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Hopf Algebras in Combinatorics

Intuitively, a Hopf algebra is a rector space H with a multiplication
m : HQH - H and a comultiplication A : H-HQH satisfying several restricted

Sid
HQH -> HH

mrules :

there is silf-I such that
* &

X

H -> 1k - H commutes.

*Hah -Hal
ide S

In this course , we will focus on Hopf algebras arising from combinatorial objects such as

partitions , permutations,
trees

, graphs ,
etc.

1
. Tensor Product of vector spaces

Throughout the course , we will only consider vector over a field IK of

characteristic 0 (i
.
e. acl , there is no peIN space ch that a + a + ... + a = 0) .

---

p times

Recall that
,

for any V vector space and WIV vector subspace, we

define the quotient V/W as the set of classes in V under the equivalence
relation.

x-y(t x - yEW .

The quotient isavedor space : itXEV/Wis thecosElk.
of X-V

,
define

Lemma Let X be a set
.

There exists a vector space AX with basis X and

this space is unique up to isomorphism fixing X.

We can interpret the elements of(KX as formal linear combinations of elements of x :

1KX = IE-span9X3 = & EXxX : <xEK and xx = 0 for all but finitely many XeX 3. .

Definition Let V
, Uz ,

W be vector spaces .
A map f : U

, XV2-> W is bilinear if it is

linear in each of its argument when the other is fixed
,

i . e.

ACaxtby ,
a'x' + by) = abf(x

, y) + ab'A(x ,y)+ abF(x, y) + ab' A(x', y')
,

Wx
,yeV,, x', ye Un

I /

a ,
b

,
a'

,
b' Elk

.

Now
,

take A : U
, XV2-V bilinear

. If h : V-W is a linear may then3
/

hot : VIXVz-W is a bilinear map .
One may ask whether it is possible to choose

W and I such that every bilinear map of V
, XV2 can be obtained in this way .

This is called the universal problem for bilinear functions. The next theorem gives us

the pair that solves the problem

Theorem Let V
, and UI be two rector spaces. There exists a pair (V,) such that U

is avector space and : V
,

X V2 -> V is a bilinear map satisfying the
(V , Vs) I-> V, RV

following universal property: for any
W vector space and F: V , XV2 -> W bilinear map,

there
exists a mique linear map F : V-> W such that the following diagram is commutative :

f
V

, XV2 - W

④
#

The pair (V
,
) is unique up

to isomorphism .->
V

Proof. Existence : Take (K(V, xV2) the rector space generated by the set V
, XV2. Also,

consider I the vector subspace of ACV, XV2) given by
I : = 1k & (4 + N , v2) - Gives - Cri,res,

(v
, VetVi) -[ s Ve)-(,)

,
(xV, 2) -Mr

,2)
,

Crire) - x (vi , 2)
,&

VisvitVis VasV2tVis Rel .



Then we define
(v , Vas # ra. VIXn) /F.Also, define the map D : ViXU y e

is bilinear
.

We will show that IV,Q) satisfies the universal property .

LetW be a vector space
and consider a bilinear map g : U, XV2-> W.

Notice that we can define a

linear map g : (K4XUn) -> W by g'(r):glvvn)CUNUzisbasoenKK(V,
XV2) ·

Define now F : U - W

Notice that F is well-defined and linear sinceIC Ker(g) = <xxK1V xV2) : 9(X) = 63 .

By definition
, it satisfies that Fox = g. (because g is bilinear

IIt remains to
prove

I

that I is unique. Suppose that there is another linear map
Fl: V + W such that Fox = g. Then

Since(V21)-Fox(v, v2)=gIv, ,VE FoxCrive)=F (T,
8) , F (vin)tYI

· Uniqueness : Assume that there is another (V'
,

D). Since is bilinear, there exists a

unique linear map # : U -> V
v

.
QU,

+V
, Dr.

. Analogously,
there is a linear map # : V'-> V

v , *'V + V, DVz

Observe that I'o : U-V satisfiesE'o (v, V2) = x (V, vz) V XV
,

V
·

By uniqueness ,
we have ideI'oIR the same wala

are

a-
we can show that dy W

id
,

'o
I

mutually inverse linear maps,
i. . e. VEV' as rector spaces. F

Definition The pair (V
, Q) from the previous theorem is called the tensor product of V

, and U2.

It will be denoted by VI QV2 := V. The image of (V
, V2) through & is denoted by

V I OV2 . In the practice ,
we can consider v, * V as a pair with the bilinear property:

(n+ M) Q = m
, DV + MDV - V, Ve

,
X = X (nov) = naXV e V

, DV2 .

Elements of V, Vz are of the form VEV, V! + V2 ,
kitn.~ "Di,

Elements of the form V , QVz are called pure tensors.

Proposition (tensor product of maps) Let F : U-V'
, g : W-W' be linear maps. There is a unique

linear map # : VRW-> VOW
,

vow f(v)g(w) .

Proof. The map (v
,
w) > F(r) * y(W) is bilinear

.

