \otimes \cdots v_{n}$.
Proposition Let $\left\{U_{i}\right\}_{i \in I}$ be a basis of V. A basis of $T(V)$ is given by the words on the alphabet $\left\{v_{i}\right\}_{j \in I}:\left\{v_{i}, v_{i_{2}}, v_{i_{k}}\right\}_{\substack{k=0 \\ i, \ldots, j_{k} \in I}}$, where if $k=0$, we obtain the empty word 1 .
Theorem. let U be a vector space. $T(V)$ is an algebra with product given by concatenaion of words: $\left(v_{1}, v_{k}, w_{1}, \cdots w_{l}\right) \longmapsto v_{1} \cdots v_{k} w_{1} \cdots w_{l}$. The empty word is the wit for the concatenation product. Also, $T(V)$ satisfies the following universal property: if A is an algebra and $f: V \rightarrow A$ is a linear map, then there is a unique algebra morphison $F: T(V) \rightarrow A$ such that $F \circ i=f$, where $i: v \rightarrow T(V)$ is the natural infusion.

$$
V_{T(V),}^{V} \underset{G}{G} A
$$

Proof. We will prove the universal property. The map $\left(v_{1}, \ldots, v_{n}\right) \longmapsto f\left(v_{1}\right) \cdots f\left(v_{n}\right)$ is n-multiliear.

$F: T(v) \longrightarrow A$. It is clear that F is an algebra morphism exch that $f(v)=F(v)$. Then, $v_{1} \cdots v_{n} \longmapsto f\left(v_{1}\right) \cdots f\left(v_{n}\right)$
if F^{\prime} onother algebra morphism satisfying this property, we have:

$$
F^{\prime}\left(v_{1} \cdots v_{n}\right)=F^{\prime}\left(v_{1}\right) \cdots F^{\prime}\left(v_{n}\right)=f\left(v_{1}\right) \cdots f\left(v_{n}\right)=F\left(v_{1}\right) \cdots F\left(v_{n}\right)=F\left(v_{1} \cdots v_{n}\right) . \Rightarrow F=F^{\prime} .
$$

Remark. If x is a set, then we have $\mathbb{K}\langle X\rangle=T(\mathbb{K} X)$, where $\mathbb{K}\langle X\rangle$ is the non-commutative polynomial algebra on indeterminates X.

To define the notion of coalgebra, we dualize the axioms in the definition of algebra. comital conssociative
Definition A coalgebra is a triple (C, Δ, ε) where C is a vector space, $\Delta: C \rightarrow C \otimes C$ is a linear map called comultiplication and $\varepsilon: C \longrightarrow \mathbb{C}$ is a linear map called counit such that the following conditions hold:
i) Coassociativity
ii) Counity $(\varepsilon \otimes i d) \circ \Delta=i d=(i d \otimes \varepsilon) \circ \Delta$

If $\tau_{0} \Delta=\Delta$, we say that C is cocommutative.
Example i) Let X be a set. Then (kkk S, Δ, ε) is a coalgebru, where $\Delta(s)=s \otimes s$ and $\varepsilon(s)=1$ Check. It is cocomantative.
ii) (Incidence coalgebra). Let P be a posset. For $x \leq y \in P$ define the interval $[x, y]:\{z \in P: x \leq z \leq 1]\}$. Set $\operatorname{Int}(p)=\{$ intervals in $p\}=\{[x, y]: x \leq y$ in $p\}$. Then $C:=\mathbb{k} \operatorname{Int}(p)$.
Finally, $\quad \Delta([x, y])=\sum_{\substack{z \in \mathbb{p} \\ z \in[x, y]}}[x, z] \otimes[z, y], \quad \varepsilon([x, y])=\left\{\begin{array}{cc}1 \\ 0 & x=y \\ 0 \neq y\end{array}\right.$, extend linearly,
(c, Δ, ε) is a coalgebra called the incidence coalgebra.

$$
\begin{aligned}
& \text { We can check: } \\
& (\Delta \otimes d)\left(\sum_{x \leq z=y}[x, z] \otimes[z, y]\right)=\sum_{x \in z=1}\left(\sum_{x \leq z^{\prime} \leq z}\left[x, z^{\prime}\right] \otimes\left[z^{\prime}, z\right)\right) \otimes[z, y]=\sum_{x \in z^{\prime} \leq z \leq y}\left[x, z^{\prime}\right] \otimes\left[z^{\prime}, z\right] \otimes[z, y] \\
& (i d \otimes \Delta)\left(x \sum_{x=\{\leq y}[x, z] \otimes[z, y]\right)=\cdots=\sum_{x \leq z s z^{\prime} \leq y}[x, z] \otimes\left[z, z^{\prime}\right] \otimes\left[z^{\prime}, y\right]
\end{aligned}
$$

iii) (Matrices) For $n \geq 1$, wite $M_{n}^{\prime \prime}(k)$ the vector space with basis $\left\{e_{i, j}\right\}_{1 s i, j \leq n}$

Define $\Delta\left(e_{i, j}\right)=\sum_{k=1}^{n} e_{i, k} \otimes e_{k j}$. It is coassociative.

$$
(\Delta \otimes i d) \circ \Delta\left(e_{i, j}\right)=\sum_{k=1}^{n} \Delta\left(e_{i, k}\right) \otimes e_{k, j}=\sum_{k, l=1}^{n} e_{i, \ell} \otimes e_{\ell, k} \otimes e_{k, j}=\sum_{\ell=1}^{n} e_{i, \ell} \otimes \Delta\left(e_{\ell, j}\right)=(i d \otimes \Delta) \circ \Delta\left(e_{i, j}\right) .
$$

