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Abstract It is well-known that a continued fraction is periodic if and only if it is the rep-
resentation of a quadratic irrational α. In this paper, we consider the family of sequences
obtained from the recurrence relation generated by the numerators of the convergents of these
numbers α. These sequences are generalizations of most of the Fibonacci-like sequences, such
as the Fibonacci sequence itself, r-Fibonacci sequences, and the Pell sequence, to name a few.
We show that these sequences satisfy a linear recurrence relation when considered modulo
k, even though the sequences themselves do not. We then employ this recurrence relation
to determine the generating functions and Binet-like formulas. We end by discussing the
convergence of the ratios of the terms of the sequences.

1. Introduction

Generalizations of the Fibonacci numbers have been extensively studied. From Lucas and
Catalan numbers to Gibonacci and k-Bonacci, all are evidence of the interest Fibonacci-like
sequences still hold. To generalize the Fibonacci sequence, some authors ([3, 4, 6, 13, 17])
have altered the starting values, while others ([2, 8, 9, 10, 12, 14]) have preserved the first
two terms of the sequence but changed the recurrence relation. In a previous paper ([2]),
we give a generalization of the latter type, called the generalized Fibonacci sequence. It is
defined using a non-linear recurrence relation depending on two real parameters (a, b) as
follows. For any two nonzero real numbers a and b, the generalized Fibonacci sequence, say{
F

(a,b)
n

}∞
n=0

, is defined recursively by

F
(a,b)
0 = 0, F

(a,b)
1 = 1, F (a,b)

n =

{
aF

(a,b)
n−1 + F

(a,b)
n−2 , if n is even

bF
(a,b)
n−1 + F

(a,b)
n−2 , if n is odd

(n ≥ 2).

This generalization has its own Binet-like formula and satisfies identities that are analogous
to the identities satisfied by the classical Fibonacci sequence.

We now introduce a further generalization of the Fibonacci sequence; we shall call it the k-
periodic Fibonacci sequence. This new generalization is defined using a non-linear recurrence
relation that depends on k real parameters, and is an extension of the generalized Fibonacci
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sequence. The non-linear recurrence relation we consider in this article can be viewed as a
linear recurrence relation with nonconstant coefficients.

Definition 1. For any k-tuple (x1, x2, . . . , xk) ∈ Zk, we recursively define the k-periodic

Fibonacci sequence, denoted
{
F

(x1,x2,...,xk)
n

}∞
n=0

, by

F
(x1,x2,...,xk)
0 = 0, F

(x1,x2,...,xk)
1 = 1, F

(x1,x2,...,xk)
n+1 = xnF

(x1,x2,...,xk)
n + F

(x1,x2,...,xk)
n−1

for all n ≥ 1, where xn = xi, for 1 ≤ i ≤ k, if n ≡ i (mod k).

To avoid cumbersome notation, let us denote F
(x1,x2,...,xk)
n by qn. Thus, the sequence {qn}

satisfies

q0 = 0, q1 = 1, qn =



x1qn−1 + qn−2, if n ≡ 2 (mod k)
x2qn−1 + qn−2, if n ≡ 3 (mod k)

...
xk−1qn−1 + qn−2, if n ≡ 0 (mod k)

xkqn−1 + qn−2, if n ≡ 1 (mod k)

(n ≥ 2).

We now note that this new generalization is in fact a family of sequences where each new
combination of x1, x2, . . . xk produces a distinct sequence. When x1 = x2 = . . . = xk = 1,
we have the classical Fibonacci sequence and when x1 = x2 = . . . = xk = 2, we get the Pell
numbers. Even further, if we set x1 = x2 = . . . = xk = r, for some positive integer r, we get
the r-Fibonacci numbers, and if k is even, we can obtain the generalized Fibonacci sequence
by assigning a to the odd-numbered subscripts and b to the even-numbered.