Properties of tensor products·
Remark

.
In order to define linear maps A : V

, QV2-W , it is useful to just find a bilinear map
A : U

, XV -> W and then define F : U
, OV-W by universality.

Proposition Let deilict be a basis of U and 4fjb ; T be a basis of W
. Then 42:FjY c EXT

is a basis of UW.

Proof. Since & is bilinear
,

one can easily see that heixf; 3 (
,jktIx5 generates VOW

.

Now

assume that Edi, e .
xf

; = 0
.

Fix loff

, lot5 Now Considerthemak t.f : VXW -> Ik e: V -> Ik

( ,w)1 eT cr) filw)
,

where

f ; + 4%
#

f is bilinear
,

so then there exists F: VQW-(K linear such that FN*w) = e. (v) filw) ·

Hence 0 = F(0) = F(29 ;,je ,
f ; ) = [ ai, eblei) Fj(f)) = disijo

Hence Beixf;Y (ii)tIxT is a linearly independent set
.

Ka



Proposition (Associativity). Let V, Uz
,

Us be rector spaces. The following map is an isomorphism of

vector spaces: (v, Vz) * Vz -> VI D(V2Vs)
.

The two rector spaces will be identified

(R,*V) D V #> V, (v20V3) and we will write U , * V, Vs
.

Proof. Fix UstVs. Define Evs : V , XVz -> V , CUzQV3) such that try (v, Uz) = V , * (U Vs) .

It is easy to see that it is bilinear. By universal property , there is a miqe linear map
Frs : V

, DVz -> V* (VzDUs) such that F(V, V2) = V * CVAVs). This the mapVz
f : (V, QV2) x Us -> V

, D (V, Vs)

(v, Dr2 , Vs) -> Flu,) is well-defined by extending by linearity on the first

argument. Also I is bilinear
, so that there is a mige linear map FIV,

*KQVs->V
,R(V, Vs)

sit
.

(V , QV2) BVS #VCV2&V3). Similarly we can construct a linear map the other way around,
inverse to F

,
henc the isomorphism. Is

By induction
,

we have :

Proposition. Let f : U
, x ... xUn -> W be a n-multilinear

map. Then there exists a mique linear map
V, ... DVn -> W We have then a bijection between the set of n-multilinear maps

v, ... DV,
I fLV, ..., Un) . from Vix ... xUn-W and the set of linear maps from

V, ... DV -W
,

Proposition .
Let U be avector space .

The following maps are isomorphisms :

· V -> V OK-> V
/

x >I Vox +> XV .

Remark. Let U andW be rector spaces ,
and U' and W' vector subspaces of U and W

, resp.
The linear map

V'W' -> VW is injective. Then we can consider VW
as a subspace

~ W

of VOW,

Proposition Let U
, U vector spaces ,

Vi
,

U
I recor subspaces of U

,
Vin vector subspaces of V.

i) (U , + U2) *( , +V2) = U, Q V
, + UzV,

+ U , V
, + UzVz ,

ii) (U, VI) n (U2V2) = (VinUz) /V, n Vz).
iii) T-f U = U

,
OV

, ,
then UV= (v,V) (, V)

iv) If V = V
,

V
2 then VDV = (UV,) * (UV)

of VOV

Proof. is Both subspaces are generated by tensors wQv
,

with WeW
, rUs

,
VeV

, UVs .
Thus they are both equal

ii) Clearly (VinU2) (V , NU2)[(U,* V
,/n(U -* V2) .

Now
,

consider 42 : lic1 basis of V
, NU2

,
and complete it to obtain basis Geilici of

v
, , 42i3i

+ 12
of u ,

I'= I,n F2 und comp
to alefe (ei ; 'USI

, I'v (IzIl

I

basis of U
. Analogously , <filies basis ofV (T, 51

, 52).

Let x + (U, V , /n (Uz* Vn)
,

and write x= Gi
.j

2 ; Rf

Let is All . Assume 104I1
.

Then ex (UI) = 10). Since Xe V, Q V
, we have

-(e%* id)(X) = 0. Then 0 = 2 aii
, eplei) Ej= his is f

i+I, ; +T

Since

a,
<fibietis abasisof

UI the :0 icf Analogously ,

it soft,hehe

CV
, n Uz) .

iii) From is ,
UQV = (U , QV)+ (UzQV) .

From ii) . (U, *U)n (U* V) = (U, nuz) DV = 10/0V = / 0) .

iv)
similarly to iii) *



Definition For any vector space V
,

the dual is defined by U*: = Hom(V/(K) : = 4 F : U-IK = F is linear]
.

For any fi UtW linear
,

the transpose **: W
*
-> V

*

is defined by
*

(2) : = < of

V is a vector space : (f + gI(v) := f(x) + g(x) ,
(xf(x) = x f(x)

, OxeV, figeV*, Delk
.

linear

Proposition Let V
,

W be vector spaces. The following map is injective

· : U ** W*
-> (VW)

*

The map O is bijective if U or W are finite-dimensional.