If $\varepsilon\left(e_{i, j}\right)=\delta_{i, j}$, then $(\varepsilon \otimes i d) \circ \Delta\left(e_{i, j}\right)=\sum_{x=1}^{n} \delta_{i, k} e_{k, j}=e_{i, j}=(i d \otimes \varepsilon) \circ \Delta\left(e_{i, j}\right)$.
Hence $m_{1}^{\prime}(\mathbb{k})$ is a coalgebra. For $n \geq 2,{ }^{k=1}$ it is non-cocommotative,

Sweedler notation: Let C be a coolgebra, Since $\Delta: C \rightarrow C \otimes C$, then we have $\Delta(c)=\sum_{i=1}^{n} c_{1, i} \otimes c_{i, i}, \forall c \in C$ We will write $\Delta(c)=\sum_{(1)} c_{(1)} \otimes C_{(2)}$ Coassociativity
writes

$$
\begin{aligned}
\sum_{(c)} \sum_{((1))}\left(c_{(1)}\right)_{(1)} \otimes\left(c_{(1)}\right)_{(2)} \otimes c_{(2)} & =\sum_{(c)} \sum_{\left(c_{2}\right)} c_{(1)} \otimes\left(c_{(2)}\right)_{(1)} \otimes\left(c_{(2)}\right)_{(2)} \\
& =\sum_{(1)} c_{(1)} \otimes c_{(2)} \otimes c_{(3)}=\Delta^{[2]}(c)
\end{aligned}
$$

More generally, the iterated coprodict can be written:

$$
\left(\Delta^{[1]}:=\Delta\right)
$$

$$
\Delta^{[n]}(c):=\left(\Delta \otimes i d^{(n-1)}\right) \cdot \Delta^{[n-1]}(c)=\sum_{(c)} c_{(1)} \otimes c_{(2)} \otimes \cdots \otimes c_{(n+1)}
$$

$n \geq 2$. Conssodutivity
says to is that it
Counit property writes: $\sum_{(c)} \varepsilon\left(c_{(1)}\right) c_{(2)}=\sum_{c=1} c_{(1)} \varepsilon\left(c_{(2)}\right)=c$.
Algebras and coalgebras are more o less equivalent objects. does not matter in which component of the tensor we iterate Δ.

Proposition i) Let (C, D, ε) coalgebia. Then c^{x} is on algebra with multiplication $(f g)(x)^{c}=(f \otimes g) 0 \Delta(x)=\sum_{(x)} f\left(x_{(1)}\right) g\left(x_{(y)}\right)$. The wit is given by E.
ii) Let (A, m, η) be a finite-dimensional algebra. Then A^{*} is a coalyebra with $\Delta=m^{x}: A^{*} \longrightarrow(A \otimes A)^{x}=A^{x} \otimes A^{\prime}$. The count is given by $\varepsilon(f):=f(1)$.

Proof. Associatinty of the product follows from coassociativity of Δ. Indeed, in sneedler notation

$$
\begin{aligned}
& ((f \cdot g) h)(x)=\sum_{(x)}\left(f_{g}\right)\left(x_{(1)}\right) h\left(x_{(2)}\right)=\sum_{(x)} \sum_{\left(x_{(1)}\right)} f\left(\left(x_{(11)}\right)_{(1)}\right) g\left(\left(x_{(1)}\right)_{(2)}\right) h\left(x_{(2)}\right)^{f, y, h \in C^{*}} \\
& =\sum_{(v)} \sum_{\left(x_{1}\right)} f\left(x_{(1)}\right) g\left(\left(x_{(2)}\right)_{(1)}\right) h\left(\left(x_{(2)}\right)_{(2)}\right)=\sum_{(x)} f\left(x_{(1)}\right)(g h)\left(x_{(2)}\right) \\
& =f(g h)(x) \text {. } \\
& (f \cdot g) h=(f \cdot g \otimes h) \cdot \Delta=((f \otimes g) \circ \Delta \otimes h) \cdot \Delta \\
& =(f \otimes g \otimes h) \cdot(\Delta \otimes i d) \cdot \Delta \\
& =(f \otimes g \otimes h) \cdot(i d \otimes \Delta) \cdot \Delta \quad b^{b y} \text { coussociotinity } \\
& =(f \otimes g h) \cdot \Delta=f \cdot(g \cdot h)
\end{aligned}
$$

For the unit $\varepsilon f=(\varepsilon \otimes f) \circ \Delta=\left(d_{\kappa} \otimes f\right) \circ(\varepsilon \otimes i d) \circ \Delta=f 0 i d=f=(f \otimes \varepsilon) \circ \Delta=f \cdot \varepsilon$.
ii) Since A is finite-dimensional, we can identify $(A \otimes A \otimes A)^{*} \equiv A^{*} \otimes A^{*} \otimes A^{*}$.

