Problem sheet 3 Jan 27th 2004

MT290 Complex variable

Ex. 1

Transform each of the following equations into a quadratic equation in e^z and hence find all the solutions for $z \in \mathbb{C}$ to

(a) $\cosh z = -1;$ (b) $\sinh z = \frac{i\sqrt{3}}{2}.$

Ex. 2

Determine the principal value of the logarithm of each of the following complex

numbers: (a) $-1 - i\sqrt{3}$, (b) $i - \sqrt{3}$, (c) 1 - i, (d) $\frac{i - \sqrt{3}}{i - 1}$. *Hint:* Some of the work has already been done on sheet 1 !

Ex. 3

Find the principal value, and all the other values, of the complex powers: (a) $i^{\frac{2}{\pi}}$, (b) 1^{2i} (c) $(i - \sqrt{3})^i$, (d) $(1 - i)^{1+i}$.

Ex. 4

Let f(x+iy) = u(x, y) + iv(x, y). Suppose that f is differentiable as a function of a complex variable, and that $v(x, y) = (u(x, y))^2$. Use the Cauchy-Riemann equations to show that

$$\frac{\partial u}{\partial x} = -4u^2 \frac{\partial u}{\partial x}$$

and thus deduce that f(z) is constant. (Note: $1 + 4u^2 \neq 0$!)

Ex. 5

By writing $\tan z$ in terms of $w = e^{iz}$ write down the quadratic equation w must satisfy if

$$\tan z = a$$
.

Hence find z if $\tan z = \sqrt{3} - 2i$. By considering the quadratic equation which w satisfies, and using the fact that $e^z = 0$ has no solution, show that $\tan z$ takes all values in \mathbb{C} with two exceptions.