Problem sheet 8 March 2nd, 2004

MT290 Complex variable

Ex. 1

Give the radius of convergence for each of the following series:

a.
$$\sum_{n=1}^{\infty} \frac{z^n}{n^3}$$
; **b.** $\sum_{n=0}^{\infty} \frac{z^n}{5^n}$; **c.** $\sum_{n=0}^{\infty} \frac{z^n}{n^3 + 5^n}$; **d.** $\sum_{n=0}^{\infty} z^n 5^{-n^2}$

Ex. 2

Find power series for the following functions about the points stated and give the radius of convergence for each of the series.

a.
$$\frac{1}{2-z}$$
 about $z = 0$; **b.** $\frac{1}{2-z}$ about $z = 12$; **c.** $\frac{5}{(1-z)(4+z)}$ about $z = 0$.
d. e^z about $z = i$. **e.** $\frac{1}{3-z}$ about $z = 4i$.

Ex. 3

Determine the radius of convergence for:

a)
$$\sum_{n=0}^{\infty} \frac{z^n}{7^n}$$
, b) $\sum_{n=0}^{\infty} \frac{z^{5n}}{7^n}$, c) $\sum_{n=0}^{\infty} \frac{z^{bn}}{a^n}$, d) $\sum_{n=0}^{\infty} \frac{z^n}{n^r}$, e) $\sum_{n=0}^{\infty} \frac{z^n}{\binom{3n}{n}}$.

where in c) a and b and in d) r are positive real constants. Recall that $\binom{m}{n} = \frac{m!}{n!(m-n)!}$ (see also exercise on n! below).

Ex. 4

Determine the power series of $\sin z$ in two different ways:

a) Use the definition of sin in terms of the complex exp function.

b) Use $\frac{d^2 \sin z}{dz^2} = -\sin z$, $\cos(0) = 1$ and the fact that sin is an odd function. c) Use the definition of $\sinh z$ in terms of the exp to find its power series. Compare with $\sin z$ and deduce that $\sin(iz) = i \sinh z$.

Can you simplify the above calculations by means of Taylor's theorem?

Ex. 5

Stirling's formula is: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Use your pocket calculator to convince yourself for $n = 10, 20, 30, \dots$ List some values of $\frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}$

Use this to find an approximation for $\binom{2n}{n}$ and $\binom{3n}{n}$.

Try to prove a much weaker form of Stirling's formula as follows: $\ln(n!) = \ln 1 + \ln 2 + \ldots + \ln n$. Approximate the sum by an integral. Find a) a lower and b) an upper bound for n!. If these bounds are not too far apart you have a good approximation to n!.