Then if $x \oplus y \otimes z \in A \otimes A \otimes A$ and $f \in A^{*} \quad \Delta=m^{*}: A^{*} \rightarrow(A \otimes A)^{*}=A^{*} \otimes A^{*}$

$$
\begin{aligned}
& (\Delta \otimes i d) \cdot \Delta(f)(x \otimes y \otimes z)=\Delta(f)(x y \otimes z) \\
& =f((x, y), z) \\
& =f(x \cdot(y z)) \\
& =\Delta(f)(x \otimes y z) \\
& =(i d \otimes \Delta) \circ \Delta(f) \quad(x \otimes y \otimes z) \\
& \text { For the unit } \varepsilon(f)=f(1) \text {, we have } \\
& \text { (} \varepsilon \otimes \text { id) } \cdot \Delta(f)(x)^{A=}=\Delta(f)(1 \otimes x)=f(1 \cdot x)=f(x) \\
& \Delta(f)=m^{*}(f)=f \circ m \quad b_{y} \text { def: } \\
& (\Delta \otimes i d) \cdot \Delta=\left(m^{*} \otimes i d^{*}\right) \cdot m^{*} \\
& =(m \circ(m \otimes i d))^{*} \\
& (\mathrm{~g} \cdot \mathrm{~h})^{*}=h^{\prime} \cdot g^{*} \\
& =(y \circ h) \quad=(\alpha \circ y) \circ h \\
& =g^{x}(\alpha) \cdot h \\
& =\left(h^{*} \cdot g^{*}\right)^{h}(\alpha)
\end{aligned}
$$

Analogously, $\quad(i d \otimes \varepsilon) \cdot \Delta(f)(x)=f(x)$.
Example. The dual of the coalgebra $m_{n}^{*}(\mathbb{K})$ is the algebra of $n \times n$ matrices $m_{n}(c)$.
$\varepsilon=\eta^{*}: A^{*} \rightarrow \mathbb{K}$
Actually, if $\left\{E_{i, j}\right\}_{1 \leq 1, j \leq n}$ is the dual basis of $\left\{e_{1, j}\right\}_{1 \leq i j \leq n,}$ and if we $\lambda \xrightarrow{\imath} \lambda 1_{n} \simeq \lambda_{x}(1)$ we wile $E_{i, j} E_{k, l}=\sum_{i \leq s, t \in n} a_{s, t} E_{s, t}$, then $a_{s, t}=E_{i, j} E_{n, c}\left(e_{s, t}\right)=\left(E_{i, j} \otimes E_{k, l}\right) \cdot \Delta\left(e_{s, t}\right)=\sum_{i=1}^{n} \delta_{i, s} \delta_{j, u} \delta_{k, u} \delta_{1, t}$ Iss, ten Then $E_{i, j} E_{k, t}=0$ if $j \neq k$ and $E_{i, j}^{, k} E_{k, t}=E_{i, l}$ if $j=k$.

Example (Incidence algebra of a poset P). Let $C(P)$ be the incidence coalgebra of P. We will call its dual $A(P):=(C(P))^{*}$ the incidence algebra of P.

Elements; linear functional $c: C \longrightarrow \mathbb{k} \Leftrightarrow$ functions $c^{*}: I_{n}+(P) \rightarrow \mathbb{K}$.

Unit:

$$
\varepsilon([x, y])=\left\{\begin{array}{ll}
1 & x=y \\
0 & x+y
\end{array}=\delta([x, y]) .\right.
$$

Definition Let C be a coalgebra and V be a vector subspace of C.
i) V is a sub-coalgebra of V if $\Delta(V) \leq V \otimes V$.
ii) V is a two-sided coideal if $\Delta(V) \leq V \otimes C+C \otimes V$ and $\varepsilon(V)=(0)$.

Proposition Let C be a coalgebra and v be a subspace of C.
i) If v is a subcoalgebra of v, then $\left(v, \Delta N_{1} \varepsilon \|_{v}\right)$ is a coalgebra.
ii) If V is a coideal, then C / v has a coolgebra structure given by $\Delta^{\prime}(\bar{x}):=\sum_{(x)} \bar{x}_{(1)} \otimes \bar{x}_{(z)}$, $\varepsilon(\bar{x})=\varepsilon(x)$. Proof. ii) We will show that D^{\prime} and ε^{\prime} are well-defined. Then the coalyebru axioms of (will imply the coalgebra axioms of C / v.

Since $\varepsilon(V)=(0)$, then $V \leq \operatorname{ker}(\varepsilon)$, so that $\varepsilon: L / v \rightarrow \mathbb{K}$ is well-defined. Now, take
 Δ^{\prime} is well-defined.

Definition Let C, D be two coalgebras and $f: C \rightarrow D$ be a linear map. We say that f is a coalgebra morphism if

Proposition If $f: L \rightarrow \eta$ is a coulgebra mophism then $P^{*}: D^{*} \rightarrow C^{*}$ is an algebra morptism. Proof Let $\alpha, \beta \in D^{*}$. Then we have::

$$
\begin{aligned}
f^{*}(\alpha \beta) & =(\alpha \cdot \beta) \cdot f \\
\text { def of } & =(\alpha \otimes \beta) \cdot(\Delta \circ f)
\end{aligned}
$$

since f is a coaly morplimen $=(\alpha \otimes \beta) \circ(f \otimes f) \circ \Delta_{c}$

$$
=(\alpha \circ f) \otimes(\beta \circ f) \circ \Delta_{c}
$$

maybe more intuitive using Sucedles notation.

$$
=\left(f^{*}(\alpha) \otimes f^{*}(\beta)\right) \circ \Delta_{c}=f^{*}(\alpha) \cdot f^{*}(\beta)
$$

Proposition If $f: A \rightarrow B$ is un algebra morphism with A, B finite-dimensional vector spaces then $f^{*}: B^{*} \rightarrow A^{*}$ is a coalyebra morphism.
-) Goal: prove a version of the first isomorphism theorem for coalgebras. Lemma Let $f: V \rightarrow V^{\prime}, g: w \rightarrow W^{\prime}$ be linear maps and consider $f \otimes g: V \otimes W \rightarrow V \otimes w^{\prime}$. Then i) $\operatorname{Im}(f \otimes g)=\operatorname{Im}(f) \otimes \operatorname{Im}(g)$. ii) $\operatorname{Ker}(f \otimes g)=\operatorname{Ker} F \otimes W \perp V \otimes \operatorname{ker} g$. Proof. Exercise :).

