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MT261 Discrete Mathematics (2006)

Notes by Christian Elsholtz

based on notes by David Yates

1 Graphs

1.1 Basic definitions and properties

Definition 1.1.1.

a) Let V be a finite non-empty set of elements, called vertices ; (singular: vertex).

b) An edge is an unordered pair of distinct vertices of V . The set of edges is
denoted by E. E ⊆ {{u, v} | u, v ∈ V, u 6= v}. (Note that not necessarily all
pairs of vertices occur).

c) A graph is a pair V and E, denoted by G = G(V, E).

d) Consider a “pair” of the same element. This pair is (according to the defini-
tion above) not an edge. It is called a loop.

e) A multigraph is defined similarly except that E is now a “family” consisting
of finitely many edges, at least one pair not being distinct and/or there is a
loop.

In this course V and E will always be finite; where necessary they will be denoted
by V (G) and E(G) respectively to show their relationship to a given graph G. The
symbol G(V, E) may denote a graph or a multigraph, unless specified otherwise,
but the existence of loops may cause problems. If a definition or theorem requires
G to be a graph this will be stated.
Some authors use different terminology. For example what was defined above to
be a graph or multigraph they call a simple graph or graph respectively. The
definitions in each book must be carefully checked.
A graph or multigraph is best represented pictorially, the vertices being marked by
dots or small circles (see below). If the edge joining two vertices u, v is in E, then
these dots are joined in the picture by a line, usually straight. For a multigraph the
lines may be duplicated. It is important to realise however that the same graph
can have different pictures depending on how the dots are placed and the lines
drawn.



2

Example 1.1.2.

V = {a, b, c, d, e}, E = {{a, b}, {a, d}, {b, e}, {c, d}, {d, e}}.

These three pictures all represent the same graph, although they look quite differ-
ent. In the third picture, although the lines {a, d} and {b, e} appear to cross, the
intersection does not represent a vertex. This is why the vertices are represented
by dots or small circles. It may seem perverse to draw the picture in this way,
though putting the vertices in an ordered circular pattern is not unusual, but there
are many graphs where every drawing involves such “crossing points”. This will
be discussed later in the course.

Definition 1.1.3. In a graph or multigraph G = G(V, E) two vertices u, v are
neighbours if E contains at least one edge e = {u, v}. (In a graph: exactly one
edge!)
In this case v is said to be adjacent to u; u and v are incident with e and are its
endpoints, and e joins v to u and is incident with them. Two lines are adjacent if
they have at least one common endpoint.
In Chapter 1 of this course (i.e. the chapter on graph theory) n and m will always
denote the number of vertices and edges respectively of a graph (or multigraph)
G. Where necessary we also denote these by n(G) and m(G).

Example 1.1.4.

V = {a, b, c, d, e}, E = {{a, b}, {a, b}, {a, d}, {b, e}, {c, c}, {c, d}, {d, e}}

or more simply
E = {ab, ab, ad, be, cc, cd, de}.
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This is clearly not a graph but it is a multigraph; the edge ab is called a multiple
edge and the edge cc is a loop.

The distinction between graphs and multigraphs in this course is that the former
do not have a multiple edge or loop. If they are removed from this example the
resulting graph is that of Example 1.1.2, but the two objects are distinct as their
families of edges are different. Basically two graphs (multigraphs) are the same if
their vertices can be given the same labels (say 1 to n) and then the edge sets are
identical; this will be discussed in more detail in section 1.4.

Example 1.1.5. Example (c) The Königsberg Bridge Problem

Königsberg (Kaliningrad) lies on both sides A and B of the river Pregel in which
around 1730 there were parts C and D connected by seven bridges a, b, c, d, e, f, g
as shown in Figure 1.3 (a). The citizens attempted to take a walk which crossed
each of the seven bridges exactly once. Eventually the problem was given to Euler
(1736) who showed that such a walk was impossible.
Graph Theory is considered to date from this problem. Such “Eulerian walks” and
similar ideas form a major part of Graph Theory and will be discussed later.
Let the land masses be the vertices of a multigraph and the bridges be the edges
as shown in Figure 1.3 (b). If the walk “approaches” the vertex A along the edge
a (say) it must “leave” along b or f , thus using two of the edges incident with A.
This also applies to the other three vertices; only at the start and end of the walk
is an odd number of edges involved. So if a walk exists, only two of the vertices can
have an odd number of incident edges, and the rest must have an even number. (If
the walk must start and finish at the same vertex, all the numbers must be even.)
Clearly for the Königsberg problem the condition fails, with all four vertices having
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an odd number of incident edges, whence an “Eulerian walk” is impossible there.
For further details see: Biggs, Lloyd and Wilson, Graph Theory 1736 - 1936, OUP
(1986).
It can be proved without too much difficulty that for a “connected” graph the above
conditions for an “Eulerian walk” are both necessary and sufficient. Again this will
be proved later, in section 1.7. The Königsberg problem produces a multigraph,
but it is always possible to convert a multigraph into a graph by inserting an
“extra” vertex into all but one of each set of multiple edges, and two into any
loop. For Example (c) this gives the graph of Figure 1.1.3 (c). Although the walk
problem is unaffected by this change the new graph is different from the original
multigraph; in particular n and m have each increased by two.
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1.2 Special Examples

There are several families of special graphs, most labelled by the value of n ∈ N.

1. The Null Graph Nn on n vertices, i.e. |V | = n and E = ∅, i.e. m = 0 with
no vertices joined at all.

2. The Complete Graph Kn on n vertices, e.g. V = Zn = {0, 1, 2, . . . , n −
1}, E = {{u, v}; 0 ≤ u < v ≤ n − 1} with each vertex joined to all of the

others exactly once, so that m(Kn) = n(n−1)
2

. Clearly K1 = N1.

3. The Line Graph Ln on n vertices, e.g. V = Zn = {0, 1, 2, . . . , n− 1}, E =
{{u, u + 1}; 0 ≤ u ≤ n− 2} with each vertex joined to the next one, so that
m(Ln) = n− 1. Note that L1 = K1 = N1 and L2 = K2.

4. The Cycle or Circuit Graph Cn on n vertices (n ≥ 3), e.g. V = Zn =
{0, 1, 2, . . . , n − 1}, (here it is important you consider it modulo n). E =
{{u, u + 1}; 0 ≤ u ≤ n− 1} with each vertex joined to the next one and the
last to the first (note {n−1, n} = {n−1, 0} = {0, n−1}) so that m(Cn) = n.
Clearly Cn is Ln with the end vertices joined. If the vertices are placed as
if they were the n-th roots of unity in an Argand Diagram the edges can be
drawn either as the sides of the corresponding regular n -gon or as the unit
circle.

5. The Wheel Graph Wk, (k ≥ 3), formed by adding one vertex to Ck and joining
it to all the other vertices of that graph. This is equivalent to including the
origin in the above Argand Diagram and joining it to all the k-th roots of
unity. Note that n(Wk) = k + 1 and m(Wk) = 2k.

Example 1.2.1. Examples with n = 5.
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6. The Petersen Graph below is named after the Danish mathematician Julius
Petersen (1839-1910) who discussed its properties in 1898. It can be expressed
pictorially in several ways, two of which are shown in Figure 1.2.2, and pro-
vides a useful example (or counter-example) for many interesting properties
in graph theory.

Definition 1.2.2. A bipartite graph G = G(V, E) is a graph for which V = X ∪ Y ,
with X 6= ∅, Y 6= ∅, X ∩ Y = ∅ and {u, v} ∈ E =⇒ either (u ∈ X and v ∈ Y ) or
(u ∈ Y and v ∈ X). Thus V can be divided into two disjoint non - empty subsets
X, Y such that all the edges in E join a vertex of X to a vertex of Y (with no
multiple edges).

Kr,s is the Complete Bipartite Graph for which |X| = r > 0, |Y | = s > 0, E =
{{u, v} : u ∈ X, v ∈ Y }, i.e. each vertex of X is joined to all the vertices of Y and
vice versa. K1,s is called a Star Graph. Clearly Kr,s = Ks,r; usually the smaller
number is written first. Also n(Kr,s) = r + s and m(Kr,s) = rs.

Example 1.2.3. The white (open) dots represent the vertices of X and the black
(solid) dots the vertices of Y .
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1.3 Adjacency and Valency

Let G = G(V, E) be a graph or multigraph with n vertices and m edges.

Definition 1.3.1. i) The adjacency list of G is a set of columns labelled by the
vertices of V such that the column corresponding to the vertex v contains all
the vertices to v, with multiple edges giving repeated entries.

ii) The adjacency matrix of G is the n × n matrix with the rows and columns
labelled by the vertices of V in the same order for which the uv-entry is the
number of edges joining u to v, with the convention that loops count twice.

iii) Th incidence matrix of G is the n×m matrix with the rows labelled by the
vertices of V and the columns by the edges of E such that the ve-entry is
1, if the vertex v is incident to the edge e, and is 0 otherwise. Again loops
count twice so that if f = {v, v} ∈ E then the vf -entry is 2.

Example 1.3.2. The following multigraph G = G(V, E), where V = {a, b, c, d} and
E = {e1, e2, e3, e4, e5, e6, e7} gives the list and matrices shown below.

Given any of these three arrays the other two can obviously be constructed, as can
be a pictorial form of G. Clearly not every table forms a valid adjacency list, for
if the column labelled x contains y, then the column labelled y must contain x.
Moreover the adjacency matrix must be symmetrical.
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From the adjacency matrix it is easy to see, whether G is a graph or multigraph.
There are loops, if and only if there are non-zero elements on the leading diagonal,
and multiple edges if some of the other entries are greater than 1.

Definition 1.3.3. Given a graph G(V, E). A graph G′(V ′, E ′) is a subgraph of G if
V ′ ⊆ V and E ′ ⊆ E. Note that G′ must be a graph in its own right so that G′

can only contain those edges of E for which both endpoints belong to V ′. If G′

contains all those edges of E for which both endpoints are in V ′, then G′ is said to
be the subgraph of G, induced by V ′.

Example 1.3.4.

Definition 1.3.5. Let G = G(V, E) be a graph or multigraph. For each v ∈ V (G)
the valency or the degree ρ(v) is the number of edges in E(G) which are incident
with v, i.e. for which v is an endpoint.
Convention: a loop (v, v) counts as 2 endpoints.
The nonnegative integers ρ(v) are called the valency numbers of G.
A vertex v is said to be odd or even, corresponding to whether ρ(v) is odd or even.

Remark. i) Some books use d(v) or δ(v) instead of ρ(v).

ii) For a graph 0 ≤ ρ(v) ≤ n− 1.

Example 1.3.6. For the multigraph ρ(a) = 3, ρ(b) = 5, ρ(c) = 1, ρ(d) = 4, ρ(e) =
3, ρ(f) = 0. So, a, b, c, e are odd vertices, and d, f are even vertices.
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Theorem 1.3.7 (Handshaking Lemma). For every graph or multigraph G =
G(V, E): ∑

v∈V

ρ(v) = 2m = 2|E|.

Proof. Each edge e = {u, v} has two endpoints and this contributes one to ρ(u)
and one to ρ(v), i.e. each edge contributes 2 to the sum. By the above convention
this is also valid for loops.

Remark. The name arises from the fact that if in a group of people some pairs of
people shakes hands (not necessarily all pairs!), then the number of hands shaken
will be even, (two hands for each handshake).

Corollary 1.3.8. Every graph or multigraph has an even number of odd vertices.

The proof follows directly from the handshaking lemma, considered modulo 2.

Definition 1.3.9. A graph G = G(V, E) is regular of valency (or degree) r, (also:
is regular r-valent) if for all vertices ρ(v) = r.

Note that the handshaking lemma gives r|V | = 2|E|, (or rn = 2m).

Example 1.3.10. The circuit graph Cn is regular 2-valent, Kn is regular (n − 1)-
valent, Nn is regular 0-valent. Wn is only for n = 3 regular, then it is regular
3-valent (and equivalent to K4).

1.4 Isomorphism and Planarity

Definition 1.4.1. Two graphs G1(V1, E1) and G2(V2, E2) are isomorphic if there is
a bijection f : V1 7→ V2 such that {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2.
Thus f maps the vertices in V1 onto those of V2 in such a way that the edges in
E1 are mapped onto those of E2.
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Remark. i) Usually it is easier to prove that two graphs are not isomorphic
(since studying one vertex (the right one!) and its edges might often suffice)
than to prove that two graphs are isomorphic, since here one needs to study
the whole graph.

ii) For two isomorphic graphs, clearly: |V1| = |V2| and |E1| = |E2|. Also u and
f(u) must have the same valency. And so G1 and G2 have the same set of
valency numbers. These conditions are necessary, but not sufficient(!), for
two graphs to be isomorphic.

iii) The definition above can also be applied to multigraphs.

Example 1.4.2.

a) The graphs a) and b) are isomorphic. a 7→ , b 7→ , c 7→ , d 7→ .

