20. Decipher the following text, (the plain text is english.) It's a world famous cryptogram.
$53 \ddagger \ddagger \dagger 305)) 6 * ; 4826) 4 \ddagger) .4 \ddagger) ; 806 * ; 48 \dagger 8$
【60)) $85 ; ;] 8 * ;: \ddagger * 8 \dagger 83(88) 5 * ; 46(; 88 * 96$
$* ? ; 8) * \ddagger(; 485) ; 5 * \dagger 2: * \ddagger(; 4956 * 2(5 * 4) 8$
【 $8 * ; 4069285) ;) 6 \dagger 8) 4 \ddagger \ddagger ; 1(\ddagger 9 ; 48081 ; 8: 8 \ddagger$
$1 ; 48 \dagger 85 ; 4) 485 \dagger 528806 * 81(\ddagger 9 ; 48 ;(88 ; 4$ $(\ddagger ? 34 ; 48) 4 \ddagger ; 161 ;: 188 ; \ddagger ? ;$
21. Bob chooses $p=101, q=113$. Compute $n, \varphi(n)$. Bob chooses $b=3533$. Test if b is admissable. Compute (in detail) $b^{-1} \bmod n$ and a.
Alice wants to send the message 9726 . How does she encrypt, and how does Bob decrypt?
Apply the square and multiply algorithm for large powers.
22. a) RSA is insecure, if one can factor $n=p q$. If the primes p and q are very close, then one can factor n with a few attempts. Write $n=56759$ as a difference of two squares $n=s^{2}-t^{2}$ and use this to factor n.
b) Now analyze the situation more generally and prove that $q<p \leq$ $(1+\varepsilon) \sqrt{n}$ implies that one has to test at most $\frac{\varepsilon^{2}}{2} \sqrt{n}$ many values s. Assuming that $n=10^{100}$ and that one can do 10^{20} tests. Give a lower on the difference $p-q$.
23. The following algorithms factors an integer $n=p n^{\prime}$, if $p-1$ consists of small prime power factors $q \leq B$ only.
$a_{1}=2$
$\{$ for $j=2$ to B
$a_{j}=a_{j-1}^{j} \bmod n$
\}
$d=\operatorname{gcd}\left(a_{B}-1, n\right)$.
If $1<d<n$, then d is a divisor of n.

Prove that the algorithms finds a divisor, if all prime power factors of $p-1$ are $q \leq B$.
Hints $(p-1) \mid B!$, and choose $a \equiv 2^{B!} \bmod n$.
Now let $n=15770708441$ and $B=180$, compute a and hence find a divisor.
Note: 1) as B ! is quite large, one does not really compute $2^{B!}$, but rather $2^{B!} \bmod n$. You can always keep the numbers small.
2) Also, you are not supposed to compute $\varphi(n)$, as this would require factoring.
24. In this exercise we show that RSA is not secure against a chosen cipher text attack. Given a cipher text y, choose another cipher text y^{\prime}, such that your knowledge yof $x^{\prime}=d_{K}\left(y^{\prime}\right)$ allows to compute $x=d_{K}(y)$. (Hint compare $e_{K}\left(x_{1}\right) e_{K}\left(x_{2}\right) \bmod n$ and $e_{K}\left(x_{1} x_{2} \bmod n\right)$.)
25. Factor $n=256961$ using the random squares algorithm, with factor base $\{-1,2,3,5,7,11,13,17,19,23,29,31\}$. Test the integers $z \geq 500$ until you find $x^{2} \equiv y^{2} \bmod n$, and find the factorization.

