RANDOM MATRICES WINTER 2024

FRANZ LEHNER AND ADRIAN CELESTINO

EXERCISE SET 5

Exercise 1. Let $\{m_n\}_{n\geq 0}$ be a sequence of moments of a probability measure μ and for $n\geq 1$ define

$$\Delta_n = \begin{vmatrix} 1 & m_1 & m_2 & \cdots & m_n \\ m_1 & m_2 & & \\ m_2 & & \ddots & & \vdots \\ \vdots & & & \\ m_n & m_{n+1} & & \cdots & m_{2n} \end{vmatrix}$$

the corresponding Hankel determinant. Show

(1) The orthogonal polynomials of μ are given by

$$p_n(x) = \frac{1}{\sqrt{\Delta_{n-1}\Delta_n}} \begin{vmatrix} 1 & m_1 & m_2 & \cdots & m_n \\ m_1 & m_2 & & & \\ m_2 & & \ddots & & \vdots \\ \vdots & & & & \\ m_{n-1} & m_n & & \cdots & m_{2n-1} \\ 1 & x & x^2 & \cdots & x^n \end{vmatrix}$$

(2) b_n = √(∆_{n-1}∆_{n+1})/∆_n for any n ≥ 1.
(3) The monic orthogonal polynomials {p̃_n}_{n≥0} satisfy the following recursion:

$$x\tilde{p}_n = \tilde{p}_{n+1}(x) + a_n\tilde{p}_n(x) + b_{n-1}^2\tilde{p}_{n-1}(n).$$

Exercise 2. Let μ be a probability measure and $\{p_n(x)\}_{n\geq 0}$ be the corresponding orthogonal polynomials with Jacobi parameters

(0.1)
$$xp_n(x) = b_n p_{n+1}(x) + a_n p_n(x) + b_{n-1} p_{n-1}(x)$$

with $p_0(x) = 1$ and $p_1(x) = \frac{x-a_0}{b_0}$. We set

Date: December 6, 2024.

(1) Show that

$$K_n(x,y) = b_n \frac{p_{n+1}(x)p_n(y) - p_n(x)p_{n+1}(y)}{x - y}$$

- (2) Show that the sequence $\{q_n(x)\}_{n\geq 0}$ also satisfies the recurrence (0.1) for $n \geq 1$ with initial conditions $q_0(x) = 0$ and $q_1(x) = \frac{1}{b_0}$.
- (3) Show that for any $n \ge 1$, we have that $G_n(z) = \frac{q_n(z)}{p_n(z)}$.

Exercise 3. Let $(y_0, y_1, \ldots, y_{2n})$ be a Dyck path. A *labelling* with values in a set L is a sequence $(l_1, l_2, \ldots, l_{2n})$ such that $l_i \in L$ for $1 \le i \le 2n$:

(1) Find a bijection between the complete matchings of the set $\{1, 2, ..., 2n\}$ and the labelled Dyck paths of length 2n and labelling $l_i \in L = \{1, 2, ..., n\}$, satisfying the following conditions:

$$\begin{pmatrix} l_i = 1 & \text{when } y_{i-1} < y_i \text{ (up step)} \\ 1 \le l_i \le y_{i-1} & \text{when } y_{i-1} > y_i \text{ (down step)} \end{pmatrix}$$

- (2) Conclude that the Jacobi parameters of the standard normal distribution are given by $a_n = 0$ and $b_n^2 = n + 1$ for any $n \ge 1$.
- (3) Show that the orthogonal polynomials are given by

$$p_n(x) = c_n \left(x - \frac{\mathrm{d}}{\mathrm{d}x} \right)^n (1) = (-1)^n c_n e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2/2},$$

1

where $c_n = \frac{1}{\sqrt{n!}}$.

Exercise 4. Let μ, μ_n be probability measures on \mathbb{R} , for any $n \ge 1$, with distribution functions F, F_n , respectively. Recall that $F(x) = \mu((\infty, x])$ and $F_n(x) = \mu_n((\infty, x])$, for any $n \ge 1$. Show the following:

- (1) $\{\mu_n\}_{n\geq 1}$ converges vaguely to μ if and only if for every finite interval of continuity I = [a, b] of F, we have that $\lim_{n \to \infty} (F_n(b) F_n(a)) = F(b) F(a)$.
- (2) $\{\mu_n\}_{n\geq 1}$ converges weakly to μ if and only if $\lim_{n\to\infty} F_n(x) = F(x)$ for any $x \in \mathbb{R}$ where F is continuous.

Note. Let F be a distribution function. Recall that I = [a, b] is an interval of continuity of F if F is continuous at the endpoints a and b.

Definition. Let μ, μ_n be probability measures on \mathbb{R} , for any $n \ge 1$.

(1) We say that μ_n converges vaguely to μ if

$$\lim_{n \to \infty} \int_{\mathbb{R}} f \, \mathrm{d}\mu_n = \int_{\mathbb{R}} f \, \mathrm{d}\mu, \quad \text{ for any } f \in \mathcal{C}_0(\mathbb{R}).$$

(2) We say that μ_n converges weakly to μ if

$$\lim_{n \to \infty} \int_{\mathbb{R}} f \, \mathrm{d}\mu_n = \int_{\mathbb{R}} f \, \mathrm{d}\mu, \quad \text{for any } f \in \mathcal{C}_b(\mathbb{R}).$$