Hopf	A I	geb	ras	in	Com	bina	tori	د .	S
TU	Graz	_	Summe	er S	emest	er	2024	1	

Adrián	Celestino
March	2024

Gruz, Austria

Hopf Algebrus in Combinatorics

In: m	tuit He	livel 9 H	₩÷ 	.01. -1	Hopf d c	algebru n comultig	is a lication	vector. A:H	space > HOBH	H with a satisfying	multiplication several restricted
. ru	les	5 :.	•	there	15	S: H→H	such	that .	H>	K → H	commutes.
									V PHON	Hou m	

In this course, we will focus on Hopf algebras arising from combinatorial objects such as partitions, permutations, trees, graphs, etc.

1. Tensor Product of vector spaces

Throughout the course, we will only consider vector spaces over a field IK of <u>characteristic O</u> (i.e. \forall at IK, there is no pen such that $a + a + \dots + a = o$
Recall that, for any V vector space and $W \in V$ vector subspace, we define the quotient V/W as the set of classes in V under the equivalence relation $x \sim y \iff x - y \in W$.
The quotient is a vector space: if $\overline{x} \in V/W$ is the class of $x \in V$, define $\overline{x} + \overline{y} := \overline{x} + \overline{y}$ and $\lambda \overline{x} := \overline{\lambda x}$, for any $x, y \in V$ and $\lambda \in K$.
Lemma Let X be a set. There exists a vector space IKX with basis X an this space is unique up to isomorphism fixing X.
We can interpret the elements of IKX as formul linear combinations of elements of $KX = 1K - span \{X\} = \{\sum_{x \in X} \lambda_x x : \lambda_x \in K \text{ and } \lambda_x = 0 \text{ for all but finitely many } x \in X\}$
Definition Let V_1, V_2, W be vector spaces. A map $f: V, \times V_2 \rightarrow W$ is <u>bilinear</u> if it is linear in each of its argument when the other is fixed; i.e. $f(ax+by; a'x'+b'y') = abf(x,y) + ab'f(x,y') + ab f(x',y) + ab'f(x',y')$, $V x, y \in V_1, x', y' \in I$
Now, take $f: V_1 \times V_2 \rightarrow V$ bilinear. If $h: V \rightarrow W$ is a linear map then $h \circ f: V_1 \times V_2 \rightarrow W$ is a bilinear map. One may ask whether 12 is possible to choose V and f such that every bilinear map of $V_1 \times V_2$ can be obtained in this way. This is called the universal problem for bilinear functions. The next theorem gives as the pair that solves the problem.
Theorem Let V, and V2 be two vector spaces. There exists a pair (V, \otimes) such that V is a vector space and $\otimes: V_1 \times V_2 \longrightarrow V$ is a billnear map satisfying the $(v_1, v_2) \longmapsto v_1 \otimes v_2$
following universal property: for any W vector space and $f: V_1 \times V_2 \longrightarrow W$ bilinear map, there exists a unique linear map $F: V \longrightarrow W$ such that the following diagram is commutative $V_1 \times V_2 \xrightarrow{f} W$
(6) F The pair (V, 10) is unique up to isomorphism.
Proof Existence: Take K $(V_1 \times V_2)$ the vector space generated by the set $V_1 \times V_2$. Also, consider I the vector subspace of K $(V_1 \times V_2)$ given by $I := IK \left\{ (v_1 + v_1', v_2) - (v_1, v_2) - (v_1, v_2) - (v_1, v_2) - (v_1, v_2) - \lambda(v_1, v_2) - \lambda$

Then we define $V := \frac{1}{V_1, V_2} / I$. Also, define the map $\otimes V_1 \times V_2 \rightarrow V$ by $(V_1, V_2) \longrightarrow V_1 \otimes V_2 = (V_1, V_2)$. By definition of I, \otimes is bilinear.

We will show that (V, \otimes) satisfies the universal property. Let W be a vector space and consider u billinear map $g: V_1 \times V_2 \longrightarrow W$. Notice that we can define a linear map $g': |K(V_1 \times V_2) \longrightarrow W$ by $g'(v_1, v_2) := g(v_1, v_2)$ $(V_1 \times V_2$ is basis of $|K(V_1 \times V_2)$. Define now $F: V \longrightarrow W$ by $F(\overline{(v_1, v_2)}) := g'(v_1, v_2)$, $V(v_1, v_2) \in V_1 \times V_2$. Notice that F is well-defined and linear since $I \in ker(g) = \{x \in K(V_1 \times v_2): g(x) := 0\}$. By definition, it satisfies that $F \circ \otimes = g$. I + remains to prove that <math>F is unique. Suppose that there is another linear map $F: V \rightarrow W$ such that $F \circ \otimes = g$. Then

 $F((\overline{v_1,v_2})) = F' \circ \otimes (v_1,v_2) = g(v_1,v_2) = F \circ \otimes (v_1,v_2) = F((\overline{v_1,v_2})) + (v_1,v_2) \in V_1 \times V_2.$ Since $\{(\overline{v_1,v_2})\}$ generates V_1 we have that $F = F' \circ n V.$

• Uniqueness: Assume that there is another (V', O'). Since O' is bilinear there exists a unique linear map $\overline{E}: V \longrightarrow V'$. Analogously, there is a linear map $\overline{E}: V' \longrightarrow V'$. $V_1 \otimes V_2 \longmapsto V_1 \otimes V_2$ Observe that $\overline{I}' \circ \overline{E}: U \longrightarrow V$ satisfies $\overline{I}' \circ \overline{E}(V_1 \otimes V_2) = (O(V_1, V_2))$. $V_1 \times V_2 \bigoplus V_1 \otimes V_2$ $V_1 \times V_2 \bigoplus V_2$ $V_1 \times V_2 \bigoplus V_2$ $V_1 \times V_2 \bigoplus V_2$ $V_2 \otimes V_2$ $V_1 \times V_2 \bigoplus V_2$ $V_1 \times V_2 \bigoplus V_2$ $V_2 \otimes V_2$ $V_1 \times V_2 \oplus V_2$ $V_2 \otimes V_2$ $V_1 \times V_2 \oplus V_2$ $V_2 \otimes V_2$ $V_1 \otimes V_2$ $V_2 \otimes V_2$ $V_2 \otimes V_2$ $V_1 \times V_2 \oplus V_2$ $V_2 \otimes V_2$ $V_2 \otimes V_2$ $V_1 \otimes V_2$ $V_2 \otimes V_2$ V_2

Definition The pair (V, S) from the provious theorem is called the tensor product of V, and V₂. It will be denoted by $V_1 \otimes V_2 = V$. The image of (v_1, v_2) through \otimes is denoted by $V_1 \otimes V_2$. In the practice, we can consider $v_1 \otimes V_2$ as a pair with the billinear property: $(u_1+u_1) \otimes v = u_1 \otimes v + u_2 \otimes v \in V_1 \otimes V_2$, $\lambda u \otimes v = \lambda (u \otimes v) = u \otimes \lambda v \in V_1 \otimes V_2$. Elements of $V_1 \otimes V_2$ are of the form $\sum_{i=1}^{n} v_i^{(i)} \otimes v_i^{(i)}$, $v_i^{(i)} \in V_1$, $v_i^{(i)} \in V_2$, $1 \le i \le n$. Elements of the form $V_1 \otimes V_2$ are called pure tensors.

