Problem sheet 1
2018
Codierungstheorie und Kryptographie

Ex. 1
Suppose a binary repetition code of length 5 is used for a binary symmetric channel with (symbol error) crossover probability p. Calculate the word error probability, i.e. the probability that a word of length 5 is incorrectly received, even after error correction. Evaluate this probability if $p=0.1$.

Ex. 2

We want to find the best possible 3 -ary (n, M, d) code, where $q=3, n=3$ is the word length, M is the number of codewords, and $d=2$ is the minimum distance of the code. What is the largest M one can use?
a) Show that a 3 -ary $(3, M, 2)$-code must have $M \leq 9$.
b) Show that a 3 -ary (3, 9, 2)-code exists. (Hint: find three codewords starting with 0 , and three codewords starting with 1 , and three codewords starting with 2).

Ex. 3

Let $E_{n} \subset F_{2}^{n}$ denote the set of all vectors with even weights. Deduce that E_{n} is the code that is obtained by adding a parity check to the code $C=F_{2}^{n-1}$. Deduce that E_{n} is an $\left(n, 2^{n-1}, 2\right)$-code.

Ex. 4
Prove that $A_{q}(3,2)=q^{2}$.

Ex. 5

Show: If a binary (n, M, d)-code exists, with d even, then there also exists a binary (n, M, d)-code in which all codewords haven even weight.

Ex. 6

Each (properly published) book gets a unique ISBN number (international standard book number). This is a 10 -digit codeword. The first digit stands for the country/language, the next few digits for the publisher. Then some digits for a number assigned by the publisher, the very last digit is a checksum. (A large publisher gets a short publisher identification and can thus use more digits for its own books, a small publisher gets a longer publisher identification. This alone leads to interesting questions but we leave these aside.)
For example, the recommended text book by Ray Hill has the number
ISBN 0-19-853804-9
ISBN 0-19-853803-0 (for the paperback edition).
Here the first 0 stands for english, the 19 for Oxford University Press.
Let $x_{1} x_{2} \cdots x_{10}$ be the ISBN number (codeword). The check bit x_{10} is chosen such that the whole codeword satisfies $\sum_{i=1}^{10} i x_{i} \equiv 0 \bmod 11$.
a) Show that $x_{10}=\sum_{i=1}^{9} i x_{i} \equiv 0 \bmod 11$.

Note that the last symbol can be any of 11 eleven values. So, one uses in addition to $0,1, \ldots, 9$ the symbol $X=10$.
b) Show that this code can be used in the following way: To detect any single error and to detect a double error created by the transposition of two digits (example $152784 \leftrightarrow 158724$).
Would this also work, if you use a similar code mod 15 instead of mod 11 ?
c) Can this method be used to correct one single error?
d) Discuss the advantages of this method for the practical use (to order books in a bookshop etc.).
e) What is the minimum distance of any two ISBN numbers?
f) Consider a different code C_{2}, where one uses as before 10 digits but does not use a weighted sum, but $\sum_{i=1}^{10} x_{i} \equiv 0 \bmod 11$.
What would be the disadvantage, compared with the ISBN code?

Ex. 7

Design a guessing game as follows:
Tom thinks of an integer $w \in\{0, \ldots, 15\}$. Scarlett aksks four questions, which Tom correctly answers with yes or no, and Scarlett then tells Tom the number he had chosen.
In a second round Tom is allowed to lie once. Again he thinks of a number $w \in\{0, \ldots, 15\}$. Which questions (strategy) should Scarlett use, and how many questions does she need to find Tom's number? (In other words, give a best possible strategy for Scarlett. Describe it, if possible, in a way that involves coding (which code?))
The strategy can (possibly?) be implemented as follows:
Scarlett's questions are equivalent to "Is $w \in A_{i}$, where $A_{i} \subset\{0, \ldots 15\}$?" In this way, Scarlett can ask all questions simultaneously, and in particular the answers to the first questions do not influence the later *questions*. (Has this last property any potential application?)