The graphs of c) and d) are not isomorphic. (The valency numbers are 2222
and 2231). The multigraph in e) has the same valency numbers as the graph
in d) but is not isomorphic to it.

b) Figure 1.4.2:
K1 and L1 are isomorphic to N1.
L2 and K1,1 are isomorphic to K2.
C3 is isomorphic to K3.
K1,2 is isomorphic to L3.
K2,2 is isomorphic to C4.
W3 is isomorphic to K4.
From the valency numbers it follows that no other pairs of special graphs
defined in section 1.2 are isomorphic.
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c) The two graphs in Figure 1.4.3 have the same valency numbers 1, 2, 2, 2, 3
and thus the same value of n and m but they are not isomorphic. In the first
graph the odd vertices (i.e. the vertices with odd valency) are adjacent, while
they are not adjacent in the 2nd graph. (One can say, they are separated by
an even vertex).

Some graphs (like K4) have so far often been drawn with a crossing point, which
is not a vertex.

Definition 1.4.3. i) G = G(V, E) is a plane graph if V is a finite subset of R2

and E is a set of continuous curves in R2 which meet only at the vertices of
V .

ii) A graph G is a planar graph if it is isomorphic to a plane graph.

These definitions are rather awkward, we come back to these.

1.5 Connected Graphs

Definition 1.5.1. Let G = G(V, E) be a graph.

i) A walk W of length k ∈ N in G is a (finite) sequence v0, v1, ..., vk of vertices
in V for which successive vertices are adjacent, so that {vi, vi+1} ∈ E for
i = 0, 1, . . . , k− 1. v0 is the initial vertex of W and vk is the final vertex. W
is a walk from v0 to vk, or a v0 - vk walk.

ii) A trail in G is a walk in G for which no edge is repeated, in either direction.

iii) A path P in G is a walk in G for which all the vertices, and hence all the
edges, are distinct. If the vertices are v0, v1, . . . , vk, then P is a path from v0

to vk, or a v0 - vk path, where v0 6= vk here. Therefore P is a subgraph of G
which is isomorphic to Lk+1.
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iv) A circuit in G is a walk v0, v1, . . . , vk with vk = v0, i.e. a ’closed’ walk.

v) A cycle C of length k, or a k - cycle, is a circuit v0, v1, ..., vk with k ≥ 3 for
which the vertices are distinct apart from vk = v0, so it is essentially a ’closed
path’.

Thus C is a subgraph of G which is isomorphic to Ck. A cycle of length 3 is
called a triangle.

Remark. Some books may use these words or others in different contexts. Some-
times a walk is described in terms of the edges or using both V and E. This
is essential if the definitions are applied to multigraphs, which can be done with
care. However this section will only consider graphs unless stated otherwise. Many
books allow walks and paths to have zero length (k = 0 ) but that will not be done
here.

Example 1.5.2.

Theorem 1.5.3. Let G = G(V, E) be a graph, and suppose that u and v are
vertices in V .

i) If u 6= v there is a u− v path in G if and only if there is a u− v walk in G.

ii) Define u ∼ v if either u = v or there is a u−v path in G. Then ∼ defines an
equivalence relation on V , and if V1 and V2 are different equivalence classes
under this relation, then there are no edges in E which join a vertex v1 ∈ V1

to a vertex v2 ∈ V2.

Proof. (i) ⇒ is obviously true from the definitions.
For ⇐ suppose that u = v0, v1, ..., vk = v is a walk W from u to v. If these vertices
are all distinct, then W is a path. Otherwise there is a least integer r for which
vt = vr for some t with 0 ≤ r < t ≤ k. Let s be the largest integer for which
vs = vr; this s exists as the walk is finite.
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Then the vertices v0, v1, ..., vr, vs+1 are distinct and form a path from u = v0 to
vs+1 with the adjacency of successive vertices being obtained from W . Repeat this
process, finding the least integer p ≥ s + 1 for which vq = vp for some q with
p < q ≤ k etc. until all the vertices are distinct and form a path from u to v. (This
path is a subsequence of the walk W.
(ii) To prove ∼ is an equivalence relation we need to prove it is reflexive, symmetric
and transitive. u ∼ u from the definition, and if u ∼ v with u = v0, v1, . . . , vk = v
being a u − v path in G, then clearly v = vk, vk−1, . . . , v0 = u is a v − u path in
G, whence v ∼ u. Finally suppose that u ∼ v and v ∼ w; if either u = v, v = w
or u = w then u ∼ w. Otherwise there is a u − v path u = v0, v1, . . . , vk = v
and a v − w path v = w0, w1, ..., wl = w (say), and thus u = v0, v1, ..., vk = v =
w0, w1, ..., wl = w is a walk from u to w. Hence from (i) there is a u − w path
and u ∼ w, so that ∼ is an equivalence relation. Clearly any edge from v1 ∈ V1

to v2 ∈ V2 would be a path of length 1 and thus give v1 ∼ v2, contradicting the
definition of equivalence classes and their disjointness.
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Definition 1.5.4. A graph G is said to be connected if for every pair of distinct
vertices u and v there is a u − v path in G; otherwise G is disconnected. In the
first case there is only one equivalence class under ∼ but in the second there must
be at least two.

Example 1.5.5. (b) The graphs Kn, Ln, Cn, Wk, Kr,s defined in section 1.2 are all
connected as is N1, but the graphs Nn are disconnected if n ≥ 2. So is the graph
shown in Figure 1.5.2.

Definition 1.5.6. For connected graphs G = G(V, E),

i) the distance d(u, v) between distinct vertices u and v ∈ V is the length of
the shortest u− v path in G; d(v, v) is defined to be 0.

ii) the diameter d(G) of a connected graph G is the largest distance between
two vertices in G.

iii) the girth g(G) of G is the length of the shortest cycle in G.

Remark. Two isomorphic graphs must clearly have the same diameters and girths.

Example 1.5.7. i) For Kn, d(u, v) = 0 or 1 and so d(Kn) = 1 and g(Kn) = 3 if
n ≥ 3.

ii) For Ln with n ≥ 2, d(u, v) = |u−v|, d(Ln) = n−1 while g(Ln) is not defined.
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iii) For Cn with n ≥ 3, d(u, v) = min (|u− v|, n− |u− v|) , d(Cn) = [n/2] and
g(Cn) = n.

iv) For Wk with k ≥ 4, d(u, v) = 0, 1 or 2, d(Wk) = 2 and g(Wk) = 3.

v) For the Petersen Graph, by inspection d(u, v) = 0, 1 or 2, the diameter is 2
and the girth is 5.

vi) For Kr,s with 2 ≤ r ≤ s, d(u, v) = 0, 1 or 2, d(Kr,s) = 2 and g(Kr,s) = 4 (see
the Theorem below).

Definition 1.5.8. For a general graph G = G(V, E) the equivalence classes Vj under
∼ induce another relation on E with the edge e = {u, v} ∈ E belonging to Ej if
and only if u, v ∈ Vj. (This statement is valid from Theorem 1.5.3 (ii)). Thus
Gj = Gj(Vj, Ej) is the subgraph of G = G(V, E) induced by Vj. These subgraphs
Gj are called the components of G. Each is a connected graph from its definition
and the number of them is denoted by ω(G). For each u ∈ Vj ⊆ V, G(u) = Gj is
the component of u in G. It contains all the vertices v ∈ V for which there is a
u− v path in G. If u is the only vertex in G(u) then its valency is 0 and it is said
to be an isolated vertex of G. Clearly every vertex of Nn is isolated. A connected
graph G has only one component which is equal to G(u) for every u ∈ V .
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Theorem 1.5.9. A graph G is bipartite if and only if each cycle has an even
length.

Proof. Using the notation of section 1.2, if v0, v1, . . . , vk is a cycle in G suppose
without loss of generality that v0 ∈ X. Then v1 ∈ Y, v2 ∈ X, and generally
v2i ∈ X, v2i+1 ∈ Y for every i ∈ N0 since all the edges of E join a vertex of X to
one of Y . Therefore if vk = v0 ∈ X , k must be even.
Conversely suppose that G has no cycles of odd length. Let u1 be a given vertex
of the component G1 of G and put v into X1 if the distance d(u1, v) between the
vertices u1 and v in G1 is even and into Y1 if it is odd. Suppose that x and y both
belong to X1 but that there is an edge e = {x, y} ∈ E1. Let P (x) and P (y) be
paths of shortest distance from u1 to x and y respectively. Neither of these can
contain e without violating the parity condition. But if the paths last separate at
w then the parts of these paths from u1 to w must have the same length otherwise
they would not be the ’shortest’. Thus the parts from w to x and y must have the
same parity, whence the path from x to w and from there to y is of even length.
As this path together with e would form a cycle of odd length, no such edge e ∈ E1

can exist. Similarly if both x and y are in Y1; so G1 is a bipartite graph. The
process can be repeated for the other components Gj of G, with the choice of each
of the ’given’ vertices uj determining which part belongs to Xj and which to Yj.
Thus G = G(X∪Y,E) is a bipartite graph with X = ∪Xj and Y = ∪Yj since from
Theorem 1.5.3 (ii) there are no edges joining the vertices which are in different
components.
Note: If G is connected there is essentially only one choice for X and Y ; otherwise
there may be several depending on the choice of the uj ∈ Vj.
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Definition 1.5.10. For a connected graph G = G(V, E), a disconnecting set of edges
is a subset of E(G) such that removing them ’disconnects’ G. A cutset is a minimal
disconnecting set, i.e. one for which no proper subset is a disconnecting set. An
isthmus is a single edge which forms a cutset. Therefore e = {u, v} ∈ E is an
isthmus in G if and only if the subgraph G∗ = G∗(V, E \ {e}) of G is disconnected,
which leaves u and v belonging to different components of G∗ (see below).

Example 1.5.11. For the graph in Figure 1.5.3, {3, 4, 5} forms a disconnecting set,
{4, 5} is a cutset and 7 is an isthmus.

Example 1.5.12. If n ≥ 3 the cutsets of Cn must contain exactly 2 edges while
those of Kn must contain at least n − 1 edges. For many of the special examples
of section 1.2 the ’smallest’ cutsets are those which isolate just one of the vertices.

Theorem 1.5.13. Let e = {u, v} be an edge of a connected graph G = G(V, E)
and put G∗ = G∗(V, E \ {e}).

i) Removing e from E cannot give a graph G∗ with more than two components,
and there are exactly two components if and only if e is an isthmus of G.

ii) Any two distinct vertices u, v of a cycle C in G can be connected by two
distinct paths in G which are disjoint apart from their endpoints.
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iii) An edge e = {u, v} ∈ E belongs to a cycle C in G if and only if it is not an
isthmus of G.

Proof. i) Assume G∗ consists of at least 3 components, then one would need at
least two edges to join G∗ to a connected graph

ii) A cycle in G can be traversed ’clockwise’ or ’anticlockwise’. Formally if C
is v0, v1, . . . , vk = v0, and u = vi, v = vj where i < j (see Figure 1.5.5),
then one path is vi, vi+1, . . . , vj with increasing indices and the other is
vi, vi−1, ..., v0, vk−1, . . . , vj with decreasing indices. These paths are clearly
disjoint apart from their endpoints u and v.

iii) If e = {vi, vi+1} is an edge of the cycle C of (ii) (see Figure 1.5.5 again), then
removing it still leaves G∗ connected, for from (ii) there is a path from vi

to vi+1 round the rest of the cycle, whence G∗(vi) = G∗(vi+1) from Theorem
1.5.3 (i) and G∗ has only one component from (i). Thus e cannot be an
isthmus of G from the same result.

Conversely, if e = {u, v} ∈ E is not an isthmus of G, the graph G∗ is still
connected, and there is a path v0, v1, . . . , vk−1 (say) from v to u in G∗ (see
Figure 1.5.6). Clearly v0, v1, . . . , vk−1, v0 is a cycle in G, the last edge being
e which thus belongs to a cycle in G.

Note: Although they are obviously closely related, G and G∗ are different graphs.
If G is ’disconnected’ by the removal of e the remaining graphs are subgraphs of
G and components of G∗.
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1.6 Trees

Definition 1.6.1. A tree is a connected graph which has no cycles, and a forest is
a graph which has no cycles, i.e. one for which every component is a tree. Clearly
from Theorem 1.5.13 (iii), a graph is a tree if and only if it is connected and every
edge is an isthmus.

Clearly every line graph Ln is a tree with n vertices and n− 1 edges. The tree of
Figure 1.6.1(a), which is L4, is not isomorphic to that of (b) though both have four
vertices and three edges. The three trees of (e) are isomorphic to that of (d), each
having six vertices and five edges. All these trees satisfy the following theorem.

Theorem 1.6.2. A tree T with n vertices has exactly m = n− 1 edges.

Proof. Use induction on n, observing first that the result is obviously true for both
n = 1 and n = 2 as shown by the following diagrams. Let T = T (V, E) be a tree
with n vertices and suppose that the theorem is true for all trees having fewer than
n vertices. From the above statement every e ∈ E is an isthmus, so as in Theorem
1.5.13 (i) removing it from T leaves a graph T ∗ = T ∗(V, E \ {e}) with exactly two
components, T1 and T2 (say). Both of these must be trees since they are connected
and if either contained a cycle C, then C would also be a cycle in T . If T1, T2

have n1, n2 vertices and m1, m2 edges respectively, then n1 and n2 are both less
than n and n1 + n2 = n. Hence from the induction hypothesis, m1 = n1 − 1 and
m2 = n2 − 1 so that T ∗ has m1 + m2 = n1 + n2 − 2 = n− 2 edges. Thus replacing
e the number of edges of T is m1 + m2 + 1 = n− 1.
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Corollary 1.6.3. A connected graph G with n vertices must have at least n − 1
edges.