Proposition (Tensor product of maps) let $f: V \to V'$, $g: W \to W'$ be linear maps. There is a unique linear map $f \otimes g: V \otimes W \to V' \otimes W$, $v \otimes w \mapsto f(v) \otimes g(w)$. **Proof**. The map $(v, w) \mapsto f(v) \otimes g(w)$ is bilinear.

Properties of tensor products:

Remark. In order to define linear maps $f: V_1 \otimes V_2 \longrightarrow W$, it is useful to just find a bilinear map $f: V_1 \times V_2 \longrightarrow W$ and then define $F: V_1 \otimes V_2 \longrightarrow W$ by universality.

Proposition Let (e;); ez be a basis of V and lfj}; ez be a basis of W. Then {e; ofj}; ijjiez=z is a basis of VOW. Proof. Since B is bilinear, one can easily see that {e; ofj}; ijjez=z generates VOW. Now

assume that $\sum a_{ij} c_i \oplus f_j = 0$. Fix $i_0 \in I$, $j_0 \in J$. Now consider the map

Proposition (Associativity) Let V_1, V_2, V_3 be vector spaces. The following map is an isomorphism of vector spaces: $(V_1 \otimes V_2) \otimes V_3 \longrightarrow V_1 \otimes (V_{12} \otimes V_3)$. The two vector spaces will be identified $(V_{10} \otimes V_{2}) \otimes V_{2} \longrightarrow V_{10} \otimes (V_{10} \otimes V_{2})$ and we will write $V_1 \otimes V_2 \otimes V_2$
Proof. Fix $v_3 \in V_3$. Define $f_{V_3} : V_1 \times V_2 \longrightarrow V_1 \otimes (U_2 \otimes V_3)$ such that $f_{U_3}(v_1, v_2) = V_1 \otimes (U_2 \otimes V_3)$. It is easy to see that it is bilinear. By universal property, there is a unique linear map $F_{V_3} : U_1 \otimes U_2 \longrightarrow V_1 \otimes (V_2 \otimes U_3)$ such that $F(v_1 \otimes v_2) = v_1 \otimes (V_2 \otimes v_3)$. Thus the map $f: (U_1 \otimes V_2) \times V_3 \longrightarrow V_1 \otimes (V_2 \otimes V_3)$ $(v_1 \otimes v_2, v_3) \longmapsto F_{V_3}(v_1 \otimes v_2)$ is well - defined by extending by linearity on the first argument. Also F is bilinear, so that there is a unique linear map $F(V_1 \otimes V_2) = V_1 \otimes (V_2 \otimes V_3)$.
Inverse to F, hence the isomorphism.
By induction, we have: Proposition Let $f: V, x \cdots x V_n \rightarrow W$ be a n-multilinear map. Then there exists a unique linear map $V, \phi \cdots \phi V_n \longrightarrow W$ We have then a bijection between the set of n-multilinear maps $v_1 \phi \cdots \phi v_n \longmapsto f(v_1, \dots, v_n)$. from $V_1 x \cdots x V_n \rightarrow W$ and the set of linear maps from $V_1 \phi \cdots \phi V_n \longmapsto f(v_1, \dots, v_n)$.
Proposition. Let U be a vector space. The following maps are isomorphisms: $K \otimes V \longrightarrow V$, $V \otimes K \longrightarrow V$ $\lambda \otimes V \longmapsto \lambda V$.
Remark. Let V and W be vertor spaces, and V' and W' vertor subspaces of V and W, resp. The linear map $V' \otimes W' \rightarrow V \otimes W$ is injective. Then we can consider $V \otimes W'$ as a subspace of $V \otimes W$.
Proposition let U,V vector spaces, U_1, U_2 vector subspaces of U, V_1, V_2 vector subspaces of V. i) $(U_1 + U_2) \otimes (U_1 + V_2) = U_1 \otimes V_1 + U_2 \otimes V_1 + U_2 \otimes V_2$, ii) $(U_1 \otimes V_1) \wedge (U_2 \otimes V_2) = (U_1 \wedge U_2) \otimes (V_1 \wedge V_2)$, iii) If U = U_1 \otimes U_2, then U $\otimes V = (U_1 \otimes V) \oplus (U_2 \otimes V)$ iii) If V = V_1 $\otimes V_2$ then U $\otimes V = (U \otimes V_1) \oplus (U \otimes V_2)$.
Proof. i) Both subspaces are generated by tensors $u \otimes v$, with $u \in U, u \cup T$, $v \in V, u \vee_T$. This they are both equal ii) Clearly $(U_1 n \cup_1) \otimes (V_1 n \vee_T) \subseteq (U_1 \otimes V_1) n (U_1 \otimes V_1)$. Now, consider $t \in i$; $j_{i \in T'}$ basis of $U_1 n \cup_T$, and complete it to obtain basis $\{e_i\}_{i \in T}$ of U_1 , $t \in i$; $j_{i \in T_2}$ of U_2 , $T' = T, n T_2$, and complete $i \in j$; $j_{i \in T'} u(T_1 \setminus T') \cup (T_2 \setminus T')$ basis of U. Analogously, $t \in j$; $j_{i \in T}$ basis of $V (T', T), T_2$.
Let $x \in (U, (\otimes V,) \cap (U_2 \otimes V_z)$, and write $x = \sum_{\substack{i \in I \\ i \in T}} a_{ij} \in i \otimes F_j$
Let $i \notin I'$. Assume $i \notin I_i$. Then $e_i^*(U_i) = \{0\}$. Since $\chi \in U_i \otimes V_i$, we have $(e_i^* \otimes id_{\hat{U}})(\chi) = 0$. Then $\emptyset = \sum_{i \in I_i} a_{i,j} e_i^*(e_i) f_j = \sum_{i \in I_i} a_{i,j} f_j$.
Since $\{F_j\}_{j\in T}$ is a basis of V , then $Q_{i_0,j} = O$ $V_j \in T$. Analogously, it is $\notin J'$, then $Q_{i_1,j} = O$ V is I . Therefore $x = \sum_{\substack{i \in J \\ i \in J}} Q_{i_1,j} \in (O, n \cup 2) \otimes (V_1 \cap V_2)$.
iii) From i), $U \otimes V = (U, \otimes V) + (U_2 \otimes V)$. From ii), $(U, \otimes V) = (U_1 \otimes V) = (U_1 \otimes V = (0) \otimes V = (0)$.
iv) Similarly to 1112.

Definition For any vector space V, the dual is defined by $V^{X} = Hom(V/IK) := \{f: V \rightarrow K: f is linear\}$. For any $f: V \rightarrow W$ linear, the transpose $f^{X} : W^{*} \longrightarrow V^{*}$ is defined by $f^{*}(\alpha) := \alpha \circ f$. V^{*} is a vector space: (f+g)(x) := f(x)+g(x), $(\lambda f)(x) = \lambda f(x)$, $\forall x \in V$, fige V^{*} , $\lambda \in K$. Proposition Let V, W be vector spaces. The following map is injective.