Example 1. The sequence descriptions that follow give reference numbers found in Sloane’s
On-Line Encyclopedia of Integer Sequences, [16]. When k = 3 and (x1, x2, x3) = (1, 0, 1),
we obtain the sequence [A092550], beginning 0, 1, 1, 1, 2, 3, 2, 5, 7, 5, 12, 17, 12, 29, . . .. This
sequence is described in [16] as a “two-steps-forward-and-one-step-back Fibonacci-based
switched sequence inspired by Per Bak’s sand piles.” When (x1, x2, x3) = (2, 1, 1), we obtain
the sequence [A179238]. When k = 3 and (x1, x2, x3) = (1,−1, 2), we obtain the sequence
[A011655]. When k = 4 and (x1, x2, x3, x4) = (2,1,2,1), we get the sequence [A048788], and
when (x1, x2, x3, x4) = (1,2,1,2), we get the sequence [A002530].

We now consider the connection between this family of sequences (for positive xi) and the
set of quadratic irrational numbers. If an irrational number α satisfies a quadratic equation
with integer coefficients, α is said to be a quadratic irrational. In addition, we say a continued
fraction expansion of a number x is periodic if it can be written in the form

x = [x0;x1, x2, . . . , xm, xm+1, . . . , xm+k].

It is well known that a number α is a quadratic irrational if and only if it has a periodic
continued fraction expansion. If we restrict our quadratic irrational α to the interval [0, 1],
we get a continued fraction expansion of the form α = [0; x1, x2, . . . , xk]. Therefore, given
a quadratic irrational α̂ = [x0;x1, x2, . . . , xm, xm+1, . . . , xm+k], if we associate it with the
quadratic irrational α = [0;xm+1, xm+2, . . . , xm+k], which is purely periodic with period k,
we have that for each quadratic irrational there is a corresponding k-periodic Fibonacci
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sequence with associated k-tuple (x1, x2, . . . , xk). Furthermore, we can derive this k-periodic
Fibonacci sequence directly from the convergents of α.

Consider the sequence of convergents of α,

p0

q0
,
p0

q0
,
p1

q1
, . . . ,

pn

qn
, . . . .

It can be shown that the numerators and denominators of these convergents satisfy the
following recurrence relations. If p−2 = 0, p−1 = 1, then the sequence of numerators satisfies
the relation

pn = xnpn−1 + pn−2,

and if q−2 = 1, q−1 = 0, then the sequence of denominators satisfies the relation

qn = xnqn−1 + qn−2.

It is not difficult to see that we obtain the k-periodic Fibonacci sequence of α from the
sequence of numerators of the convergents of α, as the two sequences have the same initial
values and satisfy the same recurrence relation. For further reading on continued fractions,
the books [5, 11] are excellent sources.

Example 2. From the continued fraction expansion of φ = [1; 1, 1, 1, . . .], the golden ratio,
we have x1 = x2 = . . . = xk = 1 and obtain the Fibonacci sequence. From the continued
fraction expansion of

√
2 = [1; 2, 2, 2, . . .], we consider the periodic portion and derive the

Pell sequence from −1 +
√

2 = [0; 2, 2, 2, . . .], by setting x1 = x2 = . . . = xk = 2.

We will describe the terms of the sequence {qn} explicitly by using a generalization of
Binet’s formula. In order to do this, we must first show that for some constant A, the qn
satisfy the recurrence relation

qmk+j = Aq(m−1)k+j + (−1)k−1q(m−2)k+j for m ≥ 2k, 0 ≤ j ≤ k − 1.

Therefore, we begin by establishing that the {qn} satisfy a linear recurrence modulo k, and
we follow by deriving a generalization of Binet’s formula (via generating functions). Finally,
we consider the convergence of the ratios of successive terms of the sequence. It is well-known
that the ratios of successive Fibonacci numbers approach the golden mean, Φ, so it is natural
to ask if analogous results exist for the variations and extensions of the Fibonacci sequence.
We show in [2] that successive terms of the generalized Fibonacci sequence do not converge,
though we do show convergence of ratios of terms when increasing by two’s or ratios of even
or odd terms. We end with a discussion of the covergence of the ratios of subsequent terms
modulo k.