Proof. If C is a cycle in G then from Theorem 1.5.13 (iii) none of its edges is an
isthmus and so any one edge of C can be removed from G without ’disconnecting’
it. This deletion of single edges can be repeated so long as there are cycles, and
since E is finite the process stops when the final connected graph produced has
no cycles. But this final graph is a tree with the same set of n vertices as G and
exactly n − 1 edges from Theorem 1.6.2, whence G must have had at least n − 1
edges.

Corollary 1.6.4. A graph G with n vertices and ω components has at least n− ω
edges, with equality if G is a forest.

Proof. If each component Gj of G (j = 1, 2, . . . , ω) has nj vertices and mj edges,
then from Corollary 1.6.3 mj ≥ nj − 1, whence

∑ω
j=1 mj ≥

∑ω
j=1(nj − 1) = n− ω.

If each Gj is a tree the inequality becomes an equality, so that a forest with n
vertices and ω components has n− ω edges. (See Remarks (3) below.)

There are several alternative ways of defining a tree, all equally valid as proved in
the following theorem.

Theorem 1.6.5. Let G = G(V, E) be a graph with n vertices. Then the following
statements are equivalent:

i) G is a tree;

ii) G contains no cycles and has exactly n− 1 edges;

iii) G is connected and has exactly n− 1 edges;

iv) for any two distinct vertices u, v of G there is exactly one u− v path;

v) G contains no cycles, but the addition of any new edge between non - adjacent
vertices creates exactly one cycle.

Proof. If n = 1, then all the statements are satisfied (trivially) so assume that
n ≥ 2. For each part of the proof only the ’current statement’ may be assumed.

i) −→ ii) By definition G contains no cycles; that it has exactly n− 1 edges is proved
in Theorem 1.6.2.

ii) =⇒ iii) Suppose that G is not connected. Then each of its components G1, G2, . . . , Gω,
(ω ≥ 2) is connected and contains no cycles and is thus a tree. So if Gj

has nj vertices, then from Theorem 1.6.2 Gj has nj − 1 edges. But since
n1 + n2 + · · · + nω = n, there are only n − ω edges in G, which is a contra-
diction of (ii) as ω ≥ 2, so G must be connected.
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iii) =⇒ i) If any edge e is removed from G then the resulting graph G∗ has only n− 2
edges, whence it is disconnected from Corollary 1.6.3. Therefore every edge
of G is an isthmus and so from Theorem 1.5.13 (iii) G has no cycles and is
thus a tree.

i) =⇒ iv) Since G is connected, for any two distinct vertices u, v there is at least one
path from u to v. Suppose that there are two distinct u−v paths P1, P2 in G.
Starting from u assume that these paths have the vertices u = u0, u1, . . . , uk =
x in common but that the next vertices w1, w2 of P1, P2 respectively are
different. Let y be the first vertex after x which is common to P1 and P2;
there must be such a vertex since the paths coincide at v. Then the two
sections of the paths from x to y together form a cycle when one is taken in
the ’reverse’ order, contradicting the definition of a tree, whence the result.

iv) =⇒ v) G cannot contain a cycle, for if it did contain a cycle C, then from Theorem
1.5.13 (ii) there would be two paths connecting any two distinct vertices of
C. Since any two non - adjacent vertices u, v are connected by a path in G,
the addition of the edge e = {u, v} forms a cycle. But if e completes two
cycles C1, C2, then the parts of C1, C2 not containing e form two different
paths from u to v in G, which contradicts (iv).

v) =⇒ i) From the hypothesis G contains no cycles. If u, v are non - adjacent vertices
of G, adding the edge e = {u, v} creates a cycle. But from Theorem (ii) there
is a u − v path in G which does not include e. Since there is clearly a path
joining adjacent vertices, G is connected and is therefore a tree.
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Remark. 1. The last two parts of the proof are still valid if n = 2, when the
tree has no non - adjacent vertices.

2. The first three parts show that any two of the statements : G is connected,
G has no cycles, m = n− 1, define a tree.

3. It follows from this theorem that the statements of Theorem 1.6.2 and its
Corollaries are both necessary and sufficient. Thus a connected graph is a
tree if and only if m = n− 1, and a graph with n vertices and ω components
has n− ω edges if and only if it is a forest.

Definition 1.6.6. Suppose that G = G(V, E) is a connected graph. A subgraph
G1(V1, E1) of G is a spanning tree if it is a tree which spans G, meaning that
V = V1. Thus G1 = T (V, E1). Here |E1| = n− 1.

Every connected graph has a spanning tree. It can be constructed from G as in
the proof of Corollary 1.6.3, by deleting edges that belong to a cycle. Note that a
graph can have many distinct spanning trees.

Theorem 1.6.7. Let T = T (V, K) and S = S(V, L) be two different spanning trees
of a connected graph G = G(V, E). There is an edge e of T which is not in S,
i.e. e ∈ K\L, and there is an edge f of S which is not in T such that the graph
Y = Y (V, L ∪ {e}\{f} is also as spanning tree of G.

Proof. Since T and S are distinct and since the set of vertices is the same, the set
of edges must be distinct. Since |K| = |L| for each edge e ∈ K\L there must be
an edge f ∈ L\K (and vice versa).
By Theorem 1.6.5 i) =⇒ v) the addition of e to S creates a cycle, actually exactly
one cycle. Since T does not contain any cycles, the new graph X = X(V, L ∪ {e})
must contain at least one edge f on the cycle which is not in T . Since e ∈ T
but f 6∈ T , we have f 6= e. So, f ∈ L. Now let Y be the graph obtained
from X by removing f ; Y = Y (V, L ∪ {e}\{f}). Y contains n = |V | vertices,
|L|+1− 1 = |L| = n− 1 edges and no cycles, since the only cycle has been broken
by removing f . By Theorem 1.6.5 ii) =⇒ i) Y is a spanning tree of G.

Figure 1.6.3
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Corollary 1.6.8. Every edge e ∈ E belongs to a spanning tree of G.

Proof. Start with any spanning tree S = (V, L). If e 6∈ L, then define X =
X(V, L∪{e}) and find (by the previous Theorem) f so that Y = Y (V, L∪{e}\{f})
is a spanning tree containing e.

Remark. i) There is a dual statement, where a given edge e of S is removed.
By repeating this, step by step, one can obtain a spanning tree T which does
not have any edge in common with S.

ii) Spanning trees have important applications. A typical application would be
if vertices represent cities and edges the roads between them. The edges carry
a value (for example the cost to build this road) and the task is to find a
spanning tree with minimal sum of these values, representing a road network
connecting all cities but with minimum building costs.

1.7 Eulerian Trails and Hamiltonian Paths

Definition 1.7.1. i) Let G = G(V, E) denote a graph or multigraph. A walk in
G is Eulerian if it includes every edge of E exactly once (so that it is a trail).
An Eulerian circuit is an Eulerian trail which is also a circuit (i.e. which is a
closed trail).

ii) A graph or multigraph is said to be Eulerian, if it has an Eulerian circuit and
is said to be semi-Eulerian if it has an Eulerian trail but is not Eulerian.

These names come from the generalisation of the Königsberg bridge problem, at
the beginning of the course.

Example 1.7.2. Figure 1.7.1.

Observe that a graph or multigraph G can only be Eulerian/semi Eulerian if it is
connected, apart from components which only consist of isolated vertices. For this
reason we can assume without loss of generality that G is connected.
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Theorem 1.7.3. Let G = G(V, E) be a connected graph. Then G is Eulerian if
and only if every vertex is even (i.e. has an even valency or degree).

Proof. =⇒ For every Eulerian circuit of G the consecutive edges {u, v}, {v, w}
contribute 2 to the value of ρ(v). This occurs every time v is a vertex in the walk
(through a different pair of edges each time). Since G is connected, the circuit goes
along all edges and meets all vertices. For each vertex v ∈ V : for each incoming
edge there is an outgoing edge, along the circuit (all distinct), so ρ(v) must be
even.
⇐= To prove the other direction we first present an algorithm and then prove that
this algorithm constructively gives the Eulerian circuit.
Algorithm (due to Hierholzer 1873):
Given a finite connected graph G with ρ(v) is even, for all v ∈ V .
1) Start at an arbitrary edge v0. Want to construct a circuit. Choose any trail
v0, v1, v2 . . . vi, as long as this is possible. One ends at vi = v0 (to be proved below).
So we have found a circuit C0.
If the circuit C0 is Eulerian, then STOP.
2) Otherwise there is an edge w not yet used in C0. Starting at w, construct
a circuit C ′

1 on the edges of G avoiding those already used in C0, so work on
G1 = G1(V, E\C0). (Compare step 1).
To get one circuit C1, start at v0 and go along C0 until one reaches w, then go
along C ′

1, which returns to w, continue along C0.
If the circuit C0 is Eulerian, then STOP, otherwise iterate step 2, constructing
circuits C2, C3, . . ..
After finitely many steps one reaches an Eulerian circuit, (to be proved below).

Proof of the correctness of the algorithm.
(It is convenient to separate the algorithm and its proof),

Step 1 does indeed give a circuit: Continue on any trail as long as this is possible.
If it is not possible to continue at vi, then vi = v0. Otherwise ρ(vi) were odd.
In the same way, the trails constructed in step 2 are circuits.
We now must prove that we can stop after finitely many steps, reaching an Eulerian
circuit.
Since G is finite one only needs finitely many steps, so the question is if the final
circuit Ci is Eulerian. Otherwise there must be an edge e that is not on the circuits
Ci. Moreover all the vertices on the circuit Ci are only incident with edges that are
used in Ci (otherwise go to step 2)! But then there cannot be any trail from any
point on Ci to the edge e. This contradicts the hypothesis that G is connected,
(where one can go from any vertex to all other vertices).
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Example 1.7.4. In Figure 1.7.2. we start (for example) with v0 = a, and get a
circuit C0 = (abha). Now all edges incident to a have been used. Get another
circuit C ′

1 = (bcdfchgb) (so no new edges incident to b) and so C1 = (abcdfchgbha)
and C ′

2 = (defgd) and so C2 = (abcdefgdfchgbha).

An alternative algorithm is due to Fleury:
Fleury’s algorithm: 1) Start at any vertex v0.
2) Traverse any edge e1 = {v0, v1}, but only choose an isthmus if there is no other
choice.
3) Delete e and also vi if it is now isolated.
4) Repeat steps 2 and 3 for v1, ...
5) Stop, when there are no more edges remaining that can be traversed
In 2), isthmus refers to the subgraph of G after deleting edges and vertices (in step
3).
The resulting walk v0, v1, v2, . . . , vk (say) will be an Eulerian circuit of G with
v0 = vk.

Example 1.7.5. Figure 1.7.3. Starting at v0, choose e1 going to v1, delete e1. The
edge e5 is now an isthmus, so avoid it. So walk along e2, e3 and e4 (there is no
choice!) and delete these edges, and also the isolated vertices.) Now one has to
choose e5, e6, e7 completing the Eulerian circuit.
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Corollary 1.7.6. A connected graph G is semi-Eulerian if and only if it has exactly
two odd vertices.

Proof. ⇐= If there is an Eulerian trail which is not an Eulerian circuit, then from
the proof of Theorem 1.7.3 (part =⇒) every vertex is even except possibly for the
initial vertex v0 and the final vertex vk 6= v0 of the trail. By the Handshaking
Lemma the degree of the initial and final vertex must both be even, or both be
odd. Since there is no Eulerian circuit (G is semi Eulerian), by Theorem 1.7.3
(part ⇐=) these vertices must both be odd.
=⇒ Suppose that u and v are the only odd vertices. Define a new graph G′ =
G′(V ∪ {x}, E ∪ {{x, u}, {x, v}}). All vertices of G′ are even, and so by Theorem
1.7.3 there is an Eulerian circuit starting at x and ending at x: (x, u = v0, . . . , vk =
v, x). Then (v0, . . . , vk) is an Eulerian trail of G. See figure 1.7.4.

Remark. If one works with multigraphs, then one adds an additional vertex on
the multiple edges or loops. These vertices have even degree. In this way one
can transform the multigraph G to a graph G′, where the number of odd vertices
remains the same, and one then applies the results above.
Adding such additional vertices on edges is called subdivision of a graph.