Proposition: Let $f: C \rightarrow D$ be a coulgebra morphism. Then Ker (f) is a coded of C and $I_{m}(f)$ is a subcoalyebru of D.
Proof. Let $c \in \operatorname{ker}(f)$. Then $f(c)=0 \Rightarrow 0=\Delta_{0} f(c)=(f \otimes f) \cdot \Delta_{c}(c)$ since f is a coalyebro morphism. Then $\Delta_{c}(c) \in \operatorname{ker}(f \otimes f)=\operatorname{ker} f \otimes C+C(\Delta \operatorname{ker} f$.

Now let $f(c) \in I_{m}(f)$. Then $\Delta_{D} \circ f(c)=(f \otimes f) \cdot \Delta_{c}(c)=\sum_{(1)} f\left(c_{(1)}\right) \otimes f\left(c_{(1)}\right) \in \operatorname{Im}(f) \otimes \operatorname{Im}(f)$.
Proposition (Fundamental iso the for coulgebras) If $f: C \rightarrow D$ is a coalgebru morphism, then Imf $A \cong C / \mathrm{ker} f$ as coulgebras.
Proof. $\bar{f}: C /$ ker $f \rightarrow I_{m} f, \bar{c}-f(c)$ is a coalgebru morphism sine the quotient could strutive of $C / \mathrm{ker} f$ is from c.

The following theorem provides a fundamental property in the structure of coalyebras that contrasts with the structure of algebras.
Theorem (Fundamental Theorem of Coclgebras) Let C be a coalyebra and $x \in C$. Then there exists a subcoalgebru $D \subseteq C$ such that $x \in D$ and $\operatorname{dim}_{k k} D<\infty$.
Proof. Let $\Delta(x)=\sum_{i} b_{i} \otimes c_{i}$. we consider $\Delta_{2}(x)=\sum_{i} \Delta\left(b_{i}\right) \otimes c_{i}=\sum_{i, j} a_{i} \otimes b_{i, j} \otimes c_{i}$.
Let D be the subspace generated by $\left\{b_{i, j}\right\}_{i, j}$. we claim that
$x=\sum_{i, j} \varepsilon\left(a_{i}\right) \varepsilon\left(c_{i}\right) b_{i, j}$. Indeed, notice that
$(\varepsilon \otimes$ id $\otimes \varepsilon) \cdot \Delta_{2}=(\varepsilon \otimes i d \otimes \varepsilon) \cdot(\Delta \otimes i d) \cdot \Delta$

$$
\begin{aligned}
& =(\varepsilon \otimes i d \otimes \varepsilon) \cdot(\Delta \otimes i d) \cdot \Delta \\
& =[((\varepsilon \otimes i d) \cdot \Delta) \otimes \varepsilon] \cdot \Delta=(i d \otimes \varepsilon) \cdot \Delta=i d
\end{aligned}
$$

Hence $x \in D$. we will show that D is a sibcoalgebra, ie. $\Delta(D) \subseteq D \otimes D$.
Indeed, b_{1} coassociativity, we have that $\sum_{i, j} \Delta\left(a_{j}\right) \otimes b_{i, j} \otimes c_{j}=\sum_{i, j} a_{i} \otimes \Delta\left(b_{1, j}\right) \otimes c_{i}$
Since $\left\{c_{i}\right\}_{i}$ are linearly independent, we obtain $\sum_{j} \Delta\left(a_{i}\right) \otimes b_{i, j}=\sum_{j} a_{j} \otimes \Delta\left(b_{i j}\right), \quad \forall i \in I$. Then $\sum_{j} a_{j} \otimes \Delta\left(b_{i, j}\right) \in C \otimes C \otimes D$. Then by Exercise $j_{1} l_{i s t} 1_{1}$, we have that $\Delta\left(b_{i ;}\right)$ is in $C \otimes D$. Analogously, we can show that $\Delta\left(b_{i, j}\right) \in D n C$. Hence $\Delta\left(b_{i, j}\right) \in C \otimes O \cap D \otimes C=D \otimes D$, and we conclude.
Remark. Ex 3 from list follows from the fact that if U, V are vector subspaces, and $V^{\prime} \leq V$ is a subspace, then $U \otimes V / V^{\prime} \cong(U \otimes V) /(U \otimes V 1)$. This can be proved by cons) dering the map $U \otimes V \rightarrow U \otimes \mathrm{~V} / \mathrm{V}^{\prime}$
nov $\mapsto i d_{u}(\omega) \otimes \pi_{v}(v)$ and showing that $\operatorname{ker}\left(i d_{u} \otimes \pi_{v^{\prime}}\right)=U \otimes V^{\prime}$.
Then, we can use the pact that if $0=\sum_{i=1}^{n} u_{i} \otimes \bar{v}_{i} \in \cup \otimes v / v^{\prime}$ and $\left\{u_{i}\right\}_{i}$ are linearly independent, then $\bar{v}_{i}=0 \in V / v^{\prime} \Rightarrow v i \in V^{\prime}$. In particular, if $x=\sum_{i=1}^{n} u_{i} \otimes v_{i} \in U \otimes V^{\prime} \leq U \otimes V$, then $\pi_{\text {Hov }}: U \otimes v \rightarrow U_{O V} /$ nov maps $x \mapsto 0$, so that we can use the above argument.