2. The Recurrence Relation

In order to obtain the generating function, we first show that our sequences satisfy a linear
recurrence relation modulo k. So, fix k and the k-tuple (x1, x2, . . . , xk). We consider the se-

quence
{
F

(x1,x2,...,xk)
n

}
, and use the short-hand notation {qn}, as defined in the introduction.
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We show that for some constant A,

qmk+j = Aq(m−1)k+j + (−1)k−1q(m−2)k+j for m ≥ 2k, 0 ≤ j ≤ k − 1.

To achieve this, we introduce a family of sequences related to {qn}.
Definition 2. For each j, where 0 ≤ j ≤ k − 1, we define a sequence {qj

n} as follows. Let
qj
0 = 0 and qj

1 = 1. For n = mk + r ≥ 2, with 0 ≤ r ≤ k − 1, we define

qj
n = qj

mk+r = xj−r+1q
j
mk+r−1 + qj

mk+r−2,

where xj−r+1 = xi, for 1 ≤ i ≤ k, if (j − r + 1) ≡ i (mod k).

For example, the sequence q0
n begins,

0, 1, xk−1, xk−1xk−2 + 1, xk−1xk−2xk−3 + xk−1 + xk−3, . . . .

Note that there are k-many sequences {qj
n} associated with {qn}.

We set the constant A = q0
k+1 + qk−1. Now through a series of lemmas, we will arrive at

the linear recurrence

qmk+j = Aq(m−1)k+j + (−1)k−1q(m−2)k+j for m ≥ 2k, 0 ≤ j ≤ k − 1.

Throughout the remainder of this paper, we assume k to be a fixed positive integer.

Lemma 1. For 0 ≤ j ≤ k − 1, qk+j = qj
k+j.

Proof.

qk+j = xj−1qk+j−1 + qk+j−2

= qj
2qk+j−1 + qj

1qk+j−2

= qj
2(xj−2qk+j−2 + qk+j−3) + qj

1qk+j−2

= (xj−2q
j
2 + qj

1)qk+j−2 + qj
2qk+j−3

= qj
3qk+j−2 + qj

2qk+j−3

Following the same process, one can easily show that

qk+j = qj
i+1qk+j−i + qj

i qk+j−(i+1),

where 0 ≤ i ≤ k + j − 1.

Hence,

qk+j = qj
k+jqk+j−(k+j−1) + qj

k+j−1qk+j−(k+j)

= qj
k+jq1 + qj

k+j−1q0

= qj
k+jq1

= qj
k+j.

�

Similarly, we obtain the identity qj = qj
j .
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Lemma 2. For all n ≥ 2 and 0 ≤ j ≤ k − 1,

qj
n = xj−1q

j−1
n−1 + qj−2

n−2 = qj
2q

j−1
n−1 + qj−2

n−2.

Proof. We proceed by strong induction on n. For n = 2,

qj
2 = xj−1q

j
1 + qj

0

= xj−1

= qj
2

= qj−1
1 qj

2 + qj
0.

Now, if we assume our claim is true for all n ≤ t, we shall show that qj
t+1 = qj

2q
j−1
t + qj−2

t−1 .
We write t = mk + r for some 0 ≤ r ≤ k − 1. Then

qj
t+1 = qj

mk+r+1

= xj−rq
j
mk+r + qj

mk+r−1

= xj−r

(
qj−1
mk+r−1q

j
2 + qj−2

mk+r−2

)
+
(
qj−1
mk+r−2q

j
2 + qj−2

mk+r−3

)
= qj

2q
j−1
mk+r + qj−2

mk+r−1

= qj
2q

j−1
t + qj−2

t−1 .

�

Lemma 3. For all integers 0 ≤ j ≤ k − 1,

q0
k+1 = qj

k+1 − qk−1 + qj−1
k−1.

Proof. Using Lemma 2, we have that

q0
k+1 + qk−1 = q0

k+1 + qk−1
k−1

= qk−1
k xk−1 + qk−2

k−1 + qk−1
k−1

= qk−1
k+1 + qk−2

k−1

= qk−2
k xk−2 + qk−3

k−1 + qk−2
k−1

= qk−2
k+1 + qk−3

k−1.

