
1

Problem sheet 5
2020

Codierungstheorie und Kryptographie

33. Decipher the following text, (the plain text is english.) It’s a world famous
cryptogram.

53 ‡ ‡ † 305))6∗; 4826)4 ‡ .)4‡); 806∗; 48 † 8
¶60))85; ; ]8∗; : ‡ ∗ 8 † 83(88)5 ∗ †; 46(; 88 ∗ 96
∗?; 8) ∗ ‡(; 485); 5 ∗ †2 : ∗ ‡ (; 4956 ∗ 2(5 ∗ −4)8
¶8∗; 4069285); )6 † 8)4 ‡ ‡; 1(‡9; 48081; 8 : 8 ‡
1; 48 † 85; 4)485 † 528806 ∗ 81(‡9; 48; (88; 4
(‡?34; 48)4‡; 161; : 188; ‡?;

34. For RSA: Bob chooses p = 101, q = 113. Compute n, ϕ(n). Bob chooses
b = 3533. Test if b is admissable. Compute (in detail) b−1 mod n and a.
Alice wants to send the message 9726. How does she encrypt, and how
does Bob decrypt?

Apply the square and multiply algorithm for large powers.

35. a) RSA is insecure, if one can factor n = pq. If the primes p and q
are very close, then one can factor n with a few attempts. Write
n = 56759 as a difference of two squares n = s2 − t2 and use this to
factor n.

b) Now analyze the situation more generally and prove that q < p ≤
(1 + ε)

√
n implies that one has to test at most ε2

2

√
n many values

s. Assuming that n = 10100 and that one can do 1020 tests. Give a
lower bound on the difference p− q.

36. The following algorithms factors an integer n = pn′, if p − 1 consists of
small prime power factors q ≤ B only.
a1 = 2
{ for j = 2 to B
aj = ajj−1 mod n
}
d = gcd(aB − 1, n).
If 1 < d < n, then d is a divisor of n.

Prove that the algorithms finds a divisor, if all prime power factors of p−1
are q ≤ B.
Hints (p− 1) | B!, and choose a ≡ 2B! mod n.

Now let n = 15770708441 and B = 180, compute a and hence find a
divisor.

Note: 1) as B! is quite large, one does not really compute 2B!, but rather
2B! mod n. You can always keep the numbers small.
2) Also, you are not supposed to compute ϕ(n), as this would require
factoring.



2

37. In this exercise we show that RSA is not secure against a chosen cipher
text attack. Given a cipher text y, choose another cipher text y′, such
that your knowledge of x′ = dK(y′) allows to compute x = dK(y). (Hint:
compare eK(x1)eK(x2) mod n and eK(x1x2 mod n).)

38. Factor n = 256961 using the random squares algorithm, with factor base
{−1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}. Test the integers z ≥ 500 until you
find x2 ≡ y2 mod n, and find the factorization.

39. (a) (Probably you did this one in a probability course): Let S be a set
of q persons, randomly chosen from a large set of persons whose
birthdays are uniformly independently distributed (u.i.d.) over the
365 days of a year. Determine the minimum number q such that the
probability that there are at least two persons (among the q) having
the same date as their birthday exceeds p1 = 1

2 or p2 = 0.999. How
does q change, if the concept of birthday is appropriately generalized,
so that all persons have a u.i.d. label b ∈ {1, . . . , N}, determine q as
a function of N and p.

(b) Fix x ∈ ZN , and randomly (u.i.d.) choose r1, · · · , rq ∈ ZN . Show,

when q = b
√

2Nc the probability that there exist i and j such that
ri = x + rj mod N is at least p = 0.6.

(c) Let p be a prime, and let g ∈ Z∗p be a primitive root. Show that
one can find in Z∗p the discrete logarithm of X to base g, if one can
find r and s with gr = Xgs mod p. Use this and part b) to describe
an algorithm which solves in O(

√
P ) steps the discrete logarithm

problem, with high probability.

40. Read about “birthday paradox attack”. Apply it to signature schemes,
where you want to persuade Alice to sign a document m, which she refuses
to sign.

Hint: create many essentially identical versions of m, (but with tiny
changes, such as extra spaces), and also a quite different document M
with many essentially identical versions that Alice would agree to sign.

How does the underlying idea of the birthday paradox help you to forge
Alice’s signature on your preferred document m (or any of its versions)?

41. If the message m is long, (say a book of 500 pages!), and one performs
any operation such as ma mod n, then this is a quite long=expensive com-
putation. Suggest how one can keep high security but reduce the costs.
(There may be plenty of ideas, but also read about hash functions.)