Definition 1.7.7. i) Let G = G(V, E) be a connected graph. A path in G is
Hamiltonian if it passes through each vertex v ∈ V exactly once. So, if the
path is v0, v1, . . . , vk, then vi 6= vj for i 6= j and V = {v0, v1, . . . , vk}.

ii) A cycle in G = G(V, E) is Hamiltonian, if it has a Hamiltonian path v0, v1, . . . , vk

with v0 = vk.

iii) G is Hamiltonian if it has a Hamiltonian cycle. G is semi-Hamiltonian if it
has a Hamiltonian path, but not a Hamiltonian cycle.
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Remark. Clearly a disconnected graph cannot have a Hamiltonian path. Also,
from the definition, multiple edges or loops cannot be part of the walk so that we
can restrict (without loss of generality) to connected graphs.
The name comes from Sir William Rowan Hamilton who was interested in the edge
graph of the dodecahedron (which is Hamiltonian). He posed as a puzzle to find a
cycle meeting each vertex once.

Example 1.7.8. Cn, Kn, Wn are Hamiltonian. K3,3 is Hamiltonian, K2,3 is semi-
Hamiltonian.

In contrast to Theorem 1.7.3 there is no known necessary and sufficient condition
for a graph to be Hamiltonian. Still, Hamiltonian graphs have many applications,
in particular in a variant called the Travelling salesman problem where the edges
carry a weight (say the distance between the vertices which are thought of as cities),
and the question is about a tour passing through all cities exactly once with the
minimum sum of the weight of the edges. This is (for large graphs) a very difficult
problem, both in theory and practice.

Theorem 1.7.9 (O. Ore, 1960). Let G = G(V, E) be a graph with n ≥ 3 vertices
and suppose that ρ(u) + ρ(v) ≥ n for every pair of non-adjacent vertices u and v.
Then G is a connected graph and is Hamiltonian.

[We do not prove this Theorem. We do not use this result later on.]

Theorem 1.7.10 (G.A. Dirac, 1952). Let G = G(V, E) be a graph with n ≥ 3
vertices. If for all v ∈ V : ρ(v) ≥ n

2
holds, then G is Hamiltonian.
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Proof. Define a graph G′ by adding k new vertices to V and joining these to all
vertices in V . If k = n, then G′ is certainly Hamiltonian. Let k0 be the minimum
number so that G′ becomes Hamiltonian. Certainly 0 ≤ k0 ≤ n and we will prove
that k0 > 0 leads to a contradiction. This then implies that G itself is already
Hamiltonian.
Assume that k0 > 0. Let K = (a, x, b, . . . a) be a Hamiltonian cycle of G′, where
a, b are already in G but x is a new vertex. a and b are not adjacent, since otherwise
x is not necessary for the cycle to be Hamiltonian. Note that a vertex b′ adjacent
to b cannot be a direct successor of a vertex a′ which is adjacent to a. Otherwise
replace the cycle K = (a, x, b, . . . , a′, b′) by K = (a, a′, . . . b, b′, . . . a) and again x is
omitted.
Let A be the set of neighbours of a, (i.e. the set of all vertices adjacent to a).
Let B be the set of neighbours of b and F be the set of vertices of G′ that are
directly behind a vertex of A, in the cycle K. B ∩ F = ∅ (note that also a and
b are not adjacent. Then |B| ≥ n

2
+ k0, |F | ≥ |A| ≥ n

2
+ k0. The inclusion

and exclusion principle, which we study in more detail later, generally states:
|B∪F | = |B|+ |F |−|B∩F |. Here, this simplifies to |B∪F | = |B|+ |F | ≥ n+2k0.
This is a contradiction since G′ only contains n + k0 vertices.

The hypotheses above are sufficient for guaranteeing the existence of a Hamiltonian
cycle. The graphs satisfying these hypotheses are relatively dense, i.e. have very
many edges. But the hypotheses are not necessary conditions. This means there
can be graphs which are Hamiltonian, but where these hypotheses are not satisfied.
For example the cycle Cn or the wheel Wn.
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1.8 Planarity and Euler’s Formula

Plane and planar graphs were defined in section 1.4.
In this section we study ways to draw graphs.

Definition 1.8.1. i) A continuous curve in the Euclidean plane R2 is a set of
points {(f(t), g(t)) : t ∈ [a, b]}, where [a, b] is a finite closed real interval and
where f : [a, b] → R and g : [a, b] → R are continuous functions.

ii) A smooth curve is a continuous curve, where in addition f ′ and g′ are also
continuous.

iii) A Jordan curve is a smooth curve in the Euclidean plane which does not
intersect (i.e. (f(x1), g(x1)) 6= (f(x2), g(x2)), if x1 6= x2).

Jordan’s curve theorem says that a closed Jordan curve divides the plane R2 into
two parts (interior and exterior). This is actually very difficult to prove.

Definition 1.8.2. A graph is plane if V ⊂ R2 and the edges are Jordan curves
which meet (intersect) only at their endpoints, the vertices. A graph is planar if it
isomorphic to a plane graph.

Example 1.8.3. K4, K2,3.

Definition 1.8.4. Given a graph with its drawing. Assume that edges meet vertices
only at their endpoints. A point where edges of E cross (intersect) but which is not
a vertex is called a crossing point. The crossing number of G, cr(G) is the smallest
integer so that the graph G can be drawn with cr(G) crossings. (For planar graphs:
cr(G) = 0).
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Definition 1.8.5. A planar graph divides R2 into regions, called faces. One of the
regions is unbounded, the others are bounded. (But it may be depend on the
drawing which region is unbounded.)

Theorem 1.8.6. Let G be a planar connected graph. Let n = |V |, m = |E| and
let f be the number of faces. Then n−m + f = 2.

Proof. Proof by induction on m. Let m = 0, then n = f = 1 so that the formula
is correct. (Also, if m = 1, it is correct).
Now assume that the formula has been proved for all planar connected graphs with
m− 1 edges. Let G be a planar connected graph with m edges. If G is a tree, then
the formula is correct since m = n− 1 and f = 1. So assume that G is not a tree
and therefore it contains a cycle. Define a new graph G′ by removing an edge e
from the cycle. G′ has m − 1 edges and so the formula is valid for G′ (induction
hypothesis). All planar diagrams of G come from planar diagrams of G′ by adding
this one edge e. Adding the edge e to come from G′ back to G divides one face into
two parts. (This actually makes use of the difficult Jordan’s curve theorem). So,
in the expression n−m + f = 2 (which is valid for G′ in the form n−m′ + f ′ = 2)
one increases the number of edges and faces by one (m = m′ + 1) and (f = f ′ + 1)
so that the formula is valid for G.
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Corollary 1.8.7. For a planar graph with k components the formula is:

n−m + f = k + 1.

Proof. Apply the theorem to each component.

Theorem 1.8.8. Let G be a planar graph with n vertices and m ≥ 2 edges. Then

m ≤ 3n− 6.

Proof. The proof uses a technique called double counting. Count the same thing
twice and get information out of it. The object we count is: how often is an edge
part of the boundary of a face.
Given a diagram of a planar graph with n vertices, m ≥ 3 edges and f faces
F1, . . . , Ff . We define an m× f matrix A = (ai,j) as follows:

ai =

{
1 if the edge ei is part of the boundary of Fj

0 otherwise.

An edge is part of the boundary of at most two faces, (here: one face is actually
possible). So, each row contains at most two entries of 1. So, the number of ones
in the matrix is at most 2m. On the other side, each face is bounded by at least 3
edges (here we need m ≥ 3). So, each column contains at least 3 entries 1. There
are at least 3f ones in the matrix. So 3f ≤ 2m. Replacing f by m − n + 2 gives
m ≤ 3n − 6. For m = 2 there is nothing to prove. And for unconnected graphs
one adds up the inequalities for the individual components.

The same proof (with 3 replaced by 4 for the minimum number of edges around a
face) also shows:
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Theorem 1.8.9. Let G be a planar triangle-free graph with n vertices and m ≥ 2
edges. (Triangle-free means: the shortest cycle has length at least 4.). Then

m ≤ 2n− 4.

Corollary 1.8.10. A finite planar graph G has a vertex v of degree ρ(v) ≤ 5.

Proof. Assume all vertices have degree ρ(v) ≥ 6. Then, by the Handshaking
Lemma:

2m =
∑

v

ρ(v) ≥ 6n,

contradicting Theorem 1.8.8.
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2 Methods of Counting

2.1 Sets and cardinal numbers

SETS

Definition 2.1.1. In this chapter N will denote the (infinite) set of natural numbers,
N0 the set of natural numbers including 0, namely {0, 1, 2, 3, },
Z is the set of all integers,
Q the set of rational numbers,
R the set of real numbers and
C the set of complex numbers.
Z+, Q+, R+ denote the positive integers, rationals and reals respectively.
∅ or {} is the empty set with no elements.
Here k,m, n denote natural numbers ≥ 1.
Let Mn denote the set of integers {1, 2, 3, . . . , n}. Although this is clearly related
to the ring Zn there are advantages in using a different symbol; the latter has
addition and multiplication modulo n included.

FUNCTIONS

Definition 2.1.2. A function f from a set A into a set B associates with each
element a ∈ A a unique element b ∈ B which is usually denoted by f(a). A is
called the domain of f , B is its codomain, and the subset f(A) = {f(a); a ∈ A}
of B is its range. But in general there may be several elements a associated with
each b, or none at all. f maps a onto b, and A into B written A → B. If for
each b ∈ f(A) there is only one a ∈ A associated with b then f is said to be an
injection (1− 1); in this case f(a1) = f(a2) if and only if a1 = a2. If f(A) = B, i.e.
every b ∈ B is associated with at least one a ∈ A, then f is a surjection (onto).
Both these definitions depend on the sets A and B as well as on the function f . A
function g which is both an injection and a surjection is called a bijection from A
onto B, sometimes written A ↔ B.
In this case each b ∈ B is associated with exactly one a ∈ A and so g has an
inverse function g−1 from B onto A defined by g−1(b) = a. Note that f has an
inverse function if and only if it is a bijection; otherwise its ’inverse’ is essentially
a relation (see below).
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CARDINAL NUMBERS for FINITE SETS

Definition 2.1.3. If A is a finite set (see below) define its cardinal number |A| to
be n if there is a bijection g from A onto Mn.

This defines a method of labelling the elements of A, namely ai where g(ai) = i.
The empty set has cardinal number 0. If A = {a, b, c, . . .}, |A| is often written
#{a, b, c, . . .}.

Theorem 2.1.4. If k, l are natural numbers with k < l there is no injection from
Ml into Mk.

Proof. Suppose that k is the least positive integer for which an injection f from
Ml into Mk exists for some l > k. Then k > 1 for otherwise all the l ≥ 2 elements
of Ml map onto 1. Now if there is no element of Ml−1 which maps onto k then
restricting f to that set contradicts the ’least’ as the range is a subset of Mk−1.
But if a ∈ Ml−1 maps onto k, then f must map l onto some b ∈ Mk−1 since f is
an injection. Hence the function g defined by g(a) = b, g(c) = f(c) if c ∈ Ml−1 but
c 6= a, is an injection from Ml−1 into Mk−1, again a contradiction of the ’least’.
Thus for every k ∈ N no such injection can exist.

Remark. This is the Pigeonhole Principle which can be stated in many forms.
For example if l letters are put into k pigeonholes or boxes, and l > k at least one
hole has more than one letter in it. But there is no way of knowing how many
holes have two or more letters, or which they are, or how many letters are in each
hole.
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Corollary 2.1.5. i) The cardinal number of a finite set A is well-defined, for
if |A| = m = n, there is a bijection Mm ↔ A ↔ Mn whence m = n from the
theorem. It follows that |A| = |B| if and only if there is a bijection from A
onto B.

ii) If k < l there is no surjection h from Mk onto Ml.

Proof. i) If |A| = m = n, there is a bijection Mm ↔ A ↔ Mn whence m = n
from the theorem. It follows that |A| = |B| if and only if there is a bijection
from A onto B.

ii) If there was, defining b = min{x ∈ Mk; h(x) = a} for each a ∈ Ml would
make a → b an injection from Ml into Mk. Hence by the Theorem above
l = |f(A)| ≤ |A| = k for all functions f .

THE ALGEBRA OF CARDINAL NUMBERS If A, B are disjoint finite
sets, i.e. A ∩ B = ∅, then |A ∪ B| = |A| + |B|, for if A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bk}, where bj 6= ai, then the function ai 7→ i, bj 7→ n + j is a
bijection of A∪B onto Mn+k. In general if the finite sets Sr are mutually disjoint,
then |∪rSr| =

∑
r |Sr|. For any finite sets A and B the sets A∩B = {x ∈ A; x ∈ B}
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and A \ B = {x ∈ A; x /∈ B} are disjoint (the law of the excluded middle) with
union A, and so |A| = |A∩B|+|A\B|. Similarly, |B| = |A∩B|+|B\A|. Since A∪B
is the union of the disjoint sets A and B \A, |A∪B| = |A∩B|+ |A\B|+ |B \A| =
|A| + |B| − |A ∩ B|. This will be generalized later in this section to give the
Inclusion-Exclusion Principle.