** 9 I> [VOWTIOrigins

Proof .
We see that O is well-defined

.
Let (f , g) f V

*
xW*. Consider the map W ,=!

*

org(w) .

It is bilinear . By universal propertyyl thereis auniquelinear map G'(fig) : Veis

Then we have a bilinear ,
and

W + H(v)g(w)

again by universal property /
② : V** W

*
- (VOW)

*

in the statement exists.

We prove A is injective. Take FEV** W
*

non-zero sit .
O (F) = 0. Write

F = Tai; fiQ G;, where 4filicI and 99 ; 3je5 are lin
. indep .

sets. We know that

0 : F(row) = [ ai, fi(v/g;
(w). Fix weW

.
Then for every

i , ;
for every VONEVONgas/Fil) = 0

. SinceveU
, Stilize are indep .,

then

Edi; Gilw) = 0 Fiel. Since 19;3 ; ej
are indep, we have hij = 0 , FicI , jeJ.

then F = O
, so that O is injective .

Now, assume U is finite-dimensional
.

Take 4e
,

·Sixt basis of U and <fibics basis

of W. Also
,

Fe (UQW/*. For any icI
,

let 9 :: W -/K linear map suc 4 that
2

9 : (f) = F(eiQ f;) , ;
J

. Since I is finite, e g ; = U** W
*

.

Also 0 (E * gi) Dex * fe) = e(ey(9, (fe) =

9 K(fe) : Flek fel

Since 92* FeBKeI
, 15 is a basis of VOW

,
we have that FeIm(Q) :

The proof is similar in the case that W is Finite - Limensional.

cle. is
I * IR" E M

= CIR) as rector spaces ,
with MaCI) = <2x2 matrices with entries in ILYExamp

ii) & * IR[X] = K(X] as IR-vector spaces , with 1 [x] = 49o + a, x +... - AnX : n20, a ; elKY
Indeed ,

consider the bilinear map(x1R[X] -> D(X). Then there exists

(x , p(x) - xp(x)
F :Q * I[X] + <[x] IR-linear mapiIt

is surjectiveande injective :

surjective: Any xx" comes from By linearity, we obtain all <[x]
.

injective : Take & ** Pa(X) sit- FCEX* PK) = 0. Write Xk = ak + ibk
,

By def. of F, we obtain [lar + ibklPk(X) = 0 = [UkPx = 0 and EbrPx(X) = 0.

Hence IX & PK(X) = E (ak + iby) & PK(X) = 1 * [akPHlI + <* EbaPR(X) = 0 . Thus F
ectivee-is ins

2 . Algebras and Coalgebras

Intuitively, an algebra A is a vector
space together with an associative product

M : AXA -> A space operations.
This conditions imply that

is bilinecompatible with the vertise

m can find a linear map miAA-A st
. maxb) = a b

.

The associativity of m can be written as follows: a(b) = (ab) c

A A A
M

, A A Mo(mid) =mo(idm)
m * it↓ ↓ M

A A m
-> A



For the axioms for the mit consider 1 : (k-> A linear. It is injective (A FLO)
and we can identify IK as a sbalgebra. x #LA

identifications given in a previous thm.
* N

Then we can write a 1x = a = 1q'a I A *A A c A IK

mo (n* id) = id =mo (id *2) .

id
Im id

- A <

Definition. An algebra is a triple (A
,

m
, 2) where A is a vector space ,

miAQA-A

is a linear map called multiplication
, Gilk-A is a linear map called unit

,
that

satisfy the following conditions:

· Associativity mo(idQM) = mo (mxid) AAAAA
maid I ↓ m

A A A

· Unity mo (id n) = id = mo (axid) A =AEA/K I AQA

qid I id ↓
W

m

'A*A ->

Proposition. Let (A , m , 2) be an algebra .

i) A subalgebra of A is a subspace B of A such that m(BQ B) = B and q((K) < B
.

ii) An (bilateral) ideal of A is a subspace E of A s . t
. mCAXI + IQA) = I

.

Proposition Let A , B be algebras and : A-B a linear map. ThenA is an algebra morphism
if and only if A A BE

E M 0 (A**) = fo ma MA ↓ =>
#

& A
ii) fo

A
= 4 B ( -> A

&B
Proposition An algebra A is commutative if and only if mot = m , where I : AA-AxA is the

ab + ba flip..
Example. Let U be a vector space For any n2l , we write U**: U

. By convention
V* O

: = IK
:

An element in van is a linear combination of a times

ors are called words in the alphabet U of lenght n.tensors of lengtha .
Such ters

Definition Let U be a vector space. The tensor algebra of U is TIV) := VR

To simplif notation
,

we write v .... On instead of V. Q ... Q Vn .

Proposition Let [Viliez be a basis of U. A basis of TCV) is given by the words on the

alphabet [ViBicI : < V ;, Vi .. Virko
1....+1

,

where if K= 0
, we obtain the empty word

1
.

Theorem. Let U be avector space .
TCV) is an algebra with product given by concatena-

tion of words: (v,. Uh, m, Ne)H+ V
, Ukw,

... We . The empty word is the mit for the concatenation
/product .

