Problem sheet 7 Feb 24th, 2004

Ex. 1

Revise previous chapters and problem sheets. Do the problems from sheet 6 you haven't done so far (and hand them in!) For problems 2 and 3 on sheet 6 work with e^{iz} .

Ex. 2

Let
$$I(a,b) = \int_0^{2\pi} \frac{1}{a+b\cos t} dt.$$

For which (a, b) do you expect that I(a, b) is a real positive number? Fix a = 1 and evaluate I(1, b) for all $0 \le b < 1$. You will want to show that the denominator of the corresponding rational function has precisely one root inside the unit circle.

Ex. 3

The function f(z) = u(x, y) + iv(x, y) is differentiable for all z = x + iy, and f(0) = 0. Given that $u(x, y) = \sin x \cosh y$, show, using the Cauchy-Riemann equations, that $f(z) = \sin z$. *Hint:* You will need to use results like $\sin(iy) = i \sinh y$ and remember those old trig identities like $\sin(A + B) = \dots$

Ex. 4

Let γ be the circle with centre 0 and radius 2, taken anticlockwise. Use Cauchy's integral formula, or the formula for derivatives, to evaluate the following integrals:

$$\int_{\gamma} \frac{z^2}{z-i} \, dz, \qquad \qquad \int_{\gamma} \frac{\sin \pi z}{(z-1)^2} \, dz.$$

Ex. 5

(This exercise shall help to understand the estimation lemma.)

- i) Let (in real analysis) $f(x) = 10 + \sin x$. Sketch the function. Give a lower and an upper bound on $|\int_{3}^{7} f(x) dx|$.
- ii) Let C be any semicircle Re^{it} $(t_0 \le t \le t_0 + \pi)$ around the origin. Give in all details an upper bound on the integral

$$\int_C \frac{z}{z^3} \, dz.$$

iii) Use the estimation lemma to get (in detail) an upper bound on

$$\int_C \frac{2z+1}{z^3+1} \, dz.$$

Ex. 6

(This problem shows that a) not only semicircle contours help to evaluate integrals along the real line; b) that you can reduce an integral like $\int e^{-x^2} \cos ax \, dx$ (here with a = 1) to $\int e^{-x^2} dx$. The latter is not really easy, but at least well known so that you can use it here.)

Let $f : \mathbb{C} \to \mathbb{C}$ be the function with $f(z) = e^{-z^2}$. Let R(K) denote the rectangle defined by the four points $P_1 = -K + 0i, P_2 = +K + 0i, P_3 = +K + \frac{1}{2}i, P_4 = -K + \frac{1}{2}i$.

Let γ_1 denote the path along the edge connecting P_1 and \tilde{P}_2 ,

Let γ_2 denote the path along the edge connecting P_2 and P_3 ,

Let γ_3 denote the path along the edge connecting P_3 and P_4 ,

Let γ_4 denote the path along the edge connecting P_4 and P_1 .

- i) Draw the integration contour in the Argand diagram.
- ii) Show that $\int_{\partial B(K)} f(z) dz = 0$.
- iii) Show that $\lim_{K \to \infty} \int_{\gamma_2} f(z) dz = 0$, and similarly $\lim_{K \to \infty} \int_{\gamma_4} f(z) dz = 0$. Use the above results, and (without proof) the well known result $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ to conclude that $\int_{0}^{\infty} e^{-x^2} \cos x \, dx = \frac{\sqrt{\pi}}{2e^{1/4}}$.