 $\Theta: V^* \otimes W^* \longrightarrow (V \otimes W)^*$ The map O is bijecthe it V or W are finite-dimensional Fo g in { vow -> k vow in forgin)

Proof. We see that Θ is nell-defined. Let $(f,g) \in V^* \times W^*$. Consider the map $(v,w) \longrightarrow f(v)g(w)$. It is bilinear. By universal property, there is a unique linear map $\Theta'(f,g) : V \otimes W \longrightarrow K$. Then we have a bilinear map $\Theta' : V^* \times W^* \longrightarrow (V \otimes W)^*$, and $v \otimes W \longrightarrow f(v)g(w)$ again by universal property, $\Theta : V^* \otimes W^* \longrightarrow (v \otimes W)^*$ in the statement exists. We prove Θ is injective. Take $F \in V^* \otimes W^*$ pon-zero s.t. $\Theta(F) = 0$. Write $F = \sum a = f \otimes a$: where $I \in V$ and $V \otimes W^*$ and $V \otimes W = V$. $F = \sum_{ij} a_{ij} f_j \otimes g_j$, where $if_j g_{j \in I}$ and $ig_j g_{j \in J}$ are lin. Indep. sets. We know that for every $V \otimes w \in V \otimes W$, $D = F(v \otimes w) = \sum a_{i,j} f_j(w) g_j(w)$. Fix we W. Then for every $v \in V_j$, $\sum_{i \in \mathbb{Z}} \left(\sum_{i \in \mathbb{Z}} a_{i,j} g_j(w) \right) f_i(w) = 0$. Since if $i : j \in \mathbb{Z}$ are indep., then $\sum_{j \in T} a_{i,j} g_j(w) = 0$ \forall is T. Since $\{g_j\}_{j \in T}$ are indep, we have $a_{i,j} = 0$, \forall is T, $j \in T$. then F=0, so that 0 is injective. Now, assume V is finite-dimensional. Take $\{e_i\}_{i\in I}$ basis of V and $\{f_j\}_{j\in T}$ basis of W. Also, $F \in (V \otimes W)^*$. For any $i \in I$, let $g_j : W \rightarrow IK$ linear map such that $g_j (f_j) = F(e_i \otimes f_j)$, $\forall j \in T$. Since I is finite, $\sum_{i \in L} e_i^* \otimes g_i \in V^* \otimes W^*$. Also $\Theta(\sum_{i \in L} e_i^* \otimes g_j) (e_k \otimes f_L) = \sum_{i \in L} e_i^* (e_k) g_i(f_L) = g_k(f_L) = F(e_k \otimes f_L)$

Since $fe_n \otimes f_e_{KeI, let}$ is a basis of $V \otimes W$, we have that $F \in I_m(\Theta)$. The proof is similar in the case that W is finite-limensional.

Example: i) R² @ IR² = Mi CIR) us vector spaces, with Min CIR) = { Ix2 matrices with entries in IR3 33) (() $\mathbb{R} [x] = C[x]$ as \mathbb{R}^{-} vector spaces; with $\mathbb{K} [x] = \{a_{n} + a_{n} x + \dots + a_{n} x^{n} : n \ge 0\}$ as $e^{\frac{1}{2}} \mathbb{R}^{3}$ Indeed, consider the bilinear map $(x \in \mathbb{R} \setminus \mathbb{I}) \longrightarrow (\sum X)$. Then there exists $(\lambda, p(x)) \longmapsto \lambda p(x)$

 $F: C \otimes REx_3 \longrightarrow CEx_3$ IR-linear map. It is subjective and injective: subjective: Any λx^{A} comes from (λ, x^{A}) . By linearity, we obtain all CEx_3. injective: Take $\nabla_{\lambda_{k}} \otimes p_{k}(k) = s.t. = F(\sum \lambda_{k} \otimes p_{k}) = 0$. Write $\lambda_{k} = a_{k} + ib_{k}$.

By def. of F, we obtain $\sum_{k} (a_k + ib_k) p_k(x) = 0 =$. $\sum_{k} 4_k p_k = 0$ and $\sum_{k} b_k p_k(x) = 0$. Hence $\sum_{k} \lambda_{k} \otimes p_{k}(x) = \sum_{k} (a_{k} + ib_{k}) \otimes p_{k}(x) = 1 \otimes \sum_{k} a_{k} p_{k}(x) + i \otimes \sum_{k} b_{k} p_{k}(x) = 0$. Thus F is injective.

2. Algebras and Coalgebras

Intuitively, an algebra A is a vector space together with an associative product. m. A × A -> A compatible with the vector space operations. This conditions imply that m is bilinear. Then no can find a linear map $m: A \otimes A \longrightarrow A$ st $m(a \otimes b) = a b$. The associativity of m can be written as follows: $A \otimes A \otimes A \xrightarrow{id \otimes m} A \otimes A$ mo (m (m (id) = m (id (id)))

For the axioms for the unit, consider $\eta: \mathbb{K} \longrightarrow A$ linear. It is injective $(A \neq (0))$, and we can identify \mathbb{K} as a subalgebru. $\lambda \longmapsto \lambda \mathbb{I}_A$
Then we can write $a \cdot 1_{\mathbf{A}} = a = 1_{\mathbf{A}} \cdot a$ $\mathbf{k} \otimes \mathbf{A} \cdot 1_{0} = 1_{\mathbf{A}} \cdot \mathbf{a}$ $\mathbf{k} \otimes \mathbf{A} \cdot 1_{0} = 1_{0} \cdot \mathbf{A} \otimes \mathbf{A} \cdot \mathbf{A} \otimes \mathbf{A} + 1_{0} \cdot \mathbf{A} \otimes \mathbf{A} = 1_{0} \cdot \mathbf{A} \otimes \mathbf{A} \cdot \mathbf{A} \otimes \mathbf{A} = 1_{0} \cdot \mathbf{A} \otimes \mathbf{A} \cdot \mathbf{A} \otimes \mathbf{A} = 1_{0} \cdot \mathbf{A} \otimes \mathbf{A} + 1_{0} \cdot \mathbf{A} \otimes \mathbf{A} = 1_{0} \cdot \mathbf{A} \otimes \mathbf{A} + 1_$
$m \cdot (q \otimes id) = id = m \cdot (id \otimes 1)$ id jm id
Definition An algebra is a triple (A, m, η) where A is a vector space, $m: A \otimes A \longrightarrow A$ is a linear map called <u>multiplication</u> , $\eta: IK \longrightarrow A$ is a linear map called <u>unit</u> , that suffisively the following conditions:
• Associativity molid $(id \otimes m) = m \circ (m \otimes id)$ $A \otimes A \otimes A \xrightarrow{ilom} A \otimes A$ $m \otimes id \bigcup \qquad $
Unity $m \cdot (id \otimes \eta) = id = m \circ Lq \otimes id)$ [K \otimes A \equiv A \otimes A \o
Proposition Let (A, M, η) be an algebra. ;) A subalgebra of A is a subspace B of A such that $m(B\otimes B) \in B$ and $\eta(Ik) \in B$. ;i) An (biliteral) ideal of A is a subspace I of A st $m(A\otimes I + I\otimes A) \in I$.
Proposition Let A,B be algebras and $f: A \rightarrow B$ a linear map. Then f is an algebra morphism if and only if g = 0 m $g = 0$ m A m $g = 0$ m A m $g = 0$ m B m $BH = 0$ m A m B $H = 0$ m A m B $H = 0$ m B m B $H = 0$ m
Proposition An algebra A is <u>commutative</u> if and only if motem, where the A and A is the and here the
Example. Let V be a vector space. For any notifier we write $V^{\otimes n} := V \otimes \cdots \otimes V$. By convention $V^{\otimes 0} := 1K$. An element in $V^{\otimes n}$ is a linear combination of a times tensors of length n. Such tensors are called words in the alphabet V of length n.
Definition let V be a vector space. The tensor algebra of V is $T(V) = \bigoplus_{n \ge 0} V^{\otimes n}$.
To simplify notation, we write $v_1 \cdots v_n$ instead of $v_1 \otimes \cdots \otimes v_n$.
Proposition Let $\{V_i\}_{i \in \mathbb{Z}}$ be a basis of V. A basis of $T(V)$ is given by the words on the alphabet $\{V_i\}_{i \in \mathbb{Z}}$: $\{V_i, V_i, \dots, V_{i_k}\}_{i \in \mathbb{Z}}$, where if $k = 0$, we obtain the empty word 1.
Theorem. Let U be a vector space. $T(V)$ is an algebra with product given by concutena- tion of words: $(v, v_{H_1}, w, w_L) \rightarrow v_1 \cdots v_K W_1 \cdots W_L$. The empty word is the unit for the concutenal product. Mso, $T(V)$ satisfies the following universal property: if A is an algebra and $f: V \rightarrow I$ is a linear map, then there is a unique algebra morphism $F: T(V) \rightarrow A$ such that $Foi = f$, where $i: V \rightarrow T(V)$ is the natural indusion. $V \xrightarrow{f} A$ $i \downarrow G, F$