Consider the set of ordered pairs from A and B, namely A × B = {(a, b); a ∈
A, b ∈ B}. If as above A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bk}, define As =
{(a, bs); a ∈ A}. Then the k sets As are mutually disjoint with union A×B and for
all s: |As| = |A| = n, whence |A×B| = nk = |A||B|. Again this can be generalized
for any finite number of finite sets Sr to |

∏
r Sr| =

∏
r |Sr|. Finally consider the

set S of all functions from A into B; let |S| = q(n, k). Then the functions in S
for which f(an) = bs are distinct from those for which f(an) = bt, i.e. the sets
Tr = {(f ∈ S); f(an) = br} are disjoint with union S. But |Tr| = q(n − 1, k) and
so q(n, k) = |S| = kq(n − 1, k), for all n. As q(1, k) = k, q(n, k) = kn = |B||A| by
induction. q(n, 0) = 0, q(0, k) = 1 can be justified by careful logic.

Example 2.1.6. For each subset X of A define fX(a) = 1 if a ∈ X, fX(a) = 0 if
a /∈ A \ X, the Characteristic Function of X. Clearly each X defines a unique
function of A into {0, 1} and conversely each such function gives a unique subset
of A. Thus A has 2|A| subsets; {X ⊆ A} = P(A) is called the Power Set of A.
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RELATIONS

Definition 2.1.7. A relation on a set A is defined as a subset R of A × A with a
being related to b, often written a ∼ b or aRb if (a, b) ∈ R. An equivalence relation
on A is a relation on A for which the following laws apply:

i) a ∼ a, for all a ∈ A, the reflexive law;

ii) If a ∼ b, then also b ∼ a, the symmetric law;

iii) If a ∼ b and b ∼ c, then a ∼ c, the transitive law, where a, b, c are any
elements of A. Such a relation divides A into disjoint equivalence classes
Ca = {x ∈ A; x ∼ a} each of which contains related elements. Hence |A| =
| ∪ Ca| =

∑
a |Ca| but it is important that only one label a be chosen for

each class (i.e. a system of representatives of the classes). Note that unlike
the examples As and Tr above, the classes Ca may have different cardinal
numbers.

Example 2.1.8. If n ≥ 2 is an integer, let us define a relation ≡ on Z by: a ≡ b if
and only if n | (a−b). This is an equivalence relation and the n equivalence classes
are used to define the ring Zn = {0, 1, 2, . . . , n− 1}.
CARDINAL NUMBERS FOR GENERAL SETS (assuming the standard
axioms)
A set A is infinite if there is a bijection from A onto a proper subset A∗ ⊂ A.

Example 2.1.9. The set of positive integers can be bijectively mapped to the set of
positive even integers. f(n) = 2n.

It is not too difficult to prove that a set is not infinite if and only if it has a cardinal
number n (⇐ is Theorem 2.1.4). The definition of the cardinal number of a general
set is based on the statement that |A| = |B| if and only if there is a bijection from
A onto B. But most of its algebraic properties are now defined by using the results
proved in the previous section. For example, define |A| to be ≤ |B| if there is a
injection of A into B; then the Schröder-Bernstein Theorem proves that |A| ≤ |B|
and |B| ≤ |A| implies that |A| = |B|. The inequality |f(A)| ≤ |A| is still true.
Finally Cantor’s diagonal argument proves that |A| < 2|A| = |P(A)| for every set
A.
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Applications of the pigeonhole principle

Example 2.1.10. At a meeting of a set S of n people, some of them shake hands
with some of the other people. Show that there are two people that shake the same
number of hands.
For each x ∈ S let f(x) denote the number of hands shaken by person x. 0 ≤
x ≤ n − 1. In this form one cannot apply the pigeonhole principle. But one
observes: whenever at least one person shakes all n − 1 hands, then there is no
person shaking 0 hands. Conversely, if there is a person with f(x) = 0, then there
is no person with f(x) = n−1. So the range of the values of f is actually: [0, n−2]
or [1, n− 1] (both with n− 1 elements). By the pigeonhole principle, there cannot
be an injection from the set S of n elements into the sets of n− 1 elements above.
This problem is equivalent to a problem on sheet 3: in a finite graph there are two
vertices with the same valency.

Example 2.1.11. Let α be an irrational number. Define {tα} = tα − [tα] to be
the fractional part, i.e. {ta} ∈ [0, 1). The pigeonhole principle can be used to
prove that irrational numbers can be approximated by rational numbers. Study
the sequence {tα} with 1 ≤ t ≤ n in the n intervals [ k

n
, k+1

n
). Either there is one

member of the sequence in each interval or there is an interval with two members
of the sequence. In the first case 0 < tα− [tα] < 1

n
holds for some t. In the second

case, if xα and yα are in the same interval, then 0 < (x− y)α− ([xα]− [yα]) < 1
n
.

In both cases there are integers p and q so that |qα−p| < 1
n
. So, |α− p

q
| < 1

qn
≤ 1

q2 .

For example 22
7

is such an approximation for π.
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Example 2.1.12. Let n ≥ 3 be an integer and suppose that the integer t satisfies
t2 ≡ −1 mod n. (Example: 122 = 144 ≡ −1 mod 29, since 29×5 = 145.) Let (u, v)
be pairs of integers with 0 ≤ u ≤

√
n and 0 ≤ v ≤

√
n. Since ([

√
n] + 1)2 > n,

by the pigeonhole principle there are two pairs (u1, v1), (u2, v2) with u1 − tv1 ≡
u2 − tv2 mod n. So, (u1 − u2) ≡ t(v1 − v2) mod n. Let x = u1 − u2, y = v1 − v2,
i.e. x ≡ ty mod n and observe that |x| ≤

√
n and |y| ≤

√
n. Actually, if n is not

a square, even |y| <
√

n. Therefore, 0 < x2 + y2 < 2n and x2 + y2 ≡ (ty)2 + y2 ≡
0 mod n, and so n | x2 + y2. In other words x2 + y2 = n.
Note: if n is a prime of the form 4k + 1, then such a t exists, actually one can
take t = (n−1

2
)! mod n. Example: (29−1

2
)! = 14! = 87178291200 = 12 mod 29 and

then the by the discussion above the prime can be written as a sum of two squares,
(example: 29 = 22 + 52). If n is a prime of the form 4k + 3, then no such t exists,
and modulo 4 one can see that there is no way of writing an integer 4k + 3 as a
sum of two squares.

THE INCLUSION-EXCLUSION PRINCIPLE This generalizes the state-
ment |A ∪B| = |A|+ |B| − |A ∩B| given earlier.

Theorem 2.1.13. Let X be a finite set and let A1, . . . , An be a collection of subsets
of X. For x ∈ X let m(x) denote the number of subsets Ai to which x belongs.

i)

|∪n
i=1Ai| =

n∑
i=1

|Ai|−
∑

1≤i<j≤n

|Ai∩Aj|+
∑

1≤i<j<k≤n

|Ai∩Aj∩Ak|−. . .+. . .+(−1)n−1|∩n
i=1Ai|.

ii) The number of x ∈ X for which m(x) = m is∑
T⊆Mn

m≤|T |≤n

(−1)(|T |−m)

(
|T |
m

)
|AT |, where AT = ∩i∈T Ai.

Proof. i) Consider an element x ∈ X for which m(x) = s. The proof compares the
contribution made by th element x to both sides of the equation. If s = 0, then
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x is in none of the sets and it contributes 0 to both sides. Otherwise s ≥ 1 and x
contributes 1 to the LHS. For this fixed x assume it belongs to precisely the sets
At1 , . . . , Ats , where 1 ≤ t1 < t2 < . . . < ts ≤ n. Then x contributes 1 to each of
the s terms Ati in the first sum on the RHS, so it contributes s. It also contributes
-1 to each of the

(
s
2

)
terms Ati ∩ Atj , (1 ≤ i < j ≤ n), so altogether −

(
s
2

)
. It

contributes
(

s
3

)
to the triple intersections, and so on. The total contribution is:

s−
(

s

2

)
+

(
s

3

)
− . . . + (−1)s−1

(
s

s

)
= 1− (1− 1)s = 1.

This holds for every x ∈ X, so the theorem follows.
The proof of part ii) is similar in spirit but more complicated in the analysis of the
binomial coefficients.

Corollary 2.1.14. The number of elements of X which belong to none of the Ai,
i.e. m(x) = 0 is

|X| −
n∑

i=1

|Ai|+
∑

1≤i<j≤n

|Ai ∩ Aj| −
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak|+ . . . + (−1)n| ∩n
i=1 Ai| =∑

T⊆Mn

(−1)|T ||AT |, where AT = ∩i∈T Ai.

Proof. This number is |X\ ∪n
i=1 Ai| = |X| − | ∪n

i=1 Ai|.

Example 2.1.15. Of 30 third year students, 10 take MT361, 14 take MT362 and 12
take MT365; 4 students are taking both MT361 and MT362, 3 are taking MT361
and MT365, 3 are taking MT362 and MT365, while 1 is taking all three units.
How many of this set of students are taking none of the three units and how many
are taking precisely one?
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Let X be the set of 30 students. Ai those taking MT361, MT362, MT365 for
i = 1, 2, 3 respectively. The inclusion-exclusion principle part i) gives

30− (10 + 14 + 12) + (4 + 3 + 3)− 1 = 3

students take none of the three units. Part ii) shows that: taking

T = {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} :

1× (10 + 14 + 12)− 2× (4 + 3 + 3) + 3× 1 = 1× 36− 2× 10 + 3× 1 = 19

are taking precisely one unit (or 4+8+7 = 19 from the Venn-diagram). Similarly,
1× 10− 3× 1 = 7 (or 3 + 2 + 2 = 7) are taking precisely two units.

Example 2.1.16. Let X = Mn where the integer n ≥ 2 has prime factors p1, p2, . . . , pk.
For each i = 1, . . . , k let Ai be the set of multiples of pi in Mn so that |Ai| = n

pi
.

Clearly, if i < j, Ai∩Aj is the set of multiples of pipj in Mn so that |Ai∩Aj| = n
pipj

etc. Therefore, from the corollary the number of integers a in Mn which are co-
prime to n, i.e. gcd(a, n) = 1, is

n−
k∑

i=1

n

pi

+
∑
i<j

n

pipj

−. . .+. . . = n

(
1−

k∑
i=1

1

pi

+
∑
i<j

1

pipj

− . . .

)
= n

k∏
i=1

(
1− 1

pi

)
,

which is Euler’s function ϕ(n).
If for example n = 30, then there are 8 coprime integers. These are 1, 3, 7, 11, 13, 17, 19, 23, 29,
and the formula gives 30(1− 1

2
)(1− 1

3
)(1− (1

5
) = 30 1

2
2
3

4
5

= 8.

Example 2.1.17. Using the inclusion-exclusion principle count the primes p ≤ 40.
n ≤ 40 is prime, if n = 2, n = 3, n = 5 or n is not divisible by n = 2, 3, 5 but n 6= 1.
A2 = {2, 4, 6, . . . , 40}, |A2| = 20.
A3 = {3, 6, 9, . . . , 39}, |A3| = 13.
|A5| = 8, |A6| = 6, |A10| = 4, |A15| = 2, |A30| = 1.

40− (20 + 13 + 8) + (6 + 4 + 2)− (1) + 3− 1 = 40− 41 + 12− 1 + 3− 1 = 12.

For comparison, the 12 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.
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DERANGEMENTS
The permutations of Mn = {1, 2, . . . , n} form a group Sn of order n!. A de-
rangement of Mn is a permutation in Sn which maps no element onto itself. For
each i = 1, . . . , n define a subset Ai of Sn by Ai = {α ∈ Sn; α(i) = i}. Then,
|AI | = (n − 1)! for each i. Ai ∩ Aj = {β ∈ Sn; β(i) = i, β(j) = j} giving
|Ai ∩ Aj| = (n − 2)!, etc. Since a derangement belongs to none of the Ai, the
number of derangements of Mn is, with X = Sn:

Dn = n!− n(n− 1)! +

(
n

2

)
(n− 2)!− . . . + (−1)n × 1

= n!

(
1− 1 +

1

2!
− 1

3!
+ . . . + (−1)n 1

n!

)
∼ n!

e
.

In fact, Dn is the “closest” integer to n!
e
, since the difference between Dn and n!

e
is

< 1
n+1

.

Example 2.1.18. When n = 4, the derangements are those elements of S4 whose
cycle decompositions contains no cycles of length 1, i.e. those of types [4] or [22].
There are 6 of the first type, namely (1234), (1243), (1324), (1342), (1423), (1432).
And there are 3 of the second type, namely (12)(34), (13)(24), (14)(23). Therefore
D4 = 9, which is close to 24

e
= 8.8291 . . ..

Example 2.1.19. If two full packs of playing cards (of 52 cards each) are turned
over simultaneously, the probability of no matching pairs is D52

52!
which differs from

1
e

= 0.3678 . . . by less than 1
53!
≈ 2.29× 10−70.
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2.2 Partitions

Definition 2.2.1. If n ∈ N a partition of n into r parts is a sum of the form
a1+a2+. . .+ar = n where the terms ai ∈ N and satisfy a1 ≥ a2 ≥ . . . ≥ ar > 0. Let
p(n, k) be the number of partitions of n with at most k non - zero terms (i.e. r ≤ k)
and p(n) the total number of partitions of n, so that p(n) = p(n, n) = p(n, m) for
all m ≥ n.