Also, TCV) satisfies the following universal property : if A is an algebra and fiV->A

is a linear mup , then there isa mique algebra morphism F : TCV) + A such that
f

Foc = f
, where i : U -> TCVS is the natural inclusion. V -> A

It4-



Proof . We will prove the universal property. The map (v ,,..., Un) It F(v) ... A(vn) is a-multiliear
Then there is a migle linear map En : U

**
- A

:On + FCr) ... A(V)
· This ,

we obtain a
map

F : T(V)-> A

vive t Acr ... Frn)·
It is clear thatE is an algebra morphism such that F(v) = F(v) . Then,

if I' another algebra morphism satisfying this property , we have :

F'Cr...Un) = F'(V) ... F'(Un) = A(r) ... F(Un) = F(v) ... F(rn) = F(U : a) .
-> F= F'.

Remark. If X is a set
,

then we have A < X) = TC1X)
,

where I <X is

Lthe non-commutative polynomial algebra on indeterminates /

To define the notion of coalgebra, we dralize the axioms in the definition of algebra,
comital coassociative

Definition A coalgebra is a triple (c,
A

, 2) where C is a recor space,
D : <- <*C is a linear map

called comultiplication and 3 : < -> I is a linear

map called cornit such that the following conditions hold :

i) Coassociativity ii) Cornity (ERid) o A = id = (id* 3) · A
LAxid(oA = (idB) · A

D A
C > C C -C

A
* id A

id
id * E

~
A id v

V -

C CCC Id -

LC CIKC EC E CQIk

If TOD = D
,

we say that C is cocommutative.

Example is Let X be a set
.

Then (IS
,

D
, 2) is a coalgebra ,

where Als) = SQS

K. +and 2(s) = 1
.

Chec It is cocommutative .

-

ii) (Incidence Coalgebra) . Let P be a poset .
For x+y -P

, define the interval [x
,y]: 4ztP : x1zxYY

.

set Int(P)=dintervals inpu = <<X
, 13 : xxy in P3 . Then C := KINS, .

zeP

[x, z] * <z , y] ,
<(<x, ) = Go , extend linearly,

ze[X, y]

(C
,

D , 3) is a coalgebra called the incidence coalgebra .

We can check :

( * id)(E(x , z] & [7,)= y(+(x, z']a5z, 7) * [e11) = I [x,z'] (a,,z] a [z
X =E = 7=1

/

(idx A) (ecy[X ,z]* [ay)) =.. - =,(X ,z) * [z,z'] Q (z)

iii) (Matrices)For451, writeMC the redor spacewithbasis
Sei

,j , fin.

Define

(Deid) Blei; ) = Blei) en = eien enj= ei* D(en
, i) = (idB) ·D Leis.

If EL Ci
.) = Si

,j ,
then Lid) · Alei; ) = Si

,
ki = ei

,j
= (id 3)0 Alei, )

Hence M((K) is a coalgebra, For n 22
, it is non-cocommutative,



Sweedler notation : Let C be a coalgebra . Since A : C-CC, then we have

ACC = C,; * C
,
i ,

FceC .

We will write A(c) = Ec(* C
, 2) coassociativity

writes ↳ (i)* (a)a = y * (c), Can

=: (( * (( * (1) =: D
*

(c)
.

More generally, the iterated coproduct can be written :

(A" : = A
-(c) : = (D ***) (c) = E, <, *...* (n + 1)

, 122. Coassociativity
tha

says to us+ it

Count property writes: E
,
(c) () = I (a) E((n) = c. does not matter in which

component of the tensor we

Algebrus and coalgebras are more o less equivalent objects. iterate D.

Proposition i) Let (C
, A

, a) a coalgebra. Then C* is an algebra with
c
excbe

C
*

O & *

multiplication (Ag)(x) = (f*g) · DIX) = [ f(X,) 9 (X (n). The mit is given by E
.

(x)
ii) Let (A , m

, 4) be a finite-dimensional algebra. Then A is a coalgebra with
*

B = m
*: A

*
-> (ADA)

*

= A * A*. The comit is given by E(f) : = F(1) .

Proof. Associativity of the product follows from conssociativity of A
. Indeed

, in Sneedler notation.

Fig,
he C

*

((f . g) h) (x = 2(g)(x ,y)h(x (i) = Tzf((X()()g((x()(y)h(x)

= EEx F(X
, 1) g((X(n)cy) hL(xc)(n) = FlXclIgh) isa

(f . g) h = (Ag x h) · A = ((fogloA h) · A

-=(fag h aid) oP
conssociati y

= (F * gh) -D = f - (gh) -

For the mit s . f = (x f) - D = (id,f) · (3xid/oD = foid = f= (fx 2) o A = f . E .

ii) Since A is finite-dimensional, we can identifi (AAGA*EA******Then if X * y * - AA A and fe A*: *

(Axid) - D(f) (x *y z) = D(f)(xyz) A (f) = m
*

(f) : from by defi
# ~

= f((xy) . z) LAxid). D = (m
*

* in)om
*

transpose of compositions = F( x . (yz) = (mo(maid)
(goh)

*

= h
*

og
*

= A(f)(xxyz)
Lyoh)

*

(2) = < 0 (goh)
= (id A) o D(f) ( * y *z) .

