RANDOM MATRICES WINTER 2024

FRANZ LEHNER AND ADRIAN CELESTINO

EXERCISE SET 1

Exercise 1. Simulate spectra of real random matrices $X = [x_{ij}]_{\substack{1 \le i \le N \\ 1 \le j \le M}}$ with different distributions in MATLAB, Mathematica or R, etc.

a) For M = N, describe the spectrum of X.

b) For M = N, describe the spectrum of $(X + X^T)/2$.

c) For $M \neq N$, describe the spectrum of $X^T X$ for different rations of M/N.

Consider $M, N \sim 10, 100, 1000$.

Exercise 2. Let $\vec{X} = (X_1, X_2, \ldots, X_N)$ be a Gaussian standard vector, i.e. X_1, \ldots, X_N are independent identically distributed random variables $\mathcal{N}(0, 1)$.

a) Show that for the random variables $Y = \sum a_i X_i$ and $Z = \sum b_i X_i$, we have

$$Y \perp\!\!\!\perp Z \quad \Leftrightarrow \quad \mathbb{E}[YZ] = 0 \quad \Leftrightarrow \quad a \perp b,$$

where $a = (a_1, ..., a_N)$ and $b = (b_1, ..., b_N)$.

b) Let U be an $N \times N$ orthogonal matrix. Show that $\vec{Y} = U\vec{X}$ is also a Gaussian standard vector.

Exercise 3. Let X_N be an element in the Gaussian Orthogonal Ensemble GOE(N), i.e. $X_N = [x_{ij}]_{i,j=1}^N$ is a random matrix where $x_{ij} = x_{ji}$ for all i, j, and x_{ij} $(1 \le i \le j \le N)$ are independent real random variables with Gaussian distribution of mean zero, $\mathbb{E}[x_{ii}^2] = 2/N$ and $\mathbb{E}[x_{ij}^2] = 1/N$ if $i \ne j$. Show that if O is an $N \times N$ orthogonal matrix, then OX_NO^T is in GOE(N).

Exercise 4 (Concentration around equator). Let B_p be the unit ball in \mathbb{R}^p . The aim of this exercise is to prove that

(0.1)
$$\mathbb{P}((t_1, \dots, t_p) \in B_p : |t_p| \ge \epsilon) \le \sqrt{2\pi} \exp\left(-\epsilon^2 \frac{p-1}{2}\right), \text{ for } p \ge 3.$$

a) Prove for $y \ge 0$

$$\int_{y}^{\infty} \exp(-t^2) \,\mathrm{d}t \le \frac{\sqrt{\pi}}{2} \exp(-y^2).$$

b) Let $p \geq 3$. Prove that

$$\int_{0}^{1} (1-t^{2})^{\frac{p-1}{2}} \mathrm{d}t \ge \int_{0}^{\frac{1}{\sqrt{p-1}}} (1-t^{2})^{\frac{p-1}{2}} \mathrm{d}t \ge \frac{1}{2\sqrt{p-1}}.$$

Hint: Bernoulli's inequality states that $(1 + a)^b \ge 1 + ab$ for all real numbers $b \ge 1$ and $a \ge -1$.

- c) Prove that if $p \ge 1$ and $0 < \epsilon \le 1$, then $(1 \epsilon)^p \le \exp(-\epsilon p)$.
- d) Use c) to prove (0.1). *Hint: Recall that*

$$\mathbb{P}((t_1, \dots, t_p) \in B_p : |t_p| \ge \epsilon) = 2 \frac{\operatorname{vol}(B_{p-1})}{\operatorname{vol}(B_p)} \int_{\epsilon}^{1} (1 - t^2)^{\frac{p-1}{2}} \mathrm{d}t$$

Date: October 3, 2024.

e) Conclude that two independent random vectors in B_p are almost orthogonal with high probability.

Exercise 5 (The lattice of set partitions). Let $\mathcal{P}(n)$ be the set of partitions of $\{1, \ldots, n\}$.

a) Let $\pi, \rho \in \mathcal{P}(n)$. Show that the sets

 $\{\sigma \in \mathcal{P}(n) : \pi \le \sigma \text{ and } \rho \le \sigma\} \text{ and } \{\sigma \in \mathcal{P}(n) : \pi \ge \sigma \text{ and } \rho \ge \sigma\}$

have unique minimal and maximal element denoted by $\pi \lor \rho$ and $\pi \land \rho$, respectively.

- b) For any $\pi, \rho \in \mathcal{P}(n)$, describe $\pi \vee \rho$ and $\pi \wedge \rho$.
- c) Draw the Hasse diagram of $\mathcal{P}(4)$.