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Ex. 1
Remark: Since not everybody appreciated this problem, let’s do it again; work
through the solution I gave out. You can hand it in.
If you successfully did this problem before, then work out

∫∞
0

e−x2
cos(ax) dx

instead.
This problem shows that a) not only semicircle contours help to evaluate inte-
grals along the real line; b) that you can reduce an integral like

∫
e−x2

cos ax dx

to
∫

e−x2
, dx. The latter is not really easy, but at least well known so that you

can use it here.
Let f : C → C be the function with f(z) = e−z2

. Let R(K) denote the rectangle
defined by the four points P1 = −K + 0i, P2 = +K + 0i, P3 = +K + 1

2 i, P4 =
−K + 1

2 i.
Let γ1 denote the path along the edge connecting P1 and P2,
Let γ2 denote the path along the edge connecting P2 and P3,
Let γ3 denote the path along the edge connecting P3 and P4,
Let γ4 denote the path along the edge connecting P4 and P1.

Note: it is advisable to use a parametrisation for the contour lines that keeps
z simple but shifts any difficulty to the boundaries. For example, for γ1 use
ϕ(t) = z = t, where −K ≤ t ≤ K. This keeps e−z2

much simpler than
z = −K + 2tK, with 0 ≤ t ≤ 1. So, which simple parametrisation do you get
for γ2 etc?

i) Draw the integration contour in the Argand diagram.

ii) Show that
∫

∂R(K)
f(z) dz = 0. Here ∂R(K) denotes the boundary of the

rectangle R(K).

iii) Show that lim
K→∞

∫
γ2

f(z) dz = 0, and similarly lim
K→∞

∫
γ4

f(z) dz = 0. Use

the above results, and (without proof) the well known result
∫∞
−∞ e−x2

dx =
√

π to conclude that
∫∞
0

e−x2
cos x dx =

√
π

2e1/4 .

Ex. 2
(Use the method of Monday 8th of March.)
Find power series for the following functions about the points stated and give
the radius of convergence for each of the series.

a.
1

2− z
about z = 0; b.

1
2− z

about z = 12; c.
5

(1− z)(4 + z)
about z = 0.

d. ez about z = i. e.
1

3− z
about z = 4i.

Ex. 3
Assuming that it is alright to integrate a power series term by term within its
radius of convergence (it is !) use the series for (1 + z)−1 to obtain the power
series:

log(1 + z) =
∞∑

n=1

(−1)n+1

n
zn. (∗)

What is the radius of convergence of this series? Let z = iy in (*). Take the
imaginary part to obtain the series for arctan y.
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Ex. 4
Find the first few coefficients of the Taylor series of tan z in two different ways.

a) using cn = f(n)(0)
n! . When you are tired of differentiating try

b)

tan z =
sin z

cos z
=

z − z3

3! + z5

5!∓
1− z2

2! + z4

4!∓
= c0 + c1z + c2z

2 + . . .

Multiply by cos z and find c0, c2, c4, . . . Then find, c1, from this c3 etc.

Ex. 5
Complete the following explanation of Taylor’s theorem: Perhaps you wondered

where this formula cn = f(n)(0)
n! comes from.

Let’s try to filter out the coefficient ck from f(z) =
∑∞

n=0 cnzn. A good filter

is our favourite integral
∫
|z|=1

zn dz =

{
2πi if n = −1
0 otherwise.∫

|z|=1
f(z) dz would not lead anywhere, for a differentiable function this is just

0. But let’s try∫
|z|=1

f(z)
zk+1

dz =
∫
|z|=1

∑∞
n=0 cnzn

zk+1
dz =

∫
|z|=1

∞∑
n=0

cn
zn

zk+1
dz

Now go on, exchange the integration and summation (you are allowed to do it!),
use our filter, combine with Cauchy’s integral formulae and find the expression
for ck.