Example. Let V be a vector space. The tensor algebra $T(v)$ has a coalyebra structure when equipped

Example. The tenser algebra $T(V)$ has another coalyebra structure when equipped with the

Bialgebras

Definition A bialgebru is a tuple $(B, m, \eta, \Delta, \varepsilon)$ such that (B, m, η) is an algebra, (B, D, ε) is a coalgebra, such that the following diagrams commute:

$$
i d_{1 k}=\varepsilon \circ \eta
$$

Remark. i) Let $\left(A, m_{A}, \eta_{A}\right)$ and $\left(B, m_{B}, \eta_{B}\right)$ be two algebras. The tensor product $A \otimes B$ has an algebra structure given by $m_{A \otimes B}:=\left(m_{A} \otimes m_{B}\right) \cdot\left(i d_{A} \otimes \tau \otimes i d_{B}\right)$, and

$$
\eta_{A \otimes B}=\eta_{A}^{\otimes} \eta_{B}: K \otimes \mathbb{B} \equiv \mathbb{K} \rightarrow A \otimes B \text {. } A \otimes B \text { In particular, we can write }(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=a \cdot a^{\prime} \otimes b \cdot b^{\prime} \text {, }
$$

for any $a, a^{\prime} \in A, b, b^{\prime} \in B$,
ii) Analogously, let $\left(C, \Delta_{C}, \varepsilon_{c}\right)$ and $\left(D, \Delta_{D}, \varepsilon_{D}\right)$ be two coalgebras. The tensor product has a coalgebra structure given by $\Delta_{C O D}:=($ id $\tau \otimes$ id $) \circ\left(\Delta_{C} \otimes_{C} \Delta_{D}\right) \quad$ and

$$
\varepsilon_{C O D}=\varepsilon_{C} \varepsilon_{D}
$$

The compatibility diagrams in the definition of a bialgebra describe the relation of the maps m and η with the coalgebru structure and also the relation of Δ and ε with the algebra structure.

Lemma. Let B ben vector space such that (B, m, η) is an algebra and (B, D, ε) is a coalgebra. The following are equivalent:
i) Δ and ε are algebra morphisms.
ii) m and 2 are coalyebru morphisms
iii) For any $x, y \in B) \quad \Delta(x y)=\sum_{(x)} \sum_{(y)} x_{(y)} y_{(1)} \otimes x_{(z)} y_{(z)}, \Delta\left(1_{B}\right)=1_{B}\left(\Delta 1_{B} \quad t(x y)=\varepsilon(x) \varepsilon(y), \varepsilon\left(1_{B}\right)=1_{k}\right.$

Proof. i) \Leftrightarrow iii) $\Delta: B \rightarrow B \otimes B$ is an algebra morphism if and only if $\Delta(x y)=\Delta(x) \Delta(y)=\sum_{(x),(1)} x_{(1)} y_{(1)} \otimes x_{(2)} y_{(2)}$ and $\Delta(1)=1_{B \triangle B}=1 \otimes 1$. In the same way, $\varepsilon: B \rightarrow \mathbb{K}$ is an algebra morphism if and only if $\varepsilon(x y)=\varepsilon(x) \varepsilon(y) \quad \forall x, y+B$ and $\varepsilon(1)=\mathbb{I}_{\mathbb{k}}$. Hence i) and iii) are equivalent.
ii) \Leftrightarrow lii) $m: B \otimes B \rightarrow B$ is a coalgebru orphism if and only if for any $x \otimes y \in B \otimes B$:
$\Delta \circ m(x \otimes y)=(m \otimes m) \cdot \Delta_{B \Delta B}(x \otimes y)$

$$
\Delta(x y)=(m \otimes m) \cdot\left(\sum_{(1,1)} x_{(1)} \otimes y_{(1)} \otimes x_{(z)} \otimes y_{(2)}\right)=\sum_{(x),(1)} x_{(1)} y_{(1)} \otimes x_{(2)} y_{(z)}
$$

and for any $x \otimes y \in B \otimes B, \quad \varepsilon \circ m(x \otimes y)=\varepsilon(x y)=\varepsilon_{B \otimes B}^{\text {def }}(x \otimes y)=\varepsilon(x) \varepsilon(y)$.
Also, $\eta: \mathbb{K} \rightarrow B$ is a coalgebra morphism if and only if
$\Delta \circ \eta\left(I_{k}\right)=\left(\eta \Delta_{\eta}\right) \circ \Delta_{k}\left(1_{k}\right)$ recall that $\left(\mathbb{K}, \Delta_{k}, \varepsilon_{k}\right)$ is a $\Delta\left(1_{B}\right)=(\eta \otimes \eta)\left(1_{n} \otimes 1_{k}\right)=\eta\left(1_{k}\right) \otimes \eta\left(1_{k}\right)=1_{B} \otimes 1_{B}, \quad$ coalgebru with $\quad \Delta_{k}\left(1_{k}\right)=1 \otimes 1$ and $\varepsilon=i d_{1 k}$.
and also $\left.\varepsilon \cdot \eta^{\left(1_{k}\right.}\right)=\varepsilon\left(1_{B}\right)=\varepsilon_{k}\left(1_{k}\right)=1_{\text {k }}$:
Proposition. A tuple $(B, m, 2, \Delta, \varepsilon)$ is a bialgebra if and only if, $(B, m, 2)$ is an algebra, (B, Δ, ε) is a coalgebru, and Δ and ε are algebra morphisms.

