Problem sheet 4 Feb 3rd 2004

MT290 Complex variable

Ex. 1

Sketch the following sets and investigate whether they are open, and/or connected (for (a)-(c) you will want to write z = x + iy):

(a)
$$\{z : \text{Im } z^2 > 1\};$$
 (b) $\{z : \text{Re } z^2 \le 1\};$
(c) $\{z : \text{Re } z^2 > 1, x > 1, y^2 < 4\};$ (d) $\{z : \arg z = \frac{\pi}{6}, 0 < |z| < 1\}.$

Ex. 2

Sketch and investigate the following contours to see whether or not they are *smooth*, *piecewise smooth*, *simple*, *closed*:

- (a) $\phi(t) = t + i|t 1|, \quad 0 \le t \le 2$
- (b) $\phi(t) = 3\sin t + 4i\cos t, \quad 0 \le t \le 2\pi$
- (c) $\phi(t) = \sin t + i \sin 2t, \quad 0 \le t \le 2\pi.$

Ex. 3

Write down in the form $\phi(t)$, $a \leq t \leq b$ the contour *C* consisting of a circle centre 1 + 0i, radius 2 starting at 3 + 0i going in an anticlockwise direction. Hence evaluate the following two integrals:

$$\int_C z^2 \, dz, \qquad \int_C \frac{1}{z-1} \, dz.$$

Ex. 4

Write down in the form $\phi(t)$, $a \leq t \leq b$ the contour consisting of a circle centre i, radius 3 starting at i-3 going in an anticlockwise direction. Hence evaluate the integral of \bar{z} around this contour.

Ex. 5

Challenge Question. Let a simple closed smooth contour C be given by $\phi(t)$, $a \leq t \leq b$ (anticlockwise direction as usual !). Let the area enclosed by C be A. Prove that the integral

$$\int_C \bar{z} \, dz$$

is pure imaginary. Show that the integral is 2iA.