Remark. The simplest way of writing the above partition is as a ’descending
string’ of numbers a1 a2 . . . ar with spaces but no + signs and no commas. The
number of terms uniquely gives r and their sum is n.

Some small values of the partition functions:

p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(4, 2) = 3, p(5, 3) = 5.

since for example for 4 has the following 5 partitions.

4, 3 1, 2 2, 2 1 1, 1 1 1 1

p(n, 1) = 1, p(n, 2) = 1 +
[n
2

]
, p(n, n− 1) = p(n)− 1

and p(n, m) = p(n), for m ≥ n,

p(n, 0) = 0, p(0) = p(0, k) = 1.

Recurrence relations If a1 a2 . . . ak is a partition of n ∈ N with exactly r = k
non zero terms, then a1− 1 a2− 1 . . . ak − 1 is a partition of n− k with at most k
non-zero terms. Hence p(n, k)− p(n, k− 1) = p(n− k, k) since the correspondence
of those two partitions is a bijection. This is valid if 1 ≤ k ≤ n, Adding this over
k gives

p(n) = p(n, n)− p(n, 0) =
n∑

k=1

p(n− k, k).

Example 2.2.2.

p(7, 3) = p(7, 2) + p(4, 3) = 1 +

[
7

2

]
+ p(4, 2) + p(1, 3) = 1 + 3 + 3 + 1 = 8.

p(6) = p(5, 1)+p(4, 2)+p(3, 3)+p(2, 4)+p(1, 5)+p(0, 6) = 1+3+p(3)+p(2)+p(1)+1 = 11.
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Ferrers diagrams
Write the partition λ of n which has terms a1 a2 . . . ar as a sequence of r rows of
dots with ai dots in the i-th row. This array is the Ferrers diagram of λ. The
columns of such a partition define another partition λ∗ of n, called the conjugate
of λ. Clearly (λ∗)∗ = λ. λ is self conjugate if λ∗ = λ.

Example 2.2.3. For the partition 4 2 2 1 1 of 10 the conjugate partition is 5 3 1 1.

Theorem 2.2.4 (Euler, Sylvester). i) If λ has r non-zero terms, then r is the
maximum value of the terms of λ∗. Hence p(n, k) is also the number of
partitions for which all the terms are ai ≤ k.

ii) The number of self conjugate partitions of n is equal to the number of parti-
tions with distinct odd terms.

iii) The number of partitions of n with distinct terms is equal to the number of
partitions which have odd terms.

Example 2.2.5. The partitions of 9 with distinct terms are 9, 8 1, 7 2, 6 3, 6 2 1, 5 4, 5 3 1
and 4 3 2. These correspond to the partitions with odd terms, namely

9, 111111111, 711, 333, 33111, 51111, 531, 3111111.

Only 9 and 531 belong to both types, i.e. have odd distinct terms. They correspond
to the self conjugate partitions 51111 and 333 respectively.
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Proof of the Theorem. i) The number r of rows in the Ferrers diagram for λ is
also the length of the longest column and thus the value of the maximum
term for λ∗. p(n, k) counts all those partitions of n with r ≤ k. λ with ≤ k
terms, or λ∗ with al terms ≤ k.

ii) For a self conjugate partition the Ferrers diagram is symmetric about the
diagonal. (compare the partition 4 4 3 2 of 13). Combining the i-th row and
i-th term to a term, gives a partition of n of odd terms only. The process can
be reversed: all partition of odd terms can be drawn as a symmetric diagram
and hence lead to a self conjugate partition.

(In the example: 7 5 1).

iii) We give a bijection between the partitions with distinct terms and the par-
titions with odd terms.

– If a partition of n has distinct terms, each ai can be uniquely written
in the form ai = 2uivi, where vi is odd. Now collect all terms with the
same vi: ai1 , . . . , ait all have the same vij = vi. Put wi =

∑t
i=1 2uij .

Then λ corresponds to the partition µ of n which has wi many copies
of vi, for each of the odd numbers vi.

– Conversely, given µ each wi has a unique binary expansion
∑t

j=1 2uij

and the set 2uij vi gives a partition λ of n of distinct terms. Since the
correspondence between λ and µ is bijective, the theorem follows.

Example: Let 33 = 12 + 8 + 6 + 4 + 3 be a partition of distinct terms. Order
these terms according to the odd number vi. 12 = 4× 3, 6 = 2× 3, 3 = 1× 3.
8 = 8× 1, 4 = 4× 1.
So w3 = 4 + 2 + 1 = 7 = 1112 (in binary).
and w1 = 8 + 4 = 12 = 11002. So the partition above induces the partition
of 7 copies of 3 and 12 copies of 1, which is a partition of odd terms only.

Conversely, given the partition of 7 copies of 3, and 12 copies of 1. Write
7 = 1112 and 12 = 11002 in binary. Finally, 22×3 = 12, 21×3 = 6, 20×3 = 3
and 23 × 1 = 8, 22 × 1 = 4 gives the partition of distinct integers.
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Generating functions
Suppose that a partition λ of n contains s1 copies of 1, s2 copies of 2 etc. up to sk

copies of k.
We observe that the additive partition s1 × 1 + s2 × 2 + . . . + sk × k = n can be
rewritten as follows:

xs11xs22 . . . xskk = xn.

Further recall the geometric series:

1

1− xt
= 1 + xt + x2t + x3t + . . . .

Now the coefficients cn of the function

Pk(x) =
k∏

t=1

1

1− xt
=

k∏
t=1

(1 + xt + x2t + x3t + . . .) =
∞∑

n=0

cnx
n

are the number of ways to write n as a sum of ≤ k integers, i.e. the number of
ways to write is a sum of integers ≤ k. (by Theorem 2.2.4 i). This number is:
cn = p(n, k). If k tends to infinity this gives:

P (x) =
∞∏

t=1

1

1− xt
=

∞∏
t=1

(1 + xt + x2t + x3t + . . .) =
∞∑

n=0

p(n)xn,

since here the coefficient is the number of ways to write n as a sum of smaller
integers.
These functions are called generating functions, because their coefficients generate
the object we are interested in. This is a rather algebraic approach. One does not
care too much about convergence. However, the geometric series is convergent if
and only if |x| < 1.

Example 2.2.6.

1

1− x

1

1− x2

1

1− x3

= (1 + x + x2 + x3 + x4 + x5 + . . .)(1 + x2 + x4 + x6 + . . .)(1 + x3 + x6 + . . .)

= 1 + x + 2x2 + 3x3 + 4x4 + 5x5 + . . . .

Here the coefficients count the number of ways to write n as a sum of ones, twos
and threes.
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∞∏
t=1

1

1− xt
=

1

1− x

1

1− x2

1

1− x3

1

1− x4

1

1− x5
. . .

= (1 + x + x2 + x3 + x4 + x5 + . . .)(1 + x2 + x4 + . . .)(1 + x3 + x6 + . . .)×
×(1 + x4 + . . .)(1 + x5 + . . .) . . .

= 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + . . . .

Here the coefficients count the number of partitions of n.

Remark. Many important but difficult results have been proved about partitions.

i) Euler proved:

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) . . .

where p(n− i) occurs, if i can be written as 1
2
l(3l± 1), (for an integer l) and

the sign is (−1)l+1. So, l = 1 gives i = 1 and 2. l = 2 gives i = 5 and 7 etc.

ii) Hardy and Ramanujan proved that

p(n) ∼
exp(π

√
2n
3

)

4
√

3n
.

For comparison: p(1000000) ≈ 1.471685×101107, whereas the approximation
gives 1.4723 × 101107. Better approximations, and even exact formulae, are
known.
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2.3 Partitions of finite sets

Definition 2.3.1. A partition of Mn is a division of it into disjoint non-empty sub-
sets. The number of these partitions with exactly r non-empty subsets is denoted
by S(n, r), which is called Stirling number of the second kind.

n\r 1 2 3 4 5 6
1 1 0 0 0 0 0
2 1 1 0 0 0 0
3 1 3 1 0 0 0
4 1 7 6 1 0 0
5 1 15 25 10 1 0
6 1 31 90 65 15 1

Let us state some elementary properties about these numbers:

i) The number of surjections from Mn onto Mr is S(n, r)r!.

ii) S(n, 1) = 1, S(n, 2) = 2n−1− 1 (count the number of pairs of complementary
nonempty subsets).

iii) S(n, n) = 1, S(n, n − 1) =
(

n
2

)
= n(n−1)

2
, i.e. the number of ways to choose a

2-element subset of an n-element set.

iv) Define S(0, 0) = 1, S(n, 0) and S(n, r) = 0, if r > n.

Theorem 2.3.2. i) For every n, r ∈ N : S(n + 1, r) = S(n, r − 1) + rS(n, r).

ii) For every n ∈ N : xn =
∑n

r=1 S(n, r)x(x− 1) . . . (x− r + 1).

iii) For every n, r, k ∈ N : kn =
∑n

r=1 S(n, r)r!
(

k
r

)
=
∑k

r=1 S(n, r)r!
(

k
r

)
.
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Proof. i) For each partition of Mn+1 into r subsets, the element n + 1 either
forms its own set or it belongs to a subset containing other elements. In
the first case, there are S(n, r − 1) partitions. In the second case, each of
the S(n, r) partitions of Mn into r sets allows r possibilities to allocate the
element n + 1 to any of the r sets.

ii) We use induction. As an abbreviation we introduce the following notation:

(x)r = x(x− 1) . . . (x− r + 1).

For n = 1:
x1 = S(1, 1)(x)1 = x.

Assume (as induction hypothesis) that xn =
∑n

r=1 S(n, r)(x)r. Then

xn+1 = xn × x =
n∑

r=1

(x)r((x− r) + r)S(n, r).

Since (x)r (x− r) = (x)r+1 we have

xn+1 =
n∑

r=1

S(n, r)(x)r+1 +
n∑

r=1

rS(n, r)(x)r

=
n+1∑
r=1

(S(n, r − 1) + r(S(n, r)) (x)r

here we used: S(n, 0) = S(n, n + 1) = 0.

=
n+1∑
r=1

S(n + 1, r)(x)r,

which proves the claim.

iii) Follows from ii) with x = k : k(k−1) . . . (k−r+1) = r!
(

k
r

)
, and as S(n, r) = 0

if r > n and
(

k
r

)
= 0, if k < r.

Remark. i) As kind of converse to part ii) of the Theorem: There are uniquely
defined constants s(n, r) such that

x(x− 1) . . . (x− r + 1) =
n∑

r=1

(−1)n−rs(n, r)xr.

These are the Stirling numbers of the first kind. (We do not use them in the
lecture otherwise).
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ii) A generating function for S(n,r)
n!

is 1
r!
(ex − 1)r. Example: For k = r:

1

3!
(ex − 1)3 =

x3

6
+

x4

4
+

5x5

24
+

x6

8
+ . . . .

Multiplying xi by i! gives the coefficients in the third column of the table:
1, 6, 25, 90, . . ..

Multinomial Coefficients
These are a useful generalization of the binomial coefficients.

Definition 2.3.3. Let n =
∑t

i=1 ni. Let us define the multinomial coefficient(
n

n1, n2, . . . , nt

)
:=

n!

n1!n2! . . . nt!
.

Observe that the binomial coefficient
(

n
n1

)
corresponds in this notation to

(
n

n1,n−n1

)
.

Theorem 2.3.4. i) The number of partitions of Mn into t disjoint subsets of
size ni ∈ N0 (i.e.

∑t
i=1 ni = n) is

(
n

n1,n2,...,nt

)
.

ii) The coefficient of
∏t

i=1 xni
i in the expansion of (x1+x2+. . .+xt)

n is
(

n
n1,n2,...,nt

)
.

iii) The number of permutations of n balls of which ni have colour i (and are
indistinguishable otherwise) is

(
n

n1,n2,...,nt

)
.

Proof. i) There are
(

n
n1

)
choices for the elements of X1, then

(
n−n1

n2

)
choices for

X2, etc., up to
(

nt

nt

)
choices for Xt. Multiplying these together gives the claim:(

n

n1

)
=

n!

n1!(n− n1)!
,

(
n

n1

)(
n− n1

n2

)
=

n!

n1!n2!(n− n1 − n2)!

etc.

ii) When multiplying the brackets, and counts how often
∏n

i=1 xni
i occurs, one

actually partitions the n elements into parts. As in part i). There is a
bijection between the partitions and the products

∏n
i=1 xni

i . So the result
follows.

iii) If for a given permutation the balls of colour i have the positions i1, i2, . . . , ini
,

put these numbers into the set Xi. There is a bijection between the permu-
tations and the partitions counted in i) into parts X1 of size n1.
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Example 2.3.5. i) For n = 4, t = 3:
(

4
3,1,0

)
= 4 counts the partitions of the type

{a, b, c}, {d}, ∅. (There are 4 choices for d, then everything else is fixed).(
4

2,1,1

)
= 12 counts the partitions of the type {a, b}, {c}, {d}. (There are 4

choices for d, then three for c, then everything else is fixed. Or: there are(
4
2

)
= 6 choices for {a, b}, then 2 for c. Note: the order of a, b does not

matter. But order of c and d does.

ii)
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz.