Proof We will prove the universal property. The map $(v_1, \dots, v_n) \longmapsto f(v_1) \dots f(v_n)$ is n-multillear. Then there is a unique linear map $F_n: V^{\otimes n} \longrightarrow A$. Thus, we obtain a map $v_1 \dots v_n \longmapsto f(v_n) \dots f(v_n)$ $F: T(v) \longrightarrow A$ It is clear that F is an algebra morphism such that F(v) = F(v). Then, $v_1 \cdots v_n \mapsto F(v_1) \cdots F(v_n)$ Remark. IF X is a set, then we have lk(X) = T(lkX), where lk(X) is the non-commutative polynomial algebra on indeterminates X. To define the notion of coalgebra, we duelize the axioms in the definition of algebra. :) Coussociativity $C \xrightarrow{\Delta} C \otimes C$ ii) Counity $(\epsilon \otimes id) \circ \Delta = id = (id \otimes \epsilon) \circ \Delta$ Διματικά μασια το τ $L \otimes C \xrightarrow{(\oplus id)} K \otimes C \stackrel{>}{=} C \cong C \otimes K$ If $\tau \circ \Delta = \Delta$, we say that C is <u>cocommutative</u>. Example i) Lot X be a set. Then (IKS, Q, E) is a coalgebra, where Q(s) = s@s and E(s) = 1. Check. It is cocommutative. ii) (Incidence coalgebra). Let P be a poset. For $x \le y \in P$, define the interval Set Int(P) = { intervals in P3 = { $Tx, y3 : x \le y$ in P3. Then C := |K Int(P). define the interval [x,y]: fzep:xezey]. Finally, $\Delta([x,y]) = \sum_{z \in P} [x,z] \otimes [z,y]$, $L([x,y]) = \begin{cases} x = y \\ x \neq y \end{cases}$, extend linearly, (C, A, E) is a coalgebra colled the incidence coulgebra. We can check: $(\Delta \otimes id) \left(\sum_{x \in T} [x, y] \otimes [z, y] \right) = \sum_{x \in Z \in Y} \left(\sum_{x \in T} [x, z'] \otimes [z', z] \right) \otimes [z, y] = \sum_{x \in Z' \in T} [x, z'] \otimes [z', z] \otimes [z, y]$ $(\Delta \otimes id) \left(\sum_{x \in T} [y] \otimes [z, y] \right) = \sum_{x \in Z' \in Y} \left(\sum_{x \in T' \in Y} [x, z'] \otimes [z, y] \right) \otimes [z, y]$ $(id \otimes \Delta) \left(\sum_{x \leq v \leq y} [x_{v,2}] \otimes [z_{v,y}] \right) = \sum_{x \leq v \leq y' \leq y'} [x_{v,2}] \otimes [z_{v,y}]$ (1) (Matrices) For N21, write $M_n^*(Rc)$ the vector space with basis $\{e_{i,j}\}_{j \le i,j \le n}$ Define $\Delta(e_{i,j}) = \sum_{k=1}^{\infty} e_{i,k} \otimes e_{k,j}$. It is coassociative. $(\Delta \otimes \mathrm{id}) \circ \Delta(e_{i,j}) = \sum_{K=1}^{\infty} \Delta(e_{i,K}) \otimes e_{K,j} = \sum_{k,l=1}^{\infty} e_{i,l} \otimes e_{K,j} = \sum_{l=1}^{\infty} e_{i,l} \otimes \Delta(e_{l,j}) = (\mathrm{id} \otimes \Delta) \circ \Delta(e_{l,j}).$ If $\varepsilon L^{e_{ij}} = \delta_{ij}$, then $(\varepsilon \otimes id) \cdot \Delta(e_{ij}) = \sum_{k=1}^{n} \delta_{i,k} e_{kij} = e_{ij} = (id \otimes \varepsilon) \cdot \Delta(e_{ij})$. Hence $M'_{i}(lk)$ is a coolgebra. For $\Lambda \ge 2$, it is non-cocommutative,

