Problem sheet 9 March 9th, 2004

Ex. 1

Remark: Since not everybody appreciated this problem, let's do it again; work through the solution I gave out. You can hand it in.

If you successfully did this problem before, then work out $\int_0^\infty e^{-x^2} \cos(ax) dx$ instead.

This problem shows that a) not only semicircle contours help to evaluate integrals along the real line; b) that you can reduce an integral like $\int e^{-x^2} \cos ax \, dx$ to $\int e^{-x^2}$, dx. The latter is not really easy, but at least well known so that you can use it here.

Let $f : \mathbb{C} \to \mathbb{C}$ be the function with $f(z) = e^{-z^2}$. Let R(K) denote the rectangle defined by the four points $P_1 = -K + 0i$, $P_2 = +K + 0i$, $P_3 = +K + \frac{1}{2}i$, $P_4 = -K + \frac{1}{2}i$.

Let γ_1 denote the path along the edge connecting P_1 and P_2 ,

Let γ_2 denote the path along the edge connecting P_2 and P_3 ,

Let γ_3 denote the path along the edge connecting P_3 and P_4 ,

Let γ_4 denote the path along the edge connecting P_4 and P_1 .

Note: it is advisable to use a parametrisation for the contour lines that keeps z simple but shifts any difficulty to the boundaries. For example, for γ_1 use $\varphi(t) = z = t$, where $-K \leq t \leq K$. This keeps e^{-z^2} much simpler than z = -K + 2tK, with $0 \leq t \leq 1$. So, which simple parametrisation do you get for γ_2 etc?

- i) Draw the integration contour in the Argand diagram.
- ii) Show that $\int_{\partial R(K)} f(z) dz = 0$. Here $\partial R(K)$ denotes the boundary of the rectangle R(K).
- iii) Show that $\lim_{K \to \infty} \int_{\gamma_2} f(z) dz = 0$, and similarly $\lim_{K \to \infty} \int_{\gamma_4} f(z) dz = 0$. Use the above results, and (without proof) the well known result $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ to conclude that $\int_{0}^{\infty} e^{-x^2} \cos x \, dx = \frac{\sqrt{\pi}}{2e^{1/4}}$.

Ex. 2

(Use the method of Monday 8th of March.)

Find power series for the following functions about the points stated and give the radius of convergence for each of the series.

a.
$$\frac{1}{2-z}$$
 about $z = 0$; **b.** $\frac{1}{2-z}$ about $z = 12$; **c.** $\frac{5}{(1-z)(4+z)}$ about $z = 0$.
d. e^z about $z = i$. **e.** $\frac{1}{3-z}$ about $z = 4i$.

Ex. 3

Assuming that it is alright to integrate a power series term by term within its radius of convergence (it is !) use the series for $(1 + z)^{-1}$ to obtain the power series:

$$\log(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n.$$
 (*)

What is the radius of convergence of this series? Let z = iy in (*). Take the imaginary part to obtain the series for $\arctan y$.

Ex. 4

Find the first few coefficients of the Taylor series of $\tan z$ in two different ways.

a) using
$$c_n = \frac{f^{(n)}(0)}{n!}$$
. When you are tired of differentiating try

b)

$$\tan z = \frac{\sin z}{\cos z} = \frac{z - \frac{z^3}{3!} + \frac{z^5}{5!} \mp}{1 - \frac{z^2}{2!} + \frac{z^4}{4!} \mp} = c_0 + c_1 z + c_2 z^2 + \dots$$

Multiply by $\cos z$ and find c_0, c_2, c_4, \ldots Then find, c_1 , from this c_3 etc.

Ex. 5

Complete the following explanation of Taylor's theorem: Perhaps you wondered

Complete the following explanation of Taylor's theorem: Perhaps you wondered where this formula $c_n = \frac{f^{(n)}(0)}{n!}$ comes from. Let's try to filter out the coefficient c_k from $f(z) = \sum_{n=0}^{\infty} c_n z^n$. A good filter is our favourite integral $\int_{|z|=1} z^n dz = \begin{cases} 2\pi i & \text{if } n = -1 \\ 0 & \text{otherwise.} \end{cases}$ $\int_{|z|=1} f(z) dz$ would not lead anywhere, for a differentiable function this is just 0. But let's try

0. But let's try

$$\int_{|z|=1} \frac{f(z)}{z^{k+1}} \, dz = \int_{|z|=1} \frac{\sum_{n=0}^{\infty} c_n z^n}{z^{k+1}} \, dz = \int_{|z|=1} \sum_{n=0}^{\infty} c_n \frac{z^n}{z^{k+1}} \, dz$$

Now go on, exchange the integration and summation (you are allowed to do it!), use our filter, combine with Cauchy's integral formulae and find the expression for c_k .