(x+ y + z)3 = x3 + y3 + z3 +3x2y +3x2z +3y2z +3xy2 +3xz2 +3yz2 +6xyz.

Note that (
3

3, 0, 0

)
= 1,

(
3

2, 1, 0

)
= 3,

(
3

1, 1, 1

)
= 6.

The sum of the coefficients in the second example is 33 = 27.

iii) How many ways are there to arrange the letters ASSESS to give different
“words”. (Assume that various copies of the letter S are identical. Also do
not care whether the rearranged “words” have any meaning.) There are 6
letters, 4 of them the same, and then two single letters A, E:(

6

4, 1, 1

)
=

6!

4!1!1!
= 30.

For ASSETS it is: (
6

3, 1, 1, 1

)
=

6!

3!1!1!1!
= 120.
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3 Finite mathematical structures

3.1 Latin squares

Finite fields
For each n ≥ 2 the set Zn = {0, 1, 2, . . . , n− 1}, with usual addition and multipli-
cation modulo n is a ring. The zero element is 0, and the multiplicative identity
is 1. When n is composite, say n = ab, there are zero divisors, i.e. nonzero factors
whose product is zero: ab = 0. So, for composite n, (Zn < +, ·) is not an inte-
gral domain. The elements of Zn which are coprime to n, i.e. gcd(a, n) = 1, are
invertible, i.e. there is a b ∈ Zn with ab = 1.
Define Z∗

n to be the set of invertible elements of Zn, so that |Z∗
n| = ϕ(n) (Euler’s ϕ

function). In n = p is prime, all the elements, except for 0, are invertible: i.e. there
Zp is a finite field. (In a field all elements, but zero, have an inverse). |Z∗

p| = p− 1.
In general, for every prime power pk there is an essentially unique finite field of pk

elements, often called: GF(pk) (GF for Galois field) or Fpk . Note that for k > 1
this field is NOT the same as Zpk , as here ppk−1 = 0, so that p is a zero divisor,
which implies that p is not invertible. GF(pk) is actually a k-dimensional vector
space over Zp.
The pk − 1 non-zero elements α have the following properties:
adding them p times: α + α + . . . + α = pα = 0.
They form a multiplicative cyclic group, which means there is a generating element
θ, such that each non-zero element can be written as α = θi, for some exponent
i ∈ {0, 1, . . . , pk − 2}.
The set of invertible elements (i.e the non-zero elements) is also called F∗

pk .
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Latin Squares

Definition 3.1.1. Let S = {s1 . . . , sn} be a set of n symbols. A Latin square of
order n is an n× n-array in which each symbol siinS occurs exactly once in each
row, and exactly once in each column.

Historically, one used letters for these n symbols, (Latin alphabet), which explains
the name Latin squares. Today one prefers the integers from 0 to n− 1:

Definition 3.1.2. A Latin square is in standard form if its symbols are 0, 1, . . . , n−1
and the first row is 0, 1, . . . , n− 1. Moreover, the Latin square is in canonical form
if the first column is also 0, 1 . . . , n− 1.

Example 3.1.3.

It is always possible to transform any Latin square by a change of rows and columns
into standard and even canonical form. Each canonical form corresponds to (n−1)!
many Latin squares in standard forms, and each in standard form corresponds to
n! in general form. (So altogether each canonical form corresponds to n!(n − 1)!
Latin squares.
The number of Latin squares of a given order is very large. We concentrate on a
few simple methods to construct Latin squares.
The number of latin squares of size 1 is: 1
The number of latin squares of size 2 is: 2
The number of latin squares of size 3 is: 12
The number of latin squares of size 4 is: 576
The number of latin squares of size 5 is: 161280
The number of latin squares of size 6 is: 812851200

We number the rows and columns also from 0 to n− 1. The i, j-entry is the entry
in row i and column j.

Construction of Type 1:
For any n ≥ 2, let a be an invertible element in Zn, (i.e. gcd(a, n) = 1). Define an
n×n array L(a) using the symbols of Zn by taking the i, j-entry to be ai+j mod n.
Claim: L(a) is a Latin square.
Suppose there is twice the same entry in row i:

ai + j1 ≡ ai + j2 mod n ⇒ j1 = j2.
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Or suppose there is twice the same entry in column j:

ai1 + j = ai2 + j mod n ⇒ i1 = i2,

since a is invertible.
So, the number of Latin squares of this type in standard form is ϕ(n).

Example 3.1.4.

L(1) =

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

L(3) =

0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

Note: Clearly L(1) is in canonical form. Moreover it is the addition table for Zn,
the i, j-entry being i + j.
Construction of Type II
A similar construction, which can be applied to any finite field GF(pk) = Fpk .

Label the rows and columns by {0, 1, θ, θ2 . . . , θpk−2} (see above). Each non-zero
element α defines an array M(α) for which the i, j-entry is αi + j (as an element
of Fpk). The proof that this defines a Latin square is the same as above. M(1) is
the addition table of the field. If the elements of the field in the order above are
replaced by the symbols 0, . . . , n − 1 of Zn, then M(1) is in canonical form, and
M(α) is in standard form for every α.

Example 3.1.5. pk = 22 = 4. F4 = {0, 1, θ, θ2}. Moreover θ3 = 1, which implies via
0 = θ3 − 1 = (θ − 1)(θ2 + θ + 1) that θ2 = θ + 1. (Note that one works modulo 2,
so +1 = −1.

M(1) =

0 1 θ θ2

1 0 θ2 θ
θ θ2 0 1
θ2 θ 1 0

M(θ) =

0 1 θ θ2

θ θ2 0 1
θ2 θ 1 0
1 0 θ2 θ

M(θ2) =

0 1 θ θ2

θ2 θ 1 0
1 0 θ2 θ
θ θ2 0 1

M(1) =

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

M(θ) =

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

M(θ2) =

0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1



55

The addition and multiplication tables of the finite field with 4 elements are as
follows:

+ 0 1 θ θ2

0

1

θ

θ2

· 0 1 θ θ2

0

1

θ

θ2

Recall that θ2 = θ + 1.

Definition 3.1.6. i) A Latin square is diagonal, if both of the diagonals contain
all n different symbols exactly once each.

ii) Two Latin square A, B of order n are orthogonal, if all n2 ordered pairs
(aij, bij) are all different. (This means: all ordered pairs of symbols occur
exactly once).

iii) A Latin square is self-orthogonal, if it is orthogonal to its transpose. (The
transpose is clearly also a Latin square).

Example 3.1.7. diagonal: n = 4. M(θ), M(θ2), but not M(1), L(1), L(3).
orthogonal: L(1), L(2), when n = 2. M(1), M(θ), M(θ2), but not L(1), L(3), for
n = 4. For n = 5: L(1), L(2), L(3), L(4) are mutually orthogonal, which means
that any pair of squares are orthogonal.
self-orthogonal: M(θ), M(θ2) for n = 4.
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Theorem 3.1.8. There are at most n − 1 Latin squares of order n which are
mutually orthogonal.

Proof. Assume w.l.o.g. they are in standardform. For the entry a1,0 there are at
most n− 1 symbols available, since 0 is not possible.

Definition 3.1.9. A Magic square of order n is an n × n array of the integers
1, 2, . . . , n2 in some order, such that the sum of the entries in each row, column
and diagonal is the same, and thus equals n(n2+1

2
).

Example 3.1.10.
1 8 13 12
14 11 2 7
4 5 16 9
15 10 3 6

Note that also “broken” diagonals sum up to 34. This property is called pandiag-
onal.

Theorem 3.1.11. i) For any n ≥ 2: L(a) and L(b) are orthogonal if and only
if a− b is invertible in Zn. If n = pk the Latin squares M(α) and M(β) are
orthogonal if and only if α 6= β. If n = p is prime, then L(1), . . . , L(p − 1)
is a maximal set of mutually orthogonal Latin squares. If n = pk, then the
M(α) form a maximal set of pk − 1 mutually orthogonal Latin squares.

ii) For any n ≥ 2: L(a) is diagonal if and only if a2− 1 is coprime to n, and in
that case L(a) is also self-orthogonal.
If n = pk, then M(α) is diagonal and self-orthogonal except when α = ±1 in
Fpk .

iii) If A, B are orthogonal diagonal Latin squares of order n with ij - entries
aij, bij ∈ Zn respectively, then the n × n array C whose ij - entry is cij =
naij + bij + 1 is a Magic square of order n.
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Proof. i) Two of the ordered pairs (aij, bij), (auv, buv) from L(a) and L(b) are
equal if and only if ai + j ≡ au + v and bi + j ≡ bu + v mod n, i.e. j − v ≡
a(u− i) ≡ b(u− i), giving (a− b)(u− i) 6≡ 0 mod n. So as in the proof that
L(a) is a Latin square, if a − b is invertible, then u ≡ i and so u = i and
v = j. Conversely if a − b is not invertible there is an element c ∈ Zn\{0}
such that (a − b)c ≡ 0 mod n and then the entries at position (0, 0) and
(c,−ac) both give the ordered pair (0, 0). The same proof applies to the case
when n = pk and the Latin squares are M(α) and M(β), for in the field Fpk

α−β is invertible whenever α 6= β. This explains why there are sets of n− 1
mutually orthogonal Latin squares whenever n is a prime or a prime power,
given by the L(a) or M(α) corresponding to the invertible elements a or α
of the fields Zp or Fpk respectively.

• The entries on the leading diagonal of L(a) are of the form ai + i ≡ (a +
1)i mod n, and those on the other long diagonal are congruent to ai − i −
1 ≡ (a − 1)i − 1 mod n since j = n − 1 − i for these entries. Hence the
elements on each diagonal are all distinct if and only if a + 1 and a − 1
are both invertible in Zn, i.e. their product a2 − 1 is coprime to n. The
ij-entry of L(a)T ,the transpose of L(a), is aj + i and therefore as in (i) the
entries at positions i, j and u, v are equal if and only if ai + j ≡ au + v and
aj + i ≡ av+u mod n. Multiplying the first congruence by a and subtracting
the second gives (a2−1)(i−u) ≡ 0 mod n. So, if a2−1 is coprime to n, then
u ≡ i mod n and hence u = i and v = j as required.

Since one of any three consecutive integers is divisible by 3 and at least one
is even, a and a2 − 1 = (a + 1)(a − 1) can only both be coprime to n if
n is coprime to 6. When n is an odd prime ≥ 5 : a − 1 and a + 1 are
invertible unless a = 1 or a = n− 1 respectively and so there are at least two
Latin squares L(a) which are diagonal and self - orthogonal in this case. The
comments about the situation when n is a prime also apply to the case when
n = pk and the Latin squares are the M(α), for then the diagonal elements
are multiples of α ± 1 and these elements of Fpk are invertible except when
α = ∓1 respectively. For n = 4 both M(θ) and M(θ2) are diagonal and self
- orthogonal. So, n being coprime to 6 is a sufficient but not a necessary
condition on n for such squares to exist.

iii) Since aij, bij ∈ Zn, these entries are respectively the unique quotient and
remainder when cij − 1 is divided by n and as the pairs (aij, bij) are distinct
so are the cij. Moreover 1 ≤ cij ≤ n(n− 1) + n = n2, whence the cij are the
numbers 1, 2, 3, . . . , n2 in some order. From the definition of a Latin square
the sum of the entries in each row and column is (n + 1)[nn−1

2
] + n = nn2+1

2
,

and the same applies to both of the long diagonals, whence C is a Magic
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square of order n.

From the statements in the proofs of (i) and (ii) the above construction shows that
a Magic square of order n exists for all integers n coprime to 6 and for every prime
power pk with k ≥ 2. A slight modification of the Theorem part (iii) proves that a
Magic square exists for every odd order, for the condition that the Latin squares
A, B are diagonal can be dropped so long as the sum of the diagonal elements is
n(n−1)

2
.

A simple construction for Latin squares of odd size is as follows: Go n steps in
the same direction, here one to the right and one to the top. Reduce modulo n,
ie. if you leave the grid to the top reenter at the bottom, if you leave to the right,
reenter at the left. then make one move, here one to the bottom and place the
next n symbols etc.

1 8 15 17 24
7 14 16 23 5
13 20 22 4 6
19 21 3 10 12
25 2 9 11 18

The following Latin square is famous because it appears in Albrecht Dürer’s picture
Melancholia from 1514. Not only the diagonals add up to 34, not only the broken
diagonals, but even more, whenever one adds an entry and the centrally symmetric
entry, the sum is 17.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Remark. Euler posed a problem involving six officers of different ranks from dif-
ferent regiments which is equivalent to finding a pair of orthogonal Latin squares
of order 6. Tarry proved in 1900 that there is no solution. It had been conjec-
tured that there wouldn’t be pairs of Latin square of size 10, 14, n ≡ 2 mod 4, but
this has been disproved using a long computer search. However, it is not known
whether there are 3 mutually orthogonal Latin squares of order 10. This is out of
the range of today’s computers.
Another open problem: are there 11 mutually orthogonal Latin squares of order
12? It is conjectured that the answer is no.
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3.2 Block Designs

Definition 3.2.1. A Block Design D consists of a set S with v elements and a
collection of b distinct subsets Bi of S called blocks, each containing k elements.
This design has the additional property that there are integers t and λ such that
every subset T of S with t elements is contained in exactly λ of the blocks Bi. D
is called a t− (v, k, λ) design.