By continuing this process for k − j steps, we have

q0
k+1 + qk−1 = qj

k+1 + qj−1
k−1.

�

Lemma 4. For all integers 0 ≤ j ≤ k − 1,m ≥ 2, and 2 ≤ t ≤ km+ j,

qkm+j = qj
t qkm+j−t+1 + qj

t−1qkm+j−t.

Proof. Using Definitions 1 and 2, we have

qkm+j = xj−1qkm+j−1 + qkm+j−2

= qj
2qkm+j−1 + qj

1qkm+j−2.
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We then achieve
qkm+j = qj

t qkm+j−t+1 + qj
t−1qkm+j−t

in t− 1 steps by repeated applications of Definitions 1 and 2. �

Lemma 5. For 0 ≤ j ≤ k − 1, and k,m ≥ 2, we have that if 0 ≤ i ≤ k − 1,

qkm+j = Aqk(m−1)+j + (qj
kq

j−1
i − qj−1

k−1q
j
i+1)qk(m−1)+j−i + (qj

kq
j−1
i−1 − q

j−1
k−1q

j
i )qk(m−1)+j−(i+1).

Proof. By Lemmas 3 and 4, when t = k + 1, we have that

qkm+j = qj
k+1qkm+j−k + qj

kqkm+j−k−1

=
(
q0
k+1 + qk−1 − qj−1

k−1

)
qk(m−1)+k + qj

kqk(m−1)+j−1.

It remains to see that (
−qj−1

k−1

)
qk(m−1)+j + qj

kqk(m−1)+j−1

=
(
qj
kq

j−1
i − qj−1

k−1q
j
i+1

)
qk(m−1)+j−i +

(
qj
kq

j−1
i−1 − q

j−1
k−1q

j
i

)
qk(m−1)+j−(i+1).

For this, we employ a similar method as in Lemma 4, always replacing the largest term of
the sequence using the definition and gathering like terms.

�

Lemma 6. For all integers 0 ≤ j ≤ k − 1, and for all k ≥ 2,

qj
kq

j−1
k−2 − q

j−1
k−1q

j
k−1 = (−1)k−1.

Proof. Employing the method used in Lemmas 4 and 5 (applying the definition and gathering
like terms), we get

qj
kq

j−1
k−2 − q

j−1
k−1q

j
k−1 =

(
xj+1q

j
k−1 + qj

k−2

)
qj−1
k−2 − q

j−1
k−1q

j
k−1

= −qj−1
k−3q

j
k−1 + qj

k−2q
j−1
k−2

= qj−1
k−4q

j
k−2 − q

j
k−3q

j−1
k−3

Continuing in the same manner, we have that at step k − 2,

qj
kq

j−1
k−2 − q

j−1
k−1q

j
k−1 = (−1)k−2qj

2q
j−1
0 − (−1)k−2qj

1q
j−1
1 = (−1)k−1.

�

Theorem 1. For 0 ≤ j ≤ k − 1 and m ≥ 2,

qkm+j = Aqk(m−1)+j + (−1)k−1qk(m−2)+j.

Proof. This follows directly from Lemmas 5 and 6. �

Remark 1. The recurrence relation discussed in Section 2 is also discussed in a very recent
paper by C. Cooper [1]. We note that in [1], there is no explicitly stated formula for the
coefficient A. Instead, a very interesting combinatorial description is given, based on the
number of ways to create a bracelet of length k using beads of length one or two.
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3. Generating Function for the k-Periodic Fibonacci Sequence

Generating functions provide a powerful technique for solving linear homogeneous re-
currence relations. Even though generating functions are typically used in conjunction with
linear recurrence relations with constant coefficients, we will systematically make use of them
for linear recurrence relations with nonconstant coefficients. In this section, we consider the
generating functions for the k-Periodic Fibonacci sequences and discuss the convergence of
successive terms.