= (xog) oh

For the mit <(f) = #(1) , we have = g
* (x) oh

A = /K A

( * id) = A(f) (x) = DIf) (1xx) = F(1 - x) = f(x) = (h
*

- g
* )(x)

Analogously, (idx a) : D (f) (x) = FIX)
<

C1K) isExample- The dual of the coalgebra Mr a = 9*: A
*
-> Ik

-

the algebra of nxn matrices Mp(K). <+ Con

Actually, if <Eightin is the doal basis of deigicijen,
and if we

n

x + x141 /x(1)
-

we write E i
, j

E
K

, l
= 2
·EsE!then Ast Ei,Erielesti, Exe) ODLEs

,e)E
,

disdin Ok, it
if jik .



Example (Incidence algebra of a posetP) . Let <(P) be the incidence coalgebra of P .

We will call its dral ACP) : = (CP)
*

the incidence algebra of 0.

Elements : linear functionals : <-1K E) Functions c: In + (P) -> 1K .

multiplication. < d
*

((x,p) = (d*
- D((X,7) = (Dd" (I [X,7) * [a1 :Ec((x,+3) d*

([z , /) .

Unit : 3( <x , y3) = 30 <Y == S(x, y)) .

x = z(y

Definition Let C be a coalgebra and U be a recor subspace of C.

i) V is a sub-coalgebra of V if B(v) = V V

ii) V is a two-sided coideal if AN)[VOC + CXV and E(V) = 16) .

Proposition Let C be a coalgebra and U be a subspace of C
.

is If
V is a scoalgebra of r

, then CV, Ph, le is a coalgebra.
(

V is a coideal
, then C/V has a coalgebra structure given by AK):= E***

11 ,
<(i)= E(X

.

I

Proof. ii) We will show that D and sure well-defined. Then the coalgebr uxioms of C will

imply the coalgebra axioms of C/V .

Since E(V) = ( 0)
,

then Viker (3) , so that : Y -> /K is well-defined. Now
,

take

Then we can write : D(X) = [ x, X (2 + E 4)
* YouXeV

.

MenDIXErQtC = 0 = DH. Hence
(x)

E V C

(Y)

E CQV
-- -

-

= T O

A is well-defined.

Definition Let C,
D be two coalgebras and F : C + D be a linear may .

We say that A isb

a coalgebra morphism if A of = (fQF) · Dc and in of = Ec
B f Ec

c - D C -> (k
-

Act Do f
ED

D i

Proposition If F:<-1) is a coulgebra hism then # *: D
"
x C

*

is an algebra morphism.morp
Proof. Let 4

, BED* .
Then we have:

** (xB) = (C . B) · f

deA of = (< MB) 0 (D, f)
since F is a coaly , morphism = (2* B)0 (FXF) · A = (of)(((y) :(Bof) (cans) e

C Sweedler notation .

= (< of) * (Bof) - Ac = (f* (2) * ** (B) ·D
,

= F(x) . F(B)
Proposition If F : A-B is an algebra morphism with A ,

B finite-dimensional vector spaces,
then

#: B
*
-> A

*
is a coalgebra morphism .

· ) Goal : prove a version of the first isomorphism theorem for coalgebras .

Lemma Let F : V-V' , giw-W' be linear maps and consider fog : VOW-VOW'. Then

i) Im (f*g) = Im(f) * Im(g) . ii) Kerlfag) = Ker #W + V D Kerg .

Proof. Exercise i)
. M

Proposition : Let f : C + D be a coalgebra morphism. Then Ker(f) is a coidea of C and Im(f) is

a subcoalgebra of D .

Proof . Let ceker(f). Then FILI = O = 0 = D
,
F(C) = (F*F) ·D

,
(1) since A is a coalg

ebra morphism . Then Ac() -her (f* F) = Ker #* C + Coker A
.

Now letFCC) + Im(). Then Apo (c) = (f*F) - Ac()= f((
, ) * f(((n) =Im (f) * Im It

Proposition (Fundamental iso. thm. For coulgebras If F : C-D is a coalgebru morphism ,
then

Tmf Ellerf ascoalgebras is a coalgebra morphism since the protient coaly,
structure of Kerf" herite



The following theorem provides a fundamental property in the structure of coalgebras
that contrasts with the structure of algebras.

Theorem (Fundamental Theorem of Coalgebras) Let C be a coalgebra and XeC. Then

there exists a subcoalgebra DcC such that xeD and dimpD 600.

Proof. Let A(X) = I b. Ci .

We consider A2(X) = [D(bi) ci = a; b ;,;* Ci
.

i /

We may assume that <4
, 3 ;

are linearly independent and so are ECilizI -

iss

Let D be the subspace generated by 4bijhij . We claim that

x =Eacail E(ci)bi , . Indeed,
notice thatt

(idx 2) : Ac = (3ida) o (Axid) · A def.
of comit

i i
d= [(((xid)=D) 3] · A - (idx a) = D =

Hence XED . We will show that D is a siboalgebra ,
i . e. D(D) : DQD.