Example Group bialgebra. Let G be a group and consider $B=H \in$. The product on G is linearly extended to a product $m: B \otimes B \rightarrow B, \quad$ set $\eta: k \rightarrow B, \quad \Delta(g)=g \otimes g$ and extend linearly. Finally, set $E: B \longrightarrow \mathbb{K}$ $g \longmapsto 1$

We have that B is a bialgebra:

Check the other three diagrams.

Example: (Polynomid ring) Consider $B=H \in[x]$ multiplication and unit usual, $\varepsilon\left(x^{n}\right)=\left\{\begin{array}{l}1 \\ 0\end{array} \quad n=0\right.$ Coproduct $\Delta\left(x^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} x^{k} \otimes x^{n-k}$. Comes from extending $\Delta(x)=1 \otimes x+x \otimes 1$ multiplicatively.

$$
\text { Hence } B \text { is a bialaebra. This wo have } x^{a} D x^{b} \longrightarrow x^{a+b} \longrightarrow \sum_{k=0}^{a+b}\binom{a+b}{k} x^{k} \otimes x^{a+b-k}
$$

Hence B is a bialyebra. This we have $\Delta \otimes \Delta \$
B1 comparing coefficients, we have that $\binom{a+b}{k}=\sum_{i+j=k}\binom{a}{i}\binom{b}{j}$.

Example (poets) Let $\mathcal{I}=\mathbb{K}\{$ isomorphism classes of posets with $\hat{0}$ (minimum) and $\hat{\imath}$ (maximum element) $\}$:
Coalgebra: $\Delta(p)=\sum_{p \in p}[\hat{0}, p] \otimes[p, \hat{1}], \varepsilon(p)= \begin{cases}1 & \text { if } \bar{p}=1 \\ 0 & \text { otherwise } \quad \text { pose with one clement })\end{cases}$
We have writhen \bar{P} as the isomorphism class of the poet P.
Algebra, $m(P \otimes Q)=P \times Q=P \cdot Q$, where $P \times Q$ stands for the direct product of posets:

$$
p \times Q=\{(p, q): p \in P, q \in Q\}, \quad(p, q) \leq(p, q) \Leftrightarrow p \leq p^{\prime} \text { and } q \leq q^{\prime} .
$$

We have for instance:

- Δ is an algebra morphism:

$$
\Delta(p \times Q)=\sum_{(p, q) \in p \times Q}[(0,0),(p, q)] \otimes[(p, q) \otimes(1,1)]=\sum_{(p, q) \in p \times Q}([0, p] \times[0, q]) \otimes([p, 1] \times[q, 1])
$$

$\underset{A \otimes B}{\text { multiplication in }}=\sum_{p \in T, q \in Q}([0, p] \otimes[p, 1]) \times([0, q] \otimes[q, 1])=\Delta(p) \times \Delta(Q)$.
Remark. For our last three examples, we have

	comm	cocomm
1	no	yes
2	yes	yes
3	yes	no

Remark Let B be a bialgebra of finite dimension. Then the dual $\left(B^{*}, \Delta^{*}, \varepsilon^{*}, m^{*}, \eta^{*}\right)$ is also a bialgebra.
Example. Let G be a finite group. The dual of $\mathbb{K} G$ identifies with the algebra of maps $\mathbb{K}^{G}:=\{f: G \rightarrow \mathbb{K}\}$. This algebra is a bialgebra with the coproduct given by $\Delta f(x \Delta y)=f(x y)$, for any $x, y \in G$. In particular, a basis of \mathbb{K}^{6} is given by $\left\{\delta_{x}\right\}_{x \in G}$, where $\quad \delta_{x}: \underset{y}{b} \nmid \delta_{x, y}$. Then $\quad \Delta\left(\delta_{x}\right)(y \otimes z)=\delta_{x, y z}=\left(\sum_{\substack{u, v \in b \\ u=x}} \delta_{u} \otimes \delta_{v}\right)(y \otimes z)$.
Hence $\Delta\left(\delta_{x}\right)=\sum_{u \in 6} \delta_{u} \otimes \delta_{u^{-1} x}$. The count is given by $\varepsilon\left(\delta_{x}\right)=\delta_{x, e}$, with e $\in G$ the unit.
Definition Let B be a bialgebra and $I \subseteq B$ be a subspace.
i) We say that I is a sub-bialgebra of B if I is a subalgebra and a subcoalgebra.
ii) We say that I is a bi-ideal of B if I is an ideal and a coideal.

Proposition Let B be a biulyebra. For any bi-ideal $I, B / I$ has a bialgebru structure induced by B.
Definition Let B, B^{\prime} be blalyebrus and $f: B \rightarrow B^{\prime}$ be a linear map. We say that f is a bialyebra morphism if A is an alyebru morphism and a coalgebra morphism.