Sweedler notation: Let C be a coolgebra. Since $\Delta: C \rightarrow C \otimes C$, then we have $\Delta(c) = \hat{\Sigma} c_{i,i} \otimes c_{2,i}$, $\forall cc. C$. We will write $\Delta(c) = \hat{\Sigma} C_{(i)} \otimes C_{(2)}$. Coassociativity
writes $\sum_{(c)} \sum_{(c_1)} \left[(\omega_{ij})_{(1)} \otimes ((c_{ij})_{(1)} \otimes (c_{i1}) \right] = \sum_{(c)} \sum_{(c_1)} (c_{ij}) \otimes ((c_{i2})_{(1)} \otimes ((c_{i2})_{(1)})$
$=: \sum_{(c)} C_{(1)} \otimes C_{(2)} =: \int_{c_1}^{c_2} C_{(2)}$ More generally, the iterated coproduct can be written:
$\Delta^{(n)}(c) = (\Delta \otimes i^{\otimes (n+1)}) \cdot \Delta^{(n-1)}(c) = \sum_{(c)} c_{(i)} \otimes c_{(2)} \otimes \cdots \otimes c_{(n+1)} \qquad (\Delta^{(1)} = \Delta)$
Counit property writes: $\sum_{(c)} \varepsilon(c_{(1)}) C_{(2)} = \sum_{(c)} c_{(1)} \varepsilon(c_{(2)}) = c$. Says to us that it does not matter in which component of the tensor ne
Algebrus and coolgebras are more a less equivalent objects. Herate D.
Proposition if Let (L, Δ, ϵ) be a coalgebra. Then C^* is on algebra with multiplication $(fg)(x) = (f \otimes g) \circ \Delta(x) = \sum f(x_{ij}) g(x_{ij})$. The unit is given by ϵ . ii) Let (A, m, η) be a finite-dimensional algebra. Then A^* is a coalgebra with $a = m^* \cdot A^* \longrightarrow (A \otimes A)^* = A^* \otimes A^*$. The counit is given by $\epsilon(f) := f(1)$.
Proof Associativity of the product follows from coassociativity of Δ . Indeed, in Sneedler notation $f,g,h \in C^*$
$((4 \cdot g) \cdot n) (x) = \sum_{(x)} ((4 \cdot g) \cdot n (x \cdot g) - \sum_{(x)} (x \cdot g) \cdot (x \cdot g) - \sum_{(x)} (x \cdot g) \cdot (x \cdot g) - \sum_{(x)} (x \cdot g) \cdot (x \cdot g) - \sum_{(x)} (x \cdot g) - \sum$
$= \sum_{(x)} f(x_{(y)}) g((x_{(y)})_{(y)}) h((x_{(y)})_{(y)}) = \sum_{(x)} f(x_{(y)})(gh)(x_{(y)})$
= f(gh)(x)
(f·9) h === (f·g ⊗ h) • ∆ === ((f⊗g)• ∆ ⊗ h) • ∆ === ((f⊗g)• ∆ ⊗ h)
= $(f \otimes g \otimes h) \cdot (\Delta \otimes id) \cdot \Delta$
$= (f \otimes g \otimes h) \cdot (id \otimes \Delta) \cdot \partial$ $= (f \otimes g h) \cdot \Delta = f \cdot (g h)$
For the suit ϵ $f = (\epsilon \otimes f) \circ \Lambda = (id \otimes f) \circ (\epsilon \otimes id) \circ \Lambda = f_{\epsilon} (id = f_{\epsilon} (f \otimes \epsilon) \circ \Lambda = f_{\epsilon}$
(i) Since A is finite-dimensional, we can identify $(A \otimes A \otimes A)^* \cong A^* \otimes A^* \otimes A^*$.
$(\Delta \otimes \operatorname{id}) \circ \Delta(f) (x \otimes y \otimes z) = \Delta(f) (x y \otimes z)$
$= \left\{ \left(\left(x_{y} \right) \cdot 2 \right) \right\} = \left\{ \left(\left(x_{y} \right) \cdot 2 \right) \right\} = \left(\left(\Delta \phi \right) \cdot 2 \right) \cdot \Delta = \left(\left(M \cdot \phi \right) \cdot 2 \right) \cdot M \cdot A \right\}$
$(g \circ h)^{*} = h^{*} \circ g^{*} = \Delta(f) (x \otimes y \geq)$ $= (i \downarrow a \otimes \Lambda) \circ \Lambda(f) (x \otimes y \otimes \geq), \qquad (g \circ h)^{*}(a) = a \circ (g \circ h)$
= (100 Gy) = (1
$(e \otimes id) \circ \Delta(f)(x) \stackrel{a}{=} \Delta(f)(1 \otimes x) = f(1 \cdot x) = f(x) \qquad = (h^* \cdot g^*)(x)$
Analogously, $(i \in \mathcal{O} \in \mathcal{J} \circ \Delta [f](x) = f(x)$. Example The dual of the contradium $M_{*}^{*}(IK)$ is $\varepsilon = \eta^{*} : A^{*} \longrightarrow K$
the olyobra of $n \times n$ matrices $M_n(C)$, $n \mapsto x \circ \eta$
$ = \operatorname{Actually}, it \{E_{i,j}\}_{i\in i,j \leq n} is the \operatorname{Ovel}(\operatorname{basis}) \circ t [E_{i,j}]_{i\in i,j \leq n}, and it he A_{i} A_{i} he he he he he he he h$
153+5m Thom Eig Eng = O IF 13K and EigEng = Eig IF 32K.

Then only that to the Jak and only that to Jake

Example (Incidence algebra of a poset P) let $C(P)$ be the incidence coalgebra of P. We will call its dual $A(P) := C(P) ^*$ the incidence algebra of P.
$[b_{1}, c_{2}, c_{3}, c_{3},$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Deflectives lat C to a contract, i V to a vertex otherway of a
i) V is a sub-coalgebra of V if $\Delta(v) \in V \otimes V$. ii) V is a sub-coalgebra of V if $\Delta(v) \in V \otimes V$.
and the steel to see and the set of the set
Proposition Let C be a coolgebra and V be a subspuce of C. i) If V is a subcoalgebra of V, then $(V, \Delta V, 4 _{V})$ is a coolgebra.
(i) If V is a coideal, then C/V has a coolyphra structure given by $\Delta(\bar{x}) = \sum \bar{\chi}_{(1)} \otimes \bar{\chi}_{(2)}$, $\epsilon(\bar{x}) = \epsilon c x$
Proof. ii) We will show that D' and E' are well-defined. Then the coulyebra withouts of (will
imply the coolgetion axions of Clv.
Since $\mathcal{E}(V) = \{0\}$, then $V \leq \ker(\mathcal{E})$, so that $\mathcal{E}: C/V \rightarrow K$ is well-defined. Now, take
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Then $\sum_{(y)} x_{(y)} = 0 = \Delta (x)$ Hence $\epsilon v \in C$
Δ' is vell-defined.
belinition let CD be two coolumbras and $f: C \rightarrow D$ be a linear map we say that f is
a coalgebra morphism if $\Delta_0 \circ f = (f \otimes f) \circ \Delta_c$ and $\epsilon_0 \circ f = \epsilon_c$
$c \xrightarrow{f} b$ $c \xrightarrow{t} k$
$ \mathbf{A}_c \mathbf{A}_0 \mathbf{f} $
$(\infty(\xrightarrow{Por} 0.00))$
$\mathbf{D}_{\mathbf{r}}$ where $\mathbf{T}\mathbf{r} \in \mathbf{C}$ and \mathbf{r} is the second s
Proof lat of $R \in \mathbb{N}^{k}$. The
$f^*(\alpha \beta) = (\alpha \beta) \cdot f$
$de\beta$ of $(\alpha \otimes \beta) \circ (\Delta \circ \beta)$
share fis a config model = 1 x 60 R) + (for f) + A = Z (a of) (civ) - (B of) (cizz) intritive using
$= \left(d \cdot C \right) \circ \left(\theta \cdot C \right) = \left(c \cdot C \right) \circ \left(c \cdot C \right) = \left(c \cdot C \right) \circ \left(c \cdot C \right) $
$= (\mathbf{k} \cdot \mathbf{f}) \otimes (\mathbf{p} \cdot \mathbf{f}) \otimes (\mathbf{p} \cdot \mathbf{f}) = (\mathbf{k} \cdot \mathbf{k}) \otimes (\mathbf{p} \cdot \mathbf{f} \cdot \mathbf{k}) \otimes (\mathbf{p} \cdot \mathbf{k}) \otimes (\mathbf{p} \cdot \mathbf{k}) \otimes (\mathbf{p} \cdot \mathbf{k}) $
$f^*: B^* \longrightarrow A^* \text{is a coalgebra morphism} \text{with } A, B \text{finite-dimensional vector spaces, then } f^*: B^* \longrightarrow A^* \text{is a coalgebra morphism}.$
.) Good prove a version of the first isomorphism theorem for contradiction
Lemma Let $f: V \rightarrow V'$, $q: W \rightarrow W'$ be linear more and consider $f \otimes q: V \otimes W \rightarrow V \otimes W'$. Then
i) $Im(f \otimes g) = Im(f) \otimes Im(g)$, ii) $ker(f \otimes g) = ker f \otimes W + V \otimes ker g$
Proof
Proposition: Let t: L-D be a coolgebra morphism. Then her lf) is a coided of C and Im (t) is
a subleaty effect of D. f(x) = f(x) = (x - A f(x) - (C - F)
ebra morphism. Then A (c) E ker (forf) = ker for C + Cooker f
Now let $f(c) \in J_m(f)$. Then $\Delta_p \circ f(c) = (f \circ f) \circ \Delta_c(c) = \sum_{(i)} f(c_{(i)}) \circ f(c_{(i)}) \in I_m(f) \circ J_m(f)$
Proposition (Endomental iso. thm. for coulgebres) IF f: C->D is a coalgebra morphism, then
F = -1 ker f as could bras. Proof. $F = 4$ ker $f \rightarrow Im F_1 = f(c_1)$ is a coalgebra morphism since the quotient could structure of $C/ker F$ is laber the from C.