Indeed, by coassociativity, we have that ↳ Bla;)bi,j 4 = a; A(bi
,j)x

Since <cib; are linearly independent, we obtain = Blai) bi ,; = ? a; DLbij) ,
Vie

.

i
Then ?

.
a; B(bi

,j) E C ( * D. Then by Exercise 3
,

List 1 , we have that Albij)~

is in + Albij) EDUC . HenceCOD . Analogously ,
we can show tha

A(bi
,j) E CDNDOC = D & D

, and we conclude.

Remark. Ex3 from list & follows from the fact that if U
,

V are vector subspaces, and

V'IV is a subspace, then Up VI E (UV) /(UV). This can be proved by consi-

dering the map UV -> U * V
Mor Itidulus Frilus and showing that Kier(idu* tr) = UQXV'

.

n

Then
, we can use the fact that if O = EUi*T, E U ④ Y/v) and qui3 : are linearly

indepeno then Fi = 0 = V/ => VieV' . In particular ,
if X = UiQV; E K* V'E KCV

,lent ,

then Twor : MQU + UQV/UQV maps xH0
, so that we can use the above argument-

Example. Let U be a vector space. The tensor algebra TCV) has a coalgebra structure when equipped
with the deconcatenation coproduct Dalv, ... un) = Ev... Up QVp .. On and comit given by

p =0

SCH) = 1
,

3CV, n) = D If n 2 1
.

(we set Vi : Uh V = #)..

We deck:

(DeidoDrive: Blurpupn To part: gindthe order oele
sum .

Example. The tensor algebra TLV) has another coalgebra structure when equipped with the

unshuffle coproduct AuLV: 'Un) = I VI*VIII ,
where if I : di

, ..., ip3 with
I c [n]

i ... <ip ,
then VI : = V... Vip . The comit is defined by 3(1) : 1 and Elv.... Vn) = 0 if n = 1

.

Bialgebras

Definition A bialgebra is a tople (B
,

m
, n , D

,
2) such that CB

,
m , 2) is an algebra,

(B, D, 3) is a coalgebra, such that the following diagrams commute:

B B
m

> B
A

> B B

T(a* b) = bxn

B B = B
M

20m = E* E

DA mem & E E

W

TKIK E(K

BBB idid
(BBBB Dom = (mm)oLidaid) - (D&D)



/k E Ik
1x= Don ↑K

&

4 R id -B idy = 304.

I A u

Bx B < B Y E

Remark. i) Let (A
,Mp/A) and (B

, MB / D) be two algebras. The tensor product AB

has an algebra structure given by Maxi
:= (Ma * M3) 0 (ida [xid) , and

A B

RADB = &:
IKRKEIK - ARB. In particular, we can write (a) · (a'xb) = a a Q b - b'

for any a,
a e A

,
b

,
b'e B .

ii) Analogously let (C
, c , E2) and CD, Ap , 2p) be two coalgebras. The tensor product

has a coalgebra structure given by PcoD := Lid *** idc) 0 (Ac* Ap) and
C

ECOD : = E
,
* E

D .

The compatibility diagrams in the definition of a bialgebra describe the relation of the maps

m and n with the coalgebra structure and also the relation of D and a with the algebra structure .

Lemma.
Let B bea vector space such that (B, M ,1) is an algebra and (B

,
D, 2) is a

coalgebra. The following are equivalent :

is D and a are algebra morphisms.
ii) m and 2 une coalgebra morphisms
iii) For any X , yeB , D(xy) = E EXcyY1 * X (2) Y ca) , AlAB) = &,*&y · 3(y) = E(X) E(y) , 3(kB) = Alk

(x)(y)

Proof. i( E) iii) D : B-B * B is an algebra morphism it and only if D(XY) = A()D(y) = I X
, Y , * X , , Y(z)

(X) , (l)

und ACK = 4 BAB = 1* 1
. In the same way , 3 : Bt/k is an algebra morphism it and only if

E(xy) = 3(X) 2(y) Ex
,yeB and <C1) = Lik -

Hen is and iii) are equivalen to

ii) E) iii) M : B* B-B is a coalgebra morphism if and only if for any x * y EBOB :

A um(x*y) = (Mx m) · DBxD(X*y)
* (xy) = (mxm) o (Z

((y)
(

* 4,* + (2)
* Y(z) = X(Y(

* x (1) Y in

and for any x *yeBAB , Com(X * Y) = (x)
If BaB(Xxy) = (x) <(y) ·

Also, p :-B is a coalgebra morphism it and only if:

D on (In) = 14 * 2) : D
,k(1k) recall that (IK

, Dik , 2) is a

A(1B) = (401)(#* 1(k) = 4(1(k) * 4(1) = 1 p * &B , coalgebra with *
ik

(1(x) = 1DA

and E = id
,k

and also 30(1k) = 31p) = Ek(1k) = 1k D

Proposition. A tople (B
, m

, 4 ,
B

, 2) is a bialgebra it and only if
, (B

,
m

, 2) is an algebra,
(B

, A
, 2) is a coalgebra , and D and a are algebra morphisms .