Theorem Let $B_{1} B^{\prime}$ be bialyebrus and consider $f: B \rightarrow B^{\prime}$ a bialyebru morphism. Then In (f) is a sub-bialgebra of B^{\prime} and $\operatorname{ker}(f)$ is a bi-ideul of B. Moreover, the bialgebras $B / \operatorname{ker}(f)$ and $I_{m}(f)$ are isomorphic.

Proposition: Let V be a vector space. The tensor algebra $T(V)$ has a bialgebra structure defined by $\Delta(v)=1 \otimes v+v \otimes 1, \forall v e V$, which coincides with the unshuffle coproduct. Proof By universal property, there exists a well-defined algebra morphism $\Delta: T(v) \rightarrow T(V) D T(V)$ such that $\Delta(v)=1 \otimes v+V \otimes 1$. This map is coassociative. $(\Delta \otimes i d) \circ \Delta(v)=v \otimes|\Delta 1+|\Delta v \Delta 1+1 \Delta| \Delta v=(i d \otimes \Delta) \circ \Delta(v), \quad \forall v+V$. Since $(\Delta \otimes$ id $) \cdot \Delta$, $(i d \otimes \Delta) \cdot \Delta: T(v) \rightarrow T(v)^{\otimes 3}$ are algebra morphisme (check), then we have that they are equal, so Δ is cocssocictive. Analogously, we can define a unique algebra morphism $\varepsilon: T(v) \rightarrow \mathbb{K}$ such that $\varepsilon(v)=0$ for any vV. In particular $(\varepsilon \otimes i d) \circ \Delta(v)=\varepsilon(v) I+c(1) v=v=(i d \theta \varepsilon) \circ \Delta$. Since id (i dor) $\Delta \Delta$, $(\varepsilon \Delta$ id $) \circ \Delta$ are algebra morphism coincident on v, then they are the same. Therefore, since Δ and ε are algebra norphism, we conclude that $T(v)$ is a bialgebra. Euthermore, it is easy to see that $T(v)$ is cocommutative since $\tau \circ \Delta(v)=1 \Delta v+v \otimes 1=\Delta(v), \forall v a v$. Finally, we will show that Δ is the unshuftle coproduct. By induction on the length of the words, n. If $n=1$, it is clear. Assume that the result holds for $n-1$. Hence $\Delta\left(v_{1} \cdots v_{n}\right)=\Delta\left(v_{1} \cdots v_{n-1}\right) \Delta\left(v_{n}\right)=\left(\sum_{I[[n-1]} v_{I} \otimes v_{[n] 1 I}\right)\left(v_{n} \otimes 1+1 \otimes v_{n}\right)$

$$
=\sum_{I \leq[n-1]} v_{I} v_{n} \otimes v_{[n]) I}+\sum_{I \leq[n-1]} v_{I} \otimes v_{[n] \backslash I} v_{n}
$$

on the other hand, $\varepsilon\left(v_{1} \cdots v_{n}\right)=\varepsilon\left(v_{1}\right) \cdots \varepsilon\left(v_{n}\right)=0$.

$$
=\sum_{\substack{I \leq[n] \\ n \in I}} v_{I} \otimes v_{[n] \backslash I}+\sum_{\substack{I \leq[n] \\ n \& I}} v_{I} \otimes v_{[n]) I}=\sum_{I \leq[n]} v_{I} \otimes v_{[n] \backslash I} .
$$

Analogously, we have:
Proposition Let V be a vector space. The symmetric algebra $S(V)$ has a bialgebra structure defined by $\Delta(v)=1 \otimes v+v \otimes 1, \forall v \in V$. $\quad S(v)$ is commutative and cocommutative.

Remark. In terms of polynomials, we have that $\mathbb{K}\left[X_{1}, \ldots, x_{n}\right]$ has a bialgebra structure given by $\Delta\left(X_{i}\right)=1 \otimes X_{i}+X_{i} \otimes 1$, for any $i \leq i \leq n$. It is commutative and cocommutative.

Definition A Lie algebra is a vector space L together with a binary operation
$[,-]: L \times L \rightarrow L$ called the lie bracket, satisfying :
i) $[, \cdot]$ is bilinear ;
ii) $[x, x]=0, \quad \forall x \in L$;
ii) $[,$,$] satisfies the Jacobi identity: [x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0, \forall x, y, z \in L$.

Proposition. Let A be an associative algebra. Then $(A,[,]$,$) is a lie algebra, where$ the Lie bracket is given by $[x, y]:=x y-y x, \forall x, y \in A$.

In relation with bialgebras, we have the following distinguished elements.
Definition. Let B a bialgebra. An element $x \in B$ is called primitive if $\Delta(x)=x \otimes 1+1 \otimes x$. The set of primitive elements is denoted Prim (B).

Proposition Let B be a bialgebra. Then Prim (B) is a Lie algebra for the Lie bracket $[x, y]=x y-y x, \quad \forall x, y \in \operatorname{Prim}(B)$.
Proof. It is easy to see that Prim(B) is a vector subspace. Now, since Δ is an algebra morphism, we have for $x, y \in \operatorname{Prim}(\beta): \quad \Delta([x, y])=\Delta(x) \Delta(y)-\Delta(y) \Delta(x)=(x \otimes 1+\mid \otimes y)(y \otimes 1+\mid \otimes y)-(y \otimes 1+\mid \theta y)(x \otimes 1+1 \otimes x)$ $=(x y-y x) \otimes 1+1 \otimes(x y-y x)=[x, y] \otimes 1+1 \otimes[x, y]$. Hence $[x, y] \in \operatorname{Prip1}(B)$, i.e. $\operatorname{Prim}(B)$ is a Lie Lsub-)algebra Lop B).