The following theorem provides a fundamental property in the structure of coalgebras. that contrasts with the structure of algebras.

Theorem (Fundamental Theorem of Coulgebras) let C be a coolyebra and x & C. Then there exists a subcoalgebra $D \in C$ such that $x \in D$ and $\dim_{k} D < \infty$. Proof. Let $\Delta(x) = \sum b_i \otimes c_i$. We consider $\Delta_2(x) = \sum \Delta(b_i) \otimes c_i = \sum a_i \otimes b_{i,j} \otimes c_i$. We may assume that $\{a_i\}$ are linearly independent and so are $\{c_i\}_{i \in \mathbb{Z}}$. Let 0 be the subspace generated by $\{b_{i,j}\}_{i,j}$. We claim that $x = \sum \varepsilon(a_i) \varepsilon(c_i) b_{ij}$. Indeed, notice that $(\varepsilon \circ id \circ \varepsilon) \circ \Lambda_2 = (\varepsilon \circ id \circ \varepsilon) \circ (\Delta \circ id) \circ \Delta$, def. of court. $= \left[\left((\varepsilon \circ i d) \circ \Delta \right) \otimes \varepsilon \right] \circ \Delta = \left(i d \otimes \varepsilon \right) \circ \Delta = i d$ Hence xeD. We will show that D is a subcoalgebra, i.e. $\Delta(0) \in D \otimes D$. Indeed, by coassociativity, we have that $\sum \Delta(a_i) \otimes b_{i,j} \otimes c_i = \sum a_i \otimes \Delta(b_{i,j}) \otimes c_i$ Since $\{C_i\}$; are linearly independent, we obtain $\sum \Delta(a_i) \otimes b_{i,j} = \sum a_j \otimes \Delta(b_{i,j})$. Then $\sum a_j \otimes \Delta(b_{i,j}) \in C \otimes C \otimes D$. Then by Exercise 3, List 1, we have that is in $C \otimes D$. Analogously, we can show that $\Delta(b_{i,j}) \in O \cap C$. Hence $\Delta(b_{i,j}) \in C \otimes O \cap D \otimes C = D \otimes D$, and we conclude. ₩)eI. Remark. Ex 3 from list 1 follows from the fact that if U, V are vector subspaces, and $V \leq V$ is a subspace, then $U \otimes V/_{V} \cong (U \otimes V) / (U \otimes V)$. This can be proved by considering the map $U \otimes V \longrightarrow U \otimes V/_{V'}$ $\mathbb{U} \otimes \mathbb{V} \longrightarrow \mathrm{id}_{\mathbb{U}}(\mathbb{W}) \otimes \pi_{\mathbb{V}}(\mathbb{W})$ and showing that $\mathrm{ker}(\mathrm{id}_{\mathbb{W}} \otimes \pi_{\mathbb{V}}) = \mathrm{U} \otimes \mathrm{V}'$. Then, we can use the fluct that $P = \sum_{i=1}^{\infty} u_i \otimes \overline{v}_i \in U \otimes V/v_i$ and $\{u_i\}_i$ are linearly independent, then $\overline{v}_i = 0 \in V/v_i \Longrightarrow v_i \in V'$. In particular, if $x = \sum_{i=1}^{\infty} u_i \otimes v_i \in U \otimes V = U \otimes V$, then $\overline{T}_{u_i \otimes v_i} : U \otimes V \longrightarrow U \otimes V / U \otimes v$ mups $x \mapsto 0$, so that we can use the above argument. Example. Let V be a vector space. The tensor algebra. T(V) has a coulgebra structure when equipped with the deconcutention coproduct $\Delta_{A}(v_{1}...v_{n}) = \frac{1}{2}v_{1}...v_{p} \otimes v_{p+1}...v_{n}$ and counit given by $\mathcal{E}(\mathbf{1}) = \mathbf{1}$, $\mathcal{E}(\mathbf{v}_1, \dots, \mathbf{v}_n) = \mathbf{0}$ if $n \geq 1$, (we set $\mathbf{v}_1, \dots, \mathbf{v}_n = \mathbf{1}$). We check: $(\Delta_{d} \otimes id) \circ \Delta_{d}(v_{1}, \dots, v_{n}) = \sum_{\substack{p=0\\p\neq 0}}^{\infty} \Delta_{d}(v_{1}, \dots, v_{p}) \otimes v_{p_{1}}, \dots, v_{n}) = \sum_{\substack{p=0\\p\neq 0}}^{\infty} \sum_{\substack{p=0\\p\neq 0}}^{\nu} v_{1}, \dots, v_{p} \otimes v_{p_{1}}, \dots, v_{p} \otimes v_{p_{n}}, \dots, v_{p}$ = changind the order of $\left(i \& \odot \Delta_{\underline{i}}\right) \bullet \Delta_{\underline{i}} \left(v_{1} \cdots v_{\mu}\right) = \sum_{p=0}^{\infty} v_{1} \cdots v_{p} \otimes \Delta_{\underline{i}} \left(v_{p_{1}} \cdots v_{\mu}\right) = \sum_{p=0}^{\infty} \sum_{p=0}^{\infty} v_{1} \cdots v_{p} \otimes v_{p_{1}} \cdots v_{p} \otimes v_{p_{i+1}} \cdots v_{\mu}$ Example. The tensor olgebra. T(VI has another coalgebra structure when equipped with the Bialgebras. **Definition**. A bialgebra, is a tuple $(B, m, \eta, \delta, \epsilon)$ such that (B, m, η) is an algebra, (B, D, E), is a coalgebra, such that the following diagrams commute: 06) = 684 $B \otimes B \xrightarrow{m} B \xrightarrow{\Delta} B \otimes B$ B60 B -----→ B EDE / E E.m = 20 E . M©m 000