LExample Group bialgebra .
Let 6 be a group and consider B = ( 6. The product on 6

is linearly extended to a product miBB-B
.

Set nik B , Alg) : gog Ege 6 and

extend linearly. Finally ,
set 5 : B-> Ik

g + 1
A

We have that B is a bialgebra :
ghgh- qhgh

**A t ↑ mxm

idTRid

gyhoh - ghgh

Check the other three diagrams.



Example: (Polynomial ring) Consider B = KEx]
· multiplication and unit usual , <(x) = 96 S

Coproduct B(XP) = Eo()x** <N*. Comes from extending D(X) = 1

** TOK multiplicative ne.
M a+b a+b - k

x Rxbt x- >

Hence B is a bialgebra . This we have axD ! ↑ maxm

By comparing coefficients
, (i) x'*)()xxi) is

[(i)(3) x* x
: * x** xb

that (atb) = we havei)
Example (Posets) Let I = 1K disomorphism classes of posets with (minimum) and I (maximum element)].

Coalgebra : DCP) = I < , p] [p,
1]

,
<(P) = &6 E= : Iposet with one elementen

We have writhenP as the isomorphism class of the poset P .

Algebra : m(P* Q) = PXQ =: P . Q
, where PXQ stands for the direct product of posets :

&

PxQ = <(p, q) : ptP, qtQY, (p, g) : (p, q)E) P < p' and q : q

-

We have for instance:

1). =. + 2!+****.
·) A is an algebra morphism :

A(PxQ) =

.
Exp,[ 10, 0) , (p , q17 * [P, 93R (1, 1) = E ((0, p] x [0, q)0 ([p , 1) x [q , 13)

(P-4) - P x Q

multiplication in

=E,
qa)(ap)(p , /) x (20, 7) (9 ,1) = D(4) x D(Q) .

* B
comm cocomm

Remark. For our last three examples ,
we have I nO yes

& yes yes

3 yes n O

Remark Let B be a bialgebra of finite dimension
. Then the dral (B* ,

A, 3
, m+, y

*) is also

a bialgebra
Example . Let 6 be a finite group. The dral of 1K6 identifies with the algebra of

maps IK : = 9 F : 6-13. This algebra is a bialgebra with the coproduct given by
* f(xxy) = f(xy) ,

for any x , y + 6. In particular a basis of 10 is given by 46x4xe6
,

where 8x : 6 1k
·

Then B(6x((yz) = Sx
, /z= 62 * bu) (y) -

/ Ht Sx
,y L

Hence A(6x) =Edm * Sax. The comit is given by 316) = Sx,e ,
with ec6 the unit.

Definition Let B be a bialgebra and I: B be a subspace.
i) We say that I is a sub-bialgebra of B if I is a subalgebra and a subcoalgebra .

ii) We say that I is a bi-ideal of B if I is an ideal and a coideal
.

Proposition Let B be a bialgebra. For any biideal I
, B/I has a bialgebra structure induced by B.

Definition Let B
,

B' be bialgebras and f : B-> B' be a linear map. We say that A is a

bialgebra morphism if A is an algebra morphism and a coalgebra morphism.

Theorem LetB. B)be bialgebras and consider f : B-D'a bialgebra morphism. Then Fris is

and Kerlf) is a bi-ideal of B
.

Moreover
, the bialgebras B/ker(f)

and Im If) are isomorphic .



Proposition. Let U be a rector space .
The tensor algebra TCV) has a bialgebra structure

defined by A(v) = 1 *V + VR1
,

FreV
, which coincides with the unshuffle coproduct.

Proof. By universal propertys there exists a well-defined algebra morphism
D : T(V) -> T(V) & TCV) such that All = 1QV + rO1

.
This map is coassociative :

(AQid) · A(v) = VI D ) + 1 DVD) + ( * 100 = (idA) 0D(v) ,
Ev + V

. Since

(ADid) · B , (idA) : A : T(V) - T(V)
*3

are algebra morphism (check)
,

then we have that

they are equal , so A is cossociative.

Analogously , we can define a unique algebra morphism : : TCV) -> /K such that scr) = O

for any veV. T particular (ExidoB(v) = <(v) 1 + <(1) = v = Lid* 2) 0D. Since id
,
LidoD

,
(eoid) ·A

- n

are algebra morphism coincident on v
, then they are the same. Therefore

, since D and3

are algebra norphism, we conduce that TCV) is a bialgebra .
Furthermore

,
it is easy to see

that T(V) is cocommutative since ToD(v) = (QV + V 1 = A(r) ,
FroV ·

Finally, we will show that D is the unshuffle coproduct. By induation on the length
of the wordsn .

