RANDOM MATRICES WINTER 2024

FRANZ LEHNER AND ADRIAN CELESTINO

EXERCISE SET 3

Exercise 1. Let $X_N \sim \text{GUE}(N)$. Compute $\mathbb{E}\frac{1}{N}$ Tr (X_N^6) by using:

- a) Isserlis–Wick formula;
- b) cycles of $\gamma \circ \pi$, where $\gamma = (1 \ 2 \ 3 \ \cdots \ m) \in S_m$;
- c) genus expansion.

Exercise 2. Find explicit bijections between the following sets:

- a) NC(n),
- b) $NC_2(2n)$,
- c) planar rooted trees with n + 1 vertices,
- d) Dyck paths of length 2n,
- e) Triangulations of an (n+2)-gon,
- f) Parenthesizations of product $x_0 \cdot x_1 \cdot \ldots \cdot x_n$.

Also, try to realize the Catalan recurrence $C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}$ in each example.

Exercise 3. Let S_n be the symmetric group on [n] and consider its Coxeter generator subset given by the transpositions of the form $s_i = (i \quad i+1)$ for $1 \leq i < n$. On the other hand, the number of crossings of $\sigma \in S_n$ is defined as follows: In a $2 \times m$ matrix, write the numbers $1, 2, \ldots, n$ in the first row, and the numbers $\sigma(1), \sigma(2), \ldots, \sigma(n)$ in the second row. Then for each $1 \leq i \leq n$, draw a line between i in the first row and i in the second row. The number of crossings of σ , denoted by $cr(\sigma)$, is given by the the number of crossings between the lines in the draw. For instance

$$\sigma \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ & & & & \\ 5 & 3 & 1 & 4 & 6 & 2 \end{pmatrix} \rightarrow \operatorname{cr}(\sigma) = 8.$$

If $\ell(\sigma) = \min\{k : \sigma = s_{i_1} \cdots s_{i_k}\}$ stands for the length of σ , show that $\ell(\sigma) = \operatorname{cr}(\sigma)$.

Exercise 4 (The lattice of non-crossing partitions). Let NC(n) be the set of partitions of $\{1, \ldots, n\}$.

a) Let $\pi, \rho \in NC(n)$. Show that the sets

 $\{\sigma \in \mathrm{NC}(n) : \pi \leq \sigma \text{ and } \rho \leq \sigma\} \quad \text{and} \quad \{\sigma \in \mathrm{NC}(n) : \pi \geq \sigma \text{ and } \rho \geq \sigma\}$

have unique minimal and maximal element denoted by $\pi \lor \rho$ and $\pi \land \rho$, respectively.

- b) Show that NC(n) is a lattice.
- c) Draw the Hasse diagram of the interval $[0_6, \{\{1, 4, 5, 6\}, \{2, 3\}\}]$.

Exercise 5. Consider the Cayley graph of (S_n, E) , where S_n stands for the symmetric group on [n] and $E \subset S_n$ is the set of all transpositions of S_n . Define the map $\iota : \mathcal{P}(n) \to S_n$ as follows.

i) If $V \subset [n]$ where $V = \{i_1, i_2, \ldots, i_s\}$ is such that $i_1 < i_2 < \cdots < i_s$, then $\iota(V)$ is the cycle $(i_1 \ i_2 \ \cdots \ i_s);$

Date: October 25, 2024.

ii) If $\pi = \{V_1, \ldots, V_k\}$ then $\iota(\pi) = \iota(V_1) \cdots \iota(V_k)$. Observe that the product is well-defined since the cycles $\iota(V_i)$ are disjoint and, hence, mutually commuting.

Denote by $e \in S_n$ the identity element and $c = (1 \ 2 \ \cdots \ n) \in S_n$. Prove that ι induces a bijection between NC(n) and [e, c], the set of $\sigma \in S_n$ such that there is a geodesic (τ_0, \ldots, τ_m) from $\tau_0 = e$ to $\tau_m = c$ with $\sigma = \tau_i$ for some *i*.

Hint. The following may be helpful: for $t_1, t_2 \in S_n$, we have that t_2 covers t_1 in the Cayley graph if and only if $t_2 = t_1 r$, where $r = (i \ j)$ is a transposition such that i and j belong to different orbits of t_1 . The effect of the right multiplication with r in the equality $t_2 = t_1 r$ is that the two orbits of t_1 which contain i and j are united into one orbit of t_2 (which thus contains both i and j).

Bonus. Prove that ι restricted to NC(n) is order-preserving (hence a poset isomorphism).