ĬK©K≘K

Evenple (Polynomial ring) Consider $B = IK [x]$, multiplication and unit usual, $E(x^n) = \begin{cases} 0 \\ 0 \end{cases}$ Coproduct $\Delta(x^n) = \sum_{k=0}^{\infty} {n \choose k} x^{n-k}$. Comes from extending $\Delta(x) = 1 \otimes x + x \otimes 1$ multiplicatively.	0 : 1 ·
Hence B is a bialgebra. This we have $\Delta \otimes \Delta \int$ $x^{m} \to x^{m} \to x^{m}$	•
By comparing coefficients, we have $\left(\sum_{i=0}^{\infty} \binom{a}{x^{i}} \times \sum_{j=0}^{a-i} \bigotimes \left(\sum_{j=0}^{j} \binom{b}{x^{j}} \times \sum_{j=0}^{a-i} \bigotimes \left(\sum_{j=0}^{j} \binom{b}{x^{j}} \times \sum_{j=0}^{a-i} \bigotimes \left(\sum_{j=0}^{i} \binom{b}{x^{j}} \times \sum_{j=0}^{i-i} \binom{a}{x^{j}} \times \sum_{j=0}^{i-i} \binom{b}{x^{j}} \times \sum_{j=0}^{i-i} \binom{b}{x^{j}} \times \sum_{j=0}^{i-i-i-i} \binom{b}{x^{j}} \times \sum_{j=0}^{i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-$	(م ۲
Example (Posets) Lot $I = IK \{i, i, one ophism classes of posets with \hat{O} (minimum) and \hat{I} (maximum element)\hat{I}.Coalgebra: \Delta(P) = \sum [\hat{O}, p] \otimes [p, \hat{I}], \epsilon(P) = \{i\} if \bar{P} = \bullet (poset with one element)p \in P otherwise$	•
We have writhen \vec{P} as the isonorphism class of the poset P . Algebras m(POQ) = $P \times Q =: P \cdot Q$, where $P \times Q$ stands for the direct product of posets: $P \times Q = \frac{1}{2} (p,q) : p \in P, q \in Q3$, $(p,q) \in (p',q) \neq p \in p'$ and q :	• q'
We have for instance $\Delta(\checkmark) = \circ \circ \checkmark + 21 \circ 1 + \checkmark \circ \circ \cdot$	•
•) A is an algebra morphism:	•
$\Delta(P \times Q) = \sum_{\substack{(P,q) \in P \times Q}} \left[(0,0), (P,q) \right] \otimes \left[(P,q) \otimes (1,1) \right] = \sum_{\substack{(P,q) \in P \times Q}} \left(\left[0,p \right] \times \left[0,q \right] \right) \otimes \left(\left[P,1 \right] \times \left[q,1 \right] \right)$	•
$\frac{nullpliceApp}{AbB} = \sum_{p \in \mathcal{P}, q \in \mathbf{Q}} \left([\alpha_{1}p] \otimes [p_{1}/1] \right) \times \left([0,q] \otimes [q,1] \right) = \Delta(p) \times \Delta(q).$	•
Remark For our last three examples, we have $\frac{1}{2}$ ho yes yes <u>3</u> yes no	•
Remark Let B be a bialgebra of Finite dimension. Then the dual $(B^*, 0^*, \epsilon^*, m^*, \eta^*)$ is also	
The dual of IKG identifies with the algebra of maps $K^G = f f: G \rightarrow K^G$. This algebra is a biologebra with the coproduct given be $\Delta f (x \otimes y) = f(xy)$, for any $x, y \in G$. In particular, a basis of K^G is given by $f \delta_x \delta_{xe}$ where $S_x : G \rightarrow K$. Then $\Delta(\delta_x)(y \otimes z) = \delta_{x, yz} = \begin{pmatrix} z & \delta_u \otimes \delta_y \\ w \in c & \delta_{xy} \end{pmatrix}$.	γ : 6
Hence $\Delta(\delta_x) = 2 \delta_u \otimes \delta_{u^{-1}x}$: The counit is given by $\mathcal{E}(\delta_x) = \delta_{x,e}$, with each the unit.	
Definition Let B be a biulgebra and $I \in B$ be a subspace. i) We say that I is a <u>sub-bialgebra</u> of B if I is a subalgebra and a subcoalgebra. ii) We say that I is a <u>bi-ideal</u> of B if I is an ideal and a coideal.	•
Proposition Let B be a biolyebra. For any bi-ideal 1, $B/1$ has a bialyebra structure induced by B.	
Definition Let B, B' be blolgebras and $f: B \rightarrow B'$ be a linear map. We say that f is a bialgebra morphism if f is an algebra morphism and a coolgebra morphism.	•
Theorem Lot B, B' be bialgebrus and consider $f: B \rightarrow B'$ a bialgebru morphism. Then Im (f) a sub-bialgebru of B' and ker(f) is a bi-ideal of B. Moreover, the bialgebrus $B/Ker(f)$ and Im (f) are isomorphic.	is