Clearly from the definitions t ≤ k ≤ v and λ ≤ b ≤
(

v
k

)
. We assume that t ≥ 1, λ ≥

1 and 1 < k < v (which avoids very special cases only). It can be proved that every
t - design is also a (t−1) - design (see the book by Biggs), but finding examples with
t ≥ 3 is not easy. Since the case t = 1 is rather trivial this course will concentrate
on the case when t = 2. This is sometimes called a Balanced Incomplete Block
Design (BIBD), ’balanced’ from the existence of λ and ’incomplete’ since k < v.

Theorem 3.2.2. Suppose that D is a 2− (v, k, λ) design with 1 < k < v. Then

i) λv(v − 1) = bk(k − 1);

ii) each x ∈ S belongs to exactly r of the blocks where λ(v − 1) = r(k − 1);

iii) vr = bk.

Proof. Here we use again the technique of double counting that was for example
used for Euler’s upper bound on the number of edges of a plana graph. The same
object is counted twice.

i) Count all the pairs of sets Bi, {x, y} where x, y ∈ Bi. The number of {x, y} is
v(v−1)

2
and each belongs to λ of the Bi, giving λv(v−1)

2
pairs in total. But each
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of the b sets Bi contains k(k−1)
2

subsets with two elements, so the number of

pairs is also bk(k−1)
2

, whence the result.

Another way to express this: Define a matrix A with b rows and
(

v
2

)
columns.

Whenever a pair of points (x, y) lies on the block i, the entry of ai,(x,y) is 1,

and 0 otherwise. Each column contains λ ones. Each row contains
(

k
2

)
ones.

So λ
(

v
2

)
= b
(

k
2

)
.

ii) Suppose that a given x ∈ S belongs to exactly r(x) of the blocks Bi. For this
x count the number of pairs Bi, y where x, y ∈ Bi but y 6= x. As in (i) each
of the v − 1 choices for y gives a pair {x, y} which belongs to λ of the Bi,
while each of the r(x) sets Bi containing x has k− 1 choices for y. Therefore
λ(v−1) = r(x)(k−1), and as v, k and λ are fixed and k 6= 1, r(x) must have
the same value r for every x ∈ S, whence the formula.

iii) Counting the pairs Bi, x where x ∈ Bi, each of the v elements x belongs
to r blocks Bi while each of the b blocks Bi contains k elements x, whence
vr = bk.

Remark. (a) From (i) and (ii) of the Theorem, b and r are uniquely defined by
the values of v, k and λ, with λ < r < b when 1 < k < v. Despite this dependence
a 2 - design is often called a (b, v, r, k, λ) design, with all five parameters being
included. In general λ ≤ k ≤ r ≤ v ≤ b; see the Theorem below, part (iii).
(b) Even if b, v, r, k, λ satisfy the conditions of the last Theorem there may be no
block designs with these parameters; see Theorem 3.2.5.
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Definition 3.2.3. An incidence matrix of a 2− (v, k, λ) design D is a b× v matrix
A = (aij) where for each xj ∈ S, aij = 1 if xj ∈ Bi and aij = 0 otherwise. Since
neither S nor the Bi have a ’natural’ ordering, the matrix A is not uniquely defined
by D unless or until such orderings are imposed. A 2−(v, k, λ) design is symmetric
if b = v, and therefore r = k from Theorem 3.2.2 (iii) ; many of the more interesting
and useful designs such as that of Example (i) below have this property. Although
an incidence matrix of a symmetric design must be a square matrix it does need
not to be a symmetric matrix.

Example 3.2.4. i) Let S = M7 and define the blocks Bi, (i = 1, 2, . . . , 7) to be
B1 = {1, 2, 4}, B2 = {2, 3, 5}, B3 = {3, 4, 6}, B4 = {4, 5, 7}, B5 = {5, 6, 1}, B6 =
{6, 7, 2} and B7 = {7, 1, 3}. These form a symmetric 2− (7, 3, 1) design with
b = v = 7 and r = k = 3. The incidence matrix A1 with the block order
given above is:

A1 =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


Although it is not symmetric, reversing the row order gives a symmetric
matrix.

ii) For every v ≥ 3 there is a 2− (v, 2, 1) design for which the blocks are all the

2 - element subsets of the set S. Thus b = v(v−1)
2

, r = (v − 1) and the design
is not symmetric when v ≥ 4. One incidence matrix A2 when v = 4 is as
follows, (but there are many more).

A2 =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1


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iii) Consider the 3 × 3 array C shown below. Let S = M9 and define the
blocks by taking the three rows, {1, 2, 3}, {4, 5, 6}, {7, 8, 9} the three columns,
{1, 4, 7}, {2, 5, 8}, {3, 6, 9} the two ’long’ diagonals and the four ’broken’ diag-
onals: {1, 5, 9}, {2, 6, 7}, {3, 4, 8} and {1, 6, 8}, {2, 4, 9}, {3, 5, 7}. These form
a 2− (9, 3, 1) design with b = 12 and r = 4.

C =

1 2 3
4 5 6
7 8 9

 .

Remark. Examples i) and ii) are special cases of two general classes of designs
which arise from finite geometries as described in the next section.

Theorem 3.2.5. Let A be an incidence matrix of a 2 − (v, k, λ) design D with
parameters b, v, r, k, λ. Then

i) AT A = (r − λ)Iv + λJv where Iv is the v × v identity matrix and Jv is the
v × v matrix for which all the entries are 1, i.e. the leading diagonal entries
of AT A are r and the rest are λ.

So the matrix of size 3 looks liker λ λ
λ r λ
λ λ r

 .

ii) det(AT A) = kr(r − λ)v−1.

iii) Fisher’s Theorem (1940) If 1 < k < v is assumed (as usual) then v ≤ b.

iv) If the design is symmetric with 1 < k < v, then AT commutes with A and
|Bs ∩Bt| = λ if s 6= t. If in addition v is even then k− λ must be the square
of an integer.
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Proof. i) Since the ij-entry of AT is aji the st-entry of AT A is
∑

asiait. If s 6= t
this sum over i counts the number of blocks Bi containing both xs and xt

and is therefore equal to λ. If s = t it counts the number of Bi containing xs

which from Theorem 3.2.2 (ii) is r for each s. Therefore the leading diagonal
entries of AT A are r and the rest are λ, as stated.

ii) Adding or subtracting rows and columns of a matrix to others does not
change its determinant. When the first row of AT A is subtracted from the
rest the resulting matrix is diagonal apart from the first row and column.
Then adding the other columns to the first gives a triangular matrix with
r+(v−1)λ as the first diagonal entry and (r−λ) for the rest. The determinant
of AT A is the product of these entries and since the first entry is kr from
Theorem 3.2.2 (ii) the result follows.

iii) Assuming that 1 < k < v so that λ < r from Theorem 3.2.2 (ii) AT A is
a v × v matrix with a non - zero determinant whence from matrix theory
v = rank (AT A) ≤ rank A ≤ (Number of rows of A)= b.

iv) If the design is symmetric so that b = v and r = k, then from the definition
of a design the v × v matrix A satisfies AJv = kJv, JvA = rJv = kJv. Also
AT A = (k−λ)Iv +λJv from (i) whence A(AT A) = (k−λ)A+λA = (AT A)A.
But from (ii), assuming that 1 < k < v again, rank A = v and A is invertible
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whence AAT = (AAT A)A−1 = (AT A)AA−1 = AT A as required. This result
implies that if s 6= t the st - entry asjajt of AAT , which counts the number of
elements xj belonging to both Bs and Bt, is also λ. (The diagonal elements
of AAT are k = |Bs| = r.) Finally (det A)2 = det(AT A) = k2(k − λ)v−1, so
if v is even and v − 1 is odd, then from the unique factorization of integers
k − λ must be the square of an integer.

Note: Part (iii) and the last result of (iv) exclude several sets of parameters which
satisfy Theorem 3.2.2.

3.3 The construction of block designs

Difference Sets

Definition 3.3.1. A subset C consisting of k elements of Zv where v ≥ 3 and
1 < k < v is a difference set in Zv if every non - zero element d of Zv occurs
exactly λ times as a difference x − y where x, y ∈ C. Counting the pairs {x, y}
gives λ(v − 1) = k(k − 1) as in Theorem 3.2.2 (ii), so that λ < k < v. Since Zv is
an additive cyclic group C is called a cyclic difference set. If λ = 1 it is called a
perfect difference set.

Every difference set C generates a symmetric 2 − (v, k, λ) design D on S = Zv

by defining the blocks Bi to be the sets C + i = {c + i; c ∈ C} for each i ∈ Zv.
Clearly each block, being a ’shift’ of C, is also a difference set. If a, b ∈ Zv and
a− b = d = x−y where x, y ∈ C then a, b ∈ Bi where i = a−x = b−y. Hence a, b
belong to λ of the blocks Bi as required, each corresponding to one pair x, y ∈ C.

Remark. Difference sets can also be defined in other finite Abelian groups.

Example 3.3.2. i) Suppose that p = 4s + 3, (s ∈ N) is a prime number and let
C be the set of quadratic residues in Zp, i.e. the elements of the form a2(
mod p) where 1 ≤ a ≤ 2s + 1. Then C is a difference set in Zp which gives
a 2− (4s + 3, 2s + 1, s) design. s = 1 gives the 2− (7, 3, 1) design of section
3.2 with C = {1, 2, 4} giving the blocks listed there. The next example s = 2
gives a 2− (11, 5, 2) design with C = {1, 3, 4, 5, 9}. and the third with s = 4
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gives the example on v = 19 points, on the problem sheet.

ii) The perfect difference set {0, 1, 3, 9} in Z13 forms a 2− (13, 4, 1) design and
the perfect difference set {0, 1, 4, 14, 16} in Z21 forms a 2 − (21, 5, 1) design.
These are related to the designs below.

iii) {0, 1, 2, 4, 5, 8, 10} is a difference set in Z15 which gives a 2− (15, 7, 3) design
(see below).

Projective Planes
The n - dimensional Euclidean geometry Rn, (n ≥ 2) has n real coordinates. An n
- dimensional projective geometry over the field K uses n + 1 coordinates from K
but assumes that the points (x, y, z, . . . , w) and (cx, cy, cz, . . . , cw) are the same for
every c 6= 0 in K. The point (0, 0, . . . , 0) is excluded. If n ≥ 2 and |K| = q is finite,
and thus a prime power from field theory, this geometry is denoted by PG[n, q].
When n = 2 giving a projective plane the points (x, y, z) have three coordinates
from K and a line is defined by a single linear equation between them. If |K| = q
there are q2 + q + 1 points and q2 + q + 1 lines. Each line contains q + 1 points
and each point lies on q + 1 lines. Every pair of distinct points lies on a single line
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and every pair of distinct lines meets in a unique point. This gives a symmetric 2
- design with the points as S and the lines forming the blocks (strictly the points
on them) so that the parameters are v = q2 + q + 1, k = q + 1 and λ = 1.

Example 3.3.3. Again the example of section 3.2 is equivalent to the ’smallest’
projective geometry PG[2, 2] which gives the Seven Point Geometry, also called
Fanoplane. Define the points to be A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), D =
(1, 1, 0), E = (0, 1, 1), F = (1, 1, 1), G = (1, 0, 1) over Z2. Then the lines are
ABD(z = 0), BEC(x = 0), CDF (x = y), DEG(x + y + z = 0), EFA(y =
z), FGB(x = z), GAC(y = 0). If the letters are replaced by their ’numerical’
values these lines correspond exactly to the blocks given in the previous Exam-
ples i). Similarly PG[2, 3] and PG[2, 4] (for which K is F4) are 13 and 21 point
projective geometries corresponding to the difference sets of Example ii) above.

Remark. i) The geometry PG[n, q] also defines a symmetric 2 - design with the
elements of S being the points and the n− 1 dimensional subspaces forming
the blocks. The case n = 3 produces a design with v = q3 + q2 + q + 1, k =
q2 + q +1, λ = q +1 which for q = 2 gives the 2− (15, 7, 3) design of Example
iii) above.

ii) It can be proved that every projective plane (or geometry) on v points corre-
sponds to a difference set in Zv. These are called Singer difference sets, after
J. Singer who investigated them in 1930.

Affine Planes Every projective plane geometry PG[2, q] has a so - called ’line at
infinity’ given by the equation z = 0. If this line and the points on it are removed
the resulting points (x, y, 1) and lines form the affine geometry AG[2, q]. This gives
a 2 - design with b = q2 + q, v = q2, r = q + 1, k = q and λ = 1 where S = K2 and
the blocks are the lines as before. If the last coordinate z = 1 is omitted AG[2, q]
corresponds to the 2 - dimensional vector space over the field K, which is used to
define the field GF [p2] when K = Zp.

Remark. If the above process is reversed by adding a ’line at infinity’ z = 0 then
the corresponding projective geometry is ’recovered’. Also for each n, q there is an
affine geometry AG[n, q] related to PG[n, q].