If n = 1
,

it is clear. Assume that the result holds for -1. Hence

Alv, ... un) = Alv, Va(A(va)=
*YI) (vnx 1 + I am(

I : (n+1] I < <n- 1]·EvrnUEve Ucaxt
I s (n] Ic[n]
ne I n + I

On the other hand
,

310....Un) = Elv) ... E(Vn) = 0. H

Analogously, we have:

Proposition Let U be avector space. The symmetric algebra SCV) has a bialgebra structure

defined by D(U) = LOV + VQ1
,

FVEV
.

SCV) is commutative and cocommutative .

Remark. In terms of polynomials ,
we have that [X

,..., Xn] has a bialgebra structure

given by A(Xi) = 10Xi + X= * 1
,

for any
12i < n.

.
It is commutative and cocommutative .

Definition A Lie algebra is a vector space ( together with a binary operation
2 .. 3 : (x1 -> L called the Lie bracket

, satisfying :

i) ( .. ] is bilinear ; ii) [x
,
x] = 0

, ExeL ;

ii) 2 ..) satisfies the Jacobi identity : [x
, [y , z]] + <y ,

[z
,
x3] + [z ,

<x, y ]] = 0
, OX , y ,

zeL
.

Proposition. Let A be an associative algebra. Then (A
, C;. ]) is a lie algebra ,

where
the Lie bracket is given by (x , y] : = xy -yx ,

Ex , yeA .

In relation with bialgebras,
we have the following distinguished elements.

Definition. Let B a bialgebra. An element xeB is called primitive if Alx= x * 1 + 1* X .

The set of primitive elements is denoted Prim (B).

Proposition Let B be a bialgebra .
Then Prim(B) is a Lie algebra for the Lie bracket

[x , y] = xy - yX,
Ex

, yt Prim (B) .

Proof. It is easy to see that Prim(B) is avector subspace. Now
,

since A is un

algebra morphism ,
we have for x, yePrim(B) : A((x,) = A(x)B(y) - Aly) A(x) = (* + 1x(y) + (y)- (y)+ 1y)(x) + (0x)

= (xy - yx) * 1 + 10(xy - yX) = [x , y ) * 1 + 1 * [x, y]. Hence [x, y] +Prim(B) ,
i. e

,
Prim(B)

is a Lie Lsub-algebra (of B).



Convolution algebra

Let (A
, M , 2) and (C , A

,
2) be an algebra and a coalgebra, respectively.

Definition The convolution algebra ofD and A is the linear space Hom (C , A) with

product defined by - * g = mo (fxg)oD for all figeHom(C, A) and identify
given by gos

Remark If A = lK then Hom(C, /K) = C*. If C : /K
,

Hom(K
,
A) = A.

Lemma IF T : <-D is a coalgebra morphism ,
thenπ: Hom (D

,A) -> Hom(C, A)
,

* (f) = foT is

an algebra morphism.
Proof. Notice for E, gtHom(D, A) : +

*

(* * g) = (fx g) · T = m o (fDg) ·D oπ : mo(fxg)o(πQn) ·Dc
D

= #
* (f) * 4

* (g). Also 4
* (yo"p) = 103pOπ = 10 3. .

Hence i is an algebra morphism.

Proposition
a convolutiLetCreabialgebra

and A be an algebra . Suppose that feltom (l , see

-
Let AOP be the opposite algebra of A : Maop(axb) = m(bas A.

a) If F : C + A then #" : <-> A'P is an algebra map.
b) If A : < + A is an algebra map

then fic-A is an algebra map .

Proof. Let D = C * C be the tensor product coalgebra. Since C is a bialgebra ,
then

Imc : D - C is a coalgebra morp hism
.

-

hen by the previous lemma mylf) has an inverse

m /F") in Hom(D, A) .
We + 1 : D-A

,
(cod) = f (d) f (c) is awill show tha

left convolution inverse for m"
>

(f) as well. This implies that Fom
,

= m < 1f") = 1.

Indeed ,
for c , 66C we have :

(xm(f)(cad)= (((,* d()) MY(f)(( * din)
( / (d)

- Ef (d(x)f"((y)f(ccnd(n)
/ (b)

His oreorphism -
- If (d ,x)f(c ,y)f((()f(d(z)

(), (k) -

m, xf)0B
,

(c) = a((()) = 31

= TF(d ,y)2()1)f(d(z)) = 2()3(d)1) = Ep((ed) 1 c
= (4 ,
·Ep)(ed)

then 1 is a left convolution inverse for my (f) .

Lemma IA ;: A-B is an algebra morphism thenix : Hom(C , A) -> Hom(C, B) is an algebra morphism .

Proposition Let A be a bialgebra and L be a coalgebra . Suppose that AtHom(C, A) has
a convolution inverse o Let A COP

= (A
, =,

01
,

2) be the opposite coalgebra of A
.

"c
. c

: <* C+ C*
- -d + do c

.

a) If F : CtA is a coalgebra morphism then f" : C-> A P
is a coalgebra morphism.

b) If F : < -> A
P

is a coalgebra morphism then A : C+ A is a coalgebra morphism .