 Δ T(V) \rightarrow T(V) \otimes T(V) such that Δ (V)= 1 \otimes V + V \otimes 1. This map is coassociative. $(\Delta \otimes id) \circ \Delta (v) = v \otimes i \otimes i + i \otimes v \otimes i + i \otimes i \otimes v = (id \otimes \Delta) \circ \Delta (v), \quad \forall v \in V.$ Since $(\Delta \circ id) \circ \Delta$, $(id \circ \Delta) \circ \Delta$: $T(v) \rightarrow T(v)^{\otimes 3}$ are algebra morphism (check), then we have that are equal, so Δ is coassociative. they Analogously, we can define a unique algebra morphism ε : $T(V) \longrightarrow iK$ such that $\varepsilon(v) = 0$ for any $v \in V$. In particular $(\varepsilon_{\mathfrak{B}} id) \circ \Delta(v) = \varepsilon(v) \bot + \varepsilon(z) v = v = (i \downarrow_{\mathfrak{B}} e_{\mathfrak{C}}) \circ \Delta$. Since $id_{\mathfrak{C}}(id_{\mathfrak{B}} e_{\mathfrak{C}}) \circ \Delta$ algebra morphism coincident on V, then they are the same. Therefore, since D and E are algebra morphism, we conclude that T(v) is a bialgebra. Fothermore, it is easy to see that T(v) is a commutative since $T \circ \Delta(v) = 1 \otimes v + v \otimes L = \Delta(v)$, the V. Finally, we will show that Δ is the unshubtle coproduct. By induction on the length of the words, n. IP n=1, it is clear. Assume that the result holds for n-1. Hence $\Delta(v_1 \cdots v_n) = \Delta(v_1 \cdots v_{n-1}) \Delta(v_n) = \left(\sum_{I \in [n-1]}^{v_I} v_I \otimes v_{I} \right) (v_n \otimes I + I \otimes v_n)$ $= \sum_{\substack{L \leq l_n+1}} v_{\underline{L}} v_{\underline{n}} \otimes v_{\underline{l}n] \setminus \underline{L}} + \sum_{\underline{L} \leq l_n+1} v_{\underline{n}} \otimes v_{\underline{l}n] \setminus \underline{L}}$ $\sum_{\mathbf{L} \in [\mathbf{n}]} V_{\mathbf{L}} \otimes V_{[\mathbf{n}]} \mathbf{I} + \sum_{\mathbf{L} \in [\mathbf{n}]} V_{\mathbf{L}} \otimes V_{[\mathbf{n}]} \mathbf{I} = \sum_{\mathbf{L} \in [\mathbf{n}]} V_{\mathbf{L}} \otimes V_{[\mathbf{n}]} \mathbf{I} = \sum_{\mathbf{L} \in [\mathbf{n}]} V_{\mathbf{L}} \otimes V_{\mathbf{L}} \mathbf{I}$ On the other hand, $\varepsilon(v, \dots v_n) = \varepsilon(v, \dots \varepsilon(v_n) = 0$. Analogously, we have: Proposition Let V be a vector space. The symmotric algebra SCV) has a bialgebra structure defined by A(v)=10v+vo1, YveV. S(v) is commutative and cocommutative Remark. In terms of polynomials, we have that HEX, ..., Xn] has a bialgebra structure given by $\Delta(X_i) = 1 \otimes X_i + X_i \otimes 1_i$ for any leten. It is commutative and cocommutative. Definition A Lie algebra is a vector space L together with a binary operation $[:,]: L \times L \longrightarrow L$ called the Lie bracket, satisfying : i) Cry J is bilinear; iii) Ex, xJ=0, Vx+L; ii) - [-,-] satisfies the Jacobi identity: --[x, [y,2]]+ [y, [z,x]]+[+, [x,y]]=0, V:x,y,2 e.L. Proposition. Let A be an associative algebra. Then (A, E, J) is a lie algebra, where the Lie bracket is given by $[x_iy] := xy - yx$, $\forall x_iy \in A$. In relation with biologebras, we have the following distinguished elements. Definition. Let B a bialgebra. An element x B is called primitive if O(x)=x01+10x. The set of primitive elements is denoted Prim(B). Proposition. Let. B. be a bialgebra. Then Prim(B) is a Lie algebra for the Lie bracket [x,y] = xy - yx, $\forall x, y \in Prim(B)$. <u>Proof.</u> It is easy to see that Prim(B) is a vector subspace. Now, since Δ is $dgebra = morphism, we have for x, y \in Prim(B): \Delta(x_1/y) = \Delta(x_1)\Delta(y) - \Delta(y)\Delta(x) = (x_0) + ($ = $(xy - yx) \otimes 1 + 1 \otimes (xy - yx) = [x,y] \otimes 1 + 1 \otimes [x,y]$. Hence $[x,y] \in Prim(B)$, i.e. Prim (B) is a Lie Loub-)algebra Lof B). 📕

Proposition. Let V be a vector space. The tensor algebra T(V) has a bialgebra structure defined by $\Delta(v) = 4 \otimes v + v \otimes 2$, $\forall v \in V$, which coincides with the unshalfle coproduct. Proof. By universal property, there exists a well-defined algebra morphism

	L K	1		1
Convo	UTION	- ci I	ge	bra

Let (A, m, q) and (C, Δ, c) be an algebra and a coalgebra, respectively.

Definition The <u>convolution algebra</u> of C and A is the linear space Hom(C, A) with product defined by $f \star g = m \cdot (f \otimes g) \cdot \Delta$ for all $f, g \in Hom(C, A)$ and identity given by $\eta \cdot \epsilon$

Remork IF A=1K then Hom (C,1K) = C*, IF (-1K, Hom (K,A) = A.

Lemma IF π: C → D is a coalgebra morphism, then π* Hom (D,A) → Hom (C,A), π*(F) = for is on algebra morphism.

Proof. Notice for $f_{i,g} \in Hom(P,A)$: $\pi^{*}(f * g) = (f * g) \circ \pi = m \circ (f \circ g) \circ \Lambda \circ \pi = m \circ (f \circ g) \circ (\pi \circ \pi) \circ \Lambda_{\mathcal{L}}$ = $\pi^{*}(f) \times \pi^{*}(g)$. Also $\pi^{*}(\eta \circ \varepsilon_{0}) = \Lambda^{\circ} \varepsilon_{0} \circ \pi = \eta \circ \varepsilon_{\mathcal{L}}$. Hence π^{*} is an algebra morphism.

Proposition Let C be a bialgebra and A be an algebra. Suppose that $f \in Hom(C(A)$ has a convolution inverse f^{-1} . Let A^{op} be the opposite algebra of A: $m_{A,op}(a \otimes b) = m(b \otimes a)$ a) IF $f: C \rightarrow A$ is an algebra map then $f^{-1}: C \rightarrow A^{op}$ is an algebra map. b) IF $f: C \rightarrow A^{op}$ is an algebra map then $f^{-1}: C \rightarrow A$ is an algebra map.

Proof. Let $D = C \otimes C$ be the tensor product coalgebra. Since C is a bialgebra, then $m_c \quad D \to C$ is a coalgebra morphism. Then by the previous lemma $m_c^{\infty}(f)$ has an inverse $m_c^{\infty}(f^{-1})$ in them (D, A). We will show that $L: D \to A$, $L(c \otimes d) = f'(d) f'(c)$ is a left convolution inverse for $m_c^{\infty}(f)$ as non. This implies that $f^{-1} \circ m_c = m_c^{\infty}(f^{-1}) = L$. Indeed, for $c, d \in C$ we have:

$$\begin{pmatrix} \mathcal{L} * \mathsf{M}_{L}^{*}(\mathbf{f}) \end{pmatrix} (c \otimes d) = \sum_{\substack{(u_{j}, (u_{j}) \\ (u_{j}, (u_{j}) \\ (u_{j}, (u_{j}) \\ (u_{j}, (u_{j}) \\ (u_{j}, (u_{j}) \\ (u_{j}) \\ (u_{j}, (u_{j}) \\ (u_{j},$$

$$m_{\ell} \circ (f^{T} \otimes f) \circ \Lambda_{\ell} (\ell) = q (\epsilon(\ell)) = \epsilon(\ell) \Lambda_{\ell}$$

$$\sum_{(i)} f^{T} (d_{(i)}) \epsilon(\ell) \Lambda_{\ell} f (d_{(i)}) = \epsilon(\ell) \epsilon(d) \Lambda_{\ell} = \epsilon_{i} (\ell \otimes d) \Lambda_{\ell}$$

then L is a left convolution inverse for $m_{L}^{k}(p)$.

Lemma IP
$$j: A \rightarrow B$$
 is an algebra morphism. Then $j_x: Hom(C, A) \rightarrow Hom(C, B)$ is an algebra morphism.

Proposition let A be a bialgebra and C be a coalgebra. Suppose that $f \in Hom(C, A)$ has a convolution inverse f'. Let $A^{cop} = (A, \tau_{c,c} \circ \Delta, \varepsilon)$ be the opposite coalgebra of $A, \tau_{c,c} \circ a \cdot c \circ d \mapsto dec$ o) $IF = f : C \to A$ is a coalgebra marphism. Then $f' : C \to A^{cop}$ is a coalgebra marphism. b) $IF = f : C \to A^{cop}$ is a coalgebra marphism. Then $f' : C \to A^{cop}$ is a coalgebra marphism.