Theorem 2. The generating function for the k-periodic Fibonacci sequence given by {qn} is

G(x) =

k−1∑
r=0

qrx
r +

k−1∑
r=0

(qk+r − Aqr)xk+r

1− Axk + (−1)kx2k
.

Proof. We begin with the formal power series representation of the generating function for
{qn},

G(x) = q0 + q1x+ q2x
2 + · · ·+ qnx

n + · · · =
∞∑

m=0

qmx
m.

We rewrite G(x) as

G(x) =
k−1∑
r=0

(
∞∑

j=0

qjk+rx
jk+r

)
.

Now denote the inner sum as

Gr(x) =
∞∑

j=0

qjk+rx
jk+r.

Note that,

G(x) = G0(x) +G1(x) + · · ·+Gk−1(x).
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To get the desired result, we consider each of the summands separately. For 0 ≤ r < k, we
have

Gr(x) = qrx
r + qk+rx

k+r + q2k+rx
2k+r + · · ·+ qjk+rx

jk+r + · · ·

= qrx
r + qk+rx

k+r +
∞∑

j=2

qjk+rx
jk+r

= qrx
r + qk+rx

k+r +
∞∑

j=2

[
Aq(j−1)k+r − (−1)kq(j−2)k+r

]
xjk+r

= qrx
r + qk+rx

k+r + Axk

∞∑
j=2

q(j−1)k+rx
(j−1)k+r − (−1)kx2k

∞∑
j=2

q(j−2)k+rx
(j−2)k+r

= qrx
r + qk+rx

k+r + Axk

∞∑
j=1

qjk+rx
jk+r − (−1)kx2k

∞∑
j=0

qjk+rx
jk+r

= qrx
r + qk+rx

k+r + Axk [Gr(x)− qrxr]− (−1)kx2kGr(x)

= qrx
r + (qk+r − Aqr)xk+r +

[
Axk − (−1)kx2k

]
Gr(x).

Therefore, [
1− Axk + (−1)kx2k

]
Gr(x) = qrx

r + (qk+r − Aqr)xk+r,

resulting in

(1) Gr(x) =
qrx

r + (qk+r − Aqr)xk+r

1− Axk + (−1)kx2k
.

Thus,

G(x) = G0(x) +G1(x) + · · ·+Gk−1(x)

=
q0 + (qk − Aq0)xk

1− Axk + (−1)kx2k
+
q1x+ (qk+1 − Aq1)xk+1

1− Axk + (−1)kx2k
+ · · ·+ qk−1x

k−1 + (q2k−1 − Aqk−1)x
2k−1

1− Axk + (−1)kx2k
.

After simplifying the above expression, we get the desired result as claimed in the theorem;

G(x) =

k−1∑
r=0

qrx
r +

k−1∑
r=0

(qk+r − Aqr)xk+r

1− Axk + (−1)kx2k
.

2

4. Binet’s formula for the k-Periodic Fibonacci Sequence

In this section, we will state and prove an extension of Binet’s formula for the k-Periodic
Fibonacci sequences, and then finish by exploring the convergence of ratios of the terms of
the sequences.
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Lemma 7. If

α =
(−1)kA+

√
A2 − (−1)k4

2
and β =

(−1)kA−
√
A2 − (−1)k4

2
,

then α and β are roots of z2 − (−1)kAz + (−1)k = 0.

Lemma 8. If α and β are as in Lemma 7, then

(a) α + β = (−1)kA, α− β =
√
A2 − (−1)k4, and αβ = (−1)k

(b) αm+1 + βαm = (−1)kAαm, βm+1 + αβm = (−1)kAβm

(c)
1

1− Axk + (−1)kx2k
=

1

α− β

[
α

1− (−1)kαxk
− β

1− (−1)kβxk

]

Theorem 3 (Generalized Binet’s Formula). The terms of the k-Periodic Fibonacci Sequence
{qn} are given by

qkm+r = (−1)k(m+1)

[(
αm − βm

α− β

)
qk+r −

(
αm−1 − βm−1

α− β

)
qr

]
.

where α and β are as in Lemma 7.

