Behandelte Themen und Beispiele der großen Übung der 9. Woche

Thema: Extremwertaufgaben in mehreren Variablen:

Am Beispiel $f(x,y) = x^2 + y^2$ (Rotationsparaboloid) lernen wir, wie man Extrema ausrechnet: Notwendige Bedingung: Ableitung $\nabla f = (f'_x, f'_y) \stackrel{!}{=} (0,0)$. Hier also 2x = 0 und 2y = 0. Also x = y = 0. Es gibt also einen stationären Punkt. Hessematrix aufstellen. Hier $H_f = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. 2 positive Eigenwerte (det H > 0 und $f''_{xx} > 0$).

Analog kann man die Funktionen $f(x,y) = -x^2 - y^2$ (Maximum), $f(x,y) = x^2 - y^2$ (Sattelpunkt) betrachten. Weiter besprochen wurden: $f(x,y) = -x^2 + y^3$, $f(x,y) = x^2 + y^4$ und $f(x,y) = x^2 + 7xy + y^2$. Zwei weitere berechnete (umfangreichere) Beispiele:

 $f(x,y)=\frac{1}{x}+\frac{1}{y}+\frac{16}{3}x^3+\frac{16}{3}y^3$. 4 stationäre Punkte, darunter ein Maximum, ein Minimum, zwei Sattelpunkte. Die Extrema sind relative bzw. lokale Extrema. Globale Extremwerte gibt es nicht.

 $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2.$

Berechnen der partiellen Ableitungen ergibt: $f'_x = 4x^3 - 4x + 4y = 0$ und $f'_y = 4y^3 + 4x - 4y = 0$. Addition ergibt $4(x^3 + y^3) = 0$ und daraus y = -x. Wenn man dies widerum einsetzt, erhält man $4x^3 - 8x = 0$, also x = 0 bzw. $x = \pm \sqrt{2}$. Da durch den x-Wert hier y eindeutig festgelegt ist, hat man drei stationäre Punkte.

2 davon sind lokale Minima. (Dies folgt aus der Hessematrix). Bei (0,0) liegt aber ein Sattelpunkt vor: Da die Determinante der Hessematrix 0 ist, muss man aber schon etwas genauer hinsehen, um dies zu sehen. Hier erkennt man den Sattelpunkt, wenn man sich z.B. einerseits entlang der x-Achse dem Nullpunkt nähert: $f(x,0) = x^4 - 2x^2 = x^2(x^2 - 2)$ ist für kleine x negativ. Wenn man sich andererseits entlang der Winkelhalbierenden y = x nähert, sind die Werte alle positiv: $f(x,x) = 2x^4$. So etwas kann es bei Extremwerten nicht geben!

Bemerkung: Es gibt zwei Minima, aber kein Maximum. Bei stetigen Funktionen einer Variablen kann es das nicht geben!