RANDOM MATRICES WINTER 2024

FRANZ LEHNER AND ADRIAN CELESTINO

EXERCISE SET 4

- **Exercise 1.** (1) Let *a* and *b* be real numbers with $b \leq 0$. Let $G(z) = (z a \mathbf{i}b)^{-1}$. Show that *G* is the Cauchy transform of a probability measure, $\delta_{a+\mathbf{i}b}$, which has a density and find its density using Stieltjes inversion.
 - (2) Let ν be a probability measure on \mathbb{R} with Cauchy transform G. Show that \tilde{G} the Cauchy transform of $\delta_{a+\mathbf{i}b}*\nu$ is the function $\tilde{G}(z) = G(z (a + \mathbf{i}b))$. Here * denotes the classical convolution of probability measures.
- **Exercise 2.** (1) Determine the Cauchy transformation and the corresponding measure for the moment sequence given by $m_{2n} = \binom{2n}{n}$, and $m_{2n+1} = 0$, for any $n \ge 0$.
 - (2) Determine the corresponding measure for the following Cauchy transform:

$$G(z) = \frac{z + 1 - c - \sqrt{(z - a)(z - b)}}{2z}$$

where $0 < c < \infty$ is a positive real number, $a = (1 - \sqrt{c})^2$ and $b = (1 + \sqrt{c})^2$.

Exercise 3. (1) Let $f : \mathbb{C}^+ \to \mathbb{C}^+$ be the Stieltjes transform of a probability measure on \mathbb{R} . Show that the matrix

$$\left[\frac{f(z_i) - \overline{f(z_j)}}{z_i - \overline{z_j}}\right]_{i,j=1}^n$$

is positive semidefinite, for any $z_1, \ldots, z_n \in \mathbb{C}^+, n \in \mathbb{N}$. (2) If

$$\left[\frac{f(z_i) - \overline{f(z_j)}}{z_i - \overline{z_j}}\right]_{i,j=1}^2$$

is positive definite for any $z_1, z_2 \in \mathbb{C}^+$, show that $f(\mathbb{C}^+) \subseteq \mathbb{C}^+$. Find an example in which f is not analytic.

Exercise 4. Recall that if $\varphi : \mathbb{C}^+ \to \mathbb{C}^+$ is analytic, the Nevanlinna representation theorem asserts that there is a unique finite positive Borel measure σ on \mathbb{R} and real numbers a, b with $b \ge 0$ such that for any $z \in \mathbb{C}^+$:

$$\varphi(z) = a + bz + \int_{\mathbb{R}} \frac{1+tz}{t-z} \,\mathrm{d}\sigma(t).$$

Now, suppose that $G : \mathbb{C}^+ \to \mathbb{C}^-$ is analytic and in addition $\limsup_{y\to\infty} y|G(\mathbf{i}\,y)| = c < \infty$. Show that there is a unique positive Borel measure ν on \mathbb{R} such that

$$G(z) = \int_{\mathbb{R}} \frac{1}{z-t} d\nu(t) \text{ and } \nu(\mathbb{R}) = c.$$

Hint. From the Nevanlinna representation applied to -G, prove that b = 0, σ has finite second moment, and $a = -\int_{\mathbb{R}} t \, d\sigma(t)$.

Exercise 5. Let ν be a probability measure on \mathbb{R} and $\theta > 0$. In this exercise, we will consider limits as $z \to \infty$ in a Stolz angle $S_{\theta} = \{x + \mathbf{i}y : \theta y > |x|\}$. Show that

(1) for $z \in S_{\theta}$ and $t \in \mathbb{R}$, $|z - t| \ge |t|/\sqrt{1 + \theta^2}$;

Date: November 18, 2024.

(2) for $z \in S_{\theta}$ and $t \in \mathbb{R}$, $|z - t| \ge |z|/\sqrt{1 + \theta^2}$; (3) $\lim_{z \to \infty} \int_{\mathbb{R}} \frac{t}{z - t} d\nu(t) = 0$; (4) $\lim_{z \to \infty} zG(z) = 1$.

Note. Given $\theta > 0$ and f a function on S_{θ} , recall that f converges to c in a Stolz angle S_{θ} if for any $\epsilon > 0$ there is $\beta > 0$ such that $|f(z) - c| < \epsilon$ for any $z \in S_{\theta,\beta} = \{z \in S_{\theta} : \text{Im}(z) > \beta\}$.

Exercise 6. Let ν be a probability measure on \mathbb{R} . Suppose ν has absolute moments up to order n, i.e. $\int_{\mathbb{R}} |t|^n d\nu(t) < \infty$. Let $\alpha_1, \ldots, \alpha_n$ be the first n moments of ν , i.e. $\alpha_k = \int_{\mathbb{R}} t^k d\nu(t)$, for $1 \le k \le n$. Let $\theta > 0$ be given. In the following, all limits as $z \to \infty$ will be assumed to be in a Stolz angle $S_{\theta} = \{x + \mathbf{i} y : \theta y > |x|\}$.

(1) Show that

$$\lim_{z \to \infty} \int_{\mathbb{R}} \left| \frac{t^{n+1}}{z-t} \right| \, \mathrm{d}\nu(t) = 0.$$

(2) Show that

$$\lim_{z \to \infty} z^{n+1} \left(G(z) - \left(\frac{1}{z} + \frac{\alpha_1}{z^2} + \frac{\alpha_2}{z^3} + \dots + \frac{\alpha_n}{z^{n+1}} \right) \right) = 0.$$

Exercise 7. Suppose that $\theta > 0$ and ν is a probability measure on \mathbb{R} and that for some n > 0 there are real numbers $\alpha_1, \alpha_2, \ldots, \alpha_{2n}$ such that as $z \to \infty$ in S_{θ}

$$\lim_{z \to \infty} z^{n+1} \left(G(z) - \left(\frac{1}{z} + \frac{\alpha_1}{z^2} + \frac{\alpha_2}{z^3} + \dots + \frac{\alpha_{2n}}{z^{2n+1}} \right) \right) = 0.$$

Show that ν has moments up to order 2n, i.e. $\int_{\mathbb{R}} t^{2n} d\nu(t) < \infty$ and that $\alpha_1, \alpha_2, \ldots, \alpha_{2n}$ are the first 2n moments of ν .