Convolution algebra
Let (A, m, η) and (C, Δ, ε) be an algebra and a coalgebra, respectively.
Definition The convolution algebra of C and A is the linear space $\operatorname{Hom}(C, A)$ with product defined by $f * g=m \cdot(f \otimes g) \cdot \Delta$ for all $f, g \in \operatorname{Hom}(C, A)$ and identity given by $\eta \circ \varepsilon$

Remark IF $A=\mathbb{K}$ then $\operatorname{Hom}(C, \mathbb{K})=C^{x}$. If $C=\mathbb{K}, \operatorname{Hom}(\mathbb{K}, A)=A$.
Lemma If $\pi: C \rightarrow D$ is a coalgebra amorphism, then $\pi^{*}: \operatorname{Hom}(D, A) \rightarrow \operatorname{Hom}(C, A), \pi^{*}(f)=f \circ \pi$ is an algebra morphism.
Proof. Notice for $f, y \in \operatorname{Hom}(D, A): \pi^{*}(f * g)=(f \times g) \cdot \pi=m \cdot(f \otimes g) \circ \Delta_{0} \cdot \pi=m 0(f \otimes g) \cdot(\pi \otimes \pi) \cdot \Delta_{c}$ $=\pi^{*}(f) \times \pi^{*}(g)$ Also $\pi^{*}\left(\eta^{\circ} \varepsilon_{0}\right)=\eta^{\circ} \varepsilon_{0} \circ \pi=\eta^{\circ} \varepsilon_{c}$. Hence π^{*} is an algebra morphism.

Proposition Let C be a bialgebra and A be an algebra. Suppose that $f \in H_{o m}(C, A)$ has a convolution inverse f^{-1}. Let $A^{\circ p}$ be the opposite algebra of A : $m_{A} \circ p(a \otimes b)=m(b \otimes a)$,
a) If $f: C \rightarrow A$ is an algebra map then $f^{-1} C \rightarrow A^{\circ P}$ is an algebra map $\forall a, b^{\prime} \in A$.
b) If $f: C \rightarrow A^{\circ p}$ is an algebra map then $f^{-1}: C \rightarrow A$ is an algebra map.

Proof. Let $D=C \otimes C$ be the tensor product coalgebra. Since C is a bialgebra, then $m_{c}: D \rightarrow C$ is a coalgeboa morphism. Then by the previous lemma $m_{c}{ }^{x}(f)$ has an inverse $m_{c}^{x}\left(f^{-1}\right)$ in Mom (D, A). we will show that $l: D \rightarrow A, l(c \otimes d)=f^{-1}(d) f^{-1}(c)$ is a left convolution inverse for $m_{c}^{*}(p)$ as nell. This implies that $f^{-1} \circ_{m}=m_{c}^{x}\left(p^{-1}\right)=\mathcal{l}$. Indeed, for $c, d \in C$ we have:

$$
\begin{aligned}
& \left(l \times m_{c}^{*}(f)\right)(c \otimes d)=\sum_{(c)(1)} l\left(c_{(1)} \otimes d_{(1)}\right) m_{c}^{*}(f)\left(c_{(1)} \otimes d_{(2)}\right) \\
& =\sum_{(1),(l)} f^{-1}\left(d_{(1)}\right) f^{-1}\left(c_{(1)}\right) f\left(c_{(2)} d_{(2)}\right) \\
& \begin{array}{l}
A \text { is on } \\
\text { alg. morphish }
\end{array} \rightarrow \sum_{(1),(i)} f^{-1}\left(d_{(1)}\right) \underbrace{f^{-1}\left(c_{(1)}\right) f\left(c_{(2)}\right)} F\left(d_{(2)}\right) \\
& m_{c} \circ\left(f^{-1} \otimes f\right) \circ \Delta_{c}(c)=\eta(\varepsilon(c))=\varepsilon(c) 1_{c} \\
& =\sum_{(d)} f^{-1}\left(d_{(1)}\right) \varepsilon(c) 1_{c} f\left(d_{(\imath)}\right)=\varepsilon(c) \varepsilon(d) 1_{c}=\varepsilon_{D}(c \otimes d) 1_{c} \\
& =\left(\eta_{c} \cdot \varepsilon_{D}\right)(c \otimes d)
\end{aligned}
$$

then l is a left convolution inverse for $m_{l}{ }^{k}(t)$.
Lemme If $j: A \rightarrow B$ is an algebra morphism then j_{x} : $\operatorname{Hom}(C, A) \rightarrow H_{m}(C, B)$ is an algebra morphism.
Proposition Let A be a bialgebra and C be a coalgebra. Suppose that $f \in \operatorname{Hom}(C, A)$ has a convolution inverse f^{-1}. Let $A^{c o p}=\left(A, \tau_{c, c}^{\circ} \Delta, \varepsilon\right)$ be the opposite coalgebra of A. ${ }_{c, c} \operatorname{COC} \rightarrow C O C$
-) If $f: C \rightarrow A$ is a coclyebra morphism then $f^{-1}: C \rightarrow A^{c o p}$ is a coalgebra morphism.
b) If $f: \leftrightarrow A^{(0)}$ is a coalgebra morphism then $f: C \rightarrow A$ is a coolgebra morphism.