Proof. Suppose that 0 ≤ r < k. The generating function for the subsequence {qmk+r} is
given by (see equation (1))

Gr(x) =
qrx

r + (qk+r − Aqr)xk+r

1− Axk + (−1)kx2k
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Gr(x) = xr qr + (qk+r − Aqr)xk

1− Axk + (−1)kx2k

=
xr
[
qr + (qk+r − Aqr)xk

]
α− β

[
α

1− (−1)kαxk
− β

1− (−1)kβxk

]
=

xr
[
qr + (qk+r − Aqr)xk

]
α− β

∞∑
n=0

(−1)kn
(
αn+1 − βn+1

)
xnk

= xr
[
qr + (qk+r − Aqr)xk

] ∞∑
n=0

(−1)kn (αn+1 − βn+1)xnk

α− β

= xr

[
∞∑

n=0

(−1)kn (αn+1 − βn+1) qrx
nk

α− β
+
∞∑

n=0

(−1)kn (αn+1 − βn+1) (qk+r − Aqr)x(n+1)k

α− β

]

= xr

[
∞∑

n=0

(−1)kn (αn+1 − βn+1) qrx
nk

α− β
+ (−1)k

∞∑
n=1

(−1)kn (αn − βn) (qk+r − Aqr)xnk

α− β

]

= xr

[
qr +

∞∑
n=1

(−1)kn (αn+1 − βn+1) qrx
nk

α− β
+ (−1)k

∞∑
n=1

(−1)kn (αn − βn) (qk+r − Aqr)xnk

α− β

]

= xr

[
qr +

∞∑
n=1

(−1)kn (αn+1 − βn+1) qr + (−1)k (αn − βn) (qk+r − Aqr)
α− β

xnk

]

= qrx
r +

∞∑
n=1

(−1)k(n+1)

[(
αn − βn

α− β

)
qk+r −

(
αn−1 − βn−1

α− β

)
qr

]
xnk+r

Therefore,

Gr(x) =
∞∑

n=0

(−1)k(n+1)

[(
αn − βn

α− β

)
qk+r −

(
αn−1 − βn−1

α− β

)
qr

]
xnk+r.

Thus,

qkn+r = (−1)k(n+1)

[(
αn − βn

α− β

)
qk+r −

(
αn−1 − βn−1

α− β

)
qr

]
.

2

Theorem 4. The ratios of succesive terms of the subsequence {qmk+r} converge to

η =
A+ sgn(A)

√
A2 − 4(−1)k

2
.

if |A| > 2, where sgn(A) =
A

|A|
is the sign of A.

Proof. We will show the case A > 2. First note that when k is odd, |α| < |β| and when k
is even, |α| > |β|. From Theorem 3, we have

q(m+1)k+r

qmk+r

= (−1)k (αm+1 − βm+1) qk+r − (αm − βm) qr
(αm − βm) qk+r − (αm−1 − βm−1) qr
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q(m+1)k+r

qmk+r

=



−β

[(
α

β

)m+1

− 1

]
qk+r −

1

β

[(
α

β

)m

− 1

]
qr[(

α

β

)m

− 1

]
qk+r −

1

β

[(
α

β

)m−1

− 1

]
qr

; if k is odd

α

[
1−

(
β

α

)m+1
]
qk+r −

1

α

[
1−

(
β

α

)m]
qr[

1−
(
β

α

)m]
qk+r −

1

α

[
1−

(
β

α

)m−1
]
qr

; if k is even

Since

∣∣∣∣αβ
∣∣∣∣ < 1 when k is odd and

∣∣∣∣βα
∣∣∣∣ < 1 when k is even, we get

lim
m→∞

q(m+1)k+r

qmk+r

=

{
−β ; if k is odd
α ; if k is even

=
A+

√
A2 − 4(−1)k

2
.

The case A < −2 can be handled in the same fashion.

2

One can prove in a similar way that for each r = 1, 2, · · · , k−1, the ratios
qmk+r

qmk+r−1

converge

to ηr =
qk+r + (−1)k−1βqr

qk+r−1 + (−1)k−1βqr−1

as m→∞.
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