- 33. Es seien zwei Funktionen definiert durch $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$ und $g(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$.
 - (a) Zeigen Sie, dass die Potenzreihe von g für alle $x \in \mathbb{C}$ konvergiert, d.h., dass die Funktion für $g: \mathbb{C} \to \mathbb{C}$ definiert ist.
 - (b) Beweisen Sie, dass $f(x) = \frac{1}{2}(\exp(x) \exp(-x))$ und $g(x) = \frac{1}{2}(\exp(x) + \exp(-x))$ gilt.
 - (c) Beweisen Sie, dass $g^2(x) f^2(x) = 1$ gilt.
 - (d) Weisen Sie g(x + y) = g(x)g(y) + f(x)f(y) nach.
 - (e) Benutzen Sie die Potenzreihe, um f(ix) durch $\sin(x)$ auszudrücken.
 - (f) Finden Sie analog einen Ausdruck für g(ix).
- 34. Es sei $\tan x = \frac{\sin x}{\cos x}$. Berechnen Sie die ersten Koeffizienten der Potenzreihe der Tangensfunktion (entwickelt um $x_0 = 0$), bis zum Koeffizienten von x^7 . Anleitung: Es sei $\frac{\sum_{n=0}^{\infty} a_n x^n}{\sum_{n=0}^{\infty} b_n x^n} = \sum_{n=0}^{\infty} c_n x^n$. Wenn die a_n und b_n bekannt sind, kann man nacheinander c_0, c_1, \ldots ausrechnen.
- 35. Drücken Sie $\sin(5s)$ nur durch $\sin(s)$ (und Potenzen hiervon) aus.
- 36. Geben Sie alle komplexen Lösungen von $e^z = i$ an.
- 37. (a) Geben Sie alle rellen Lösungen x von $\cosh x = 2$ an.
 - (b) Die komplexe Funktion cosh z ist analog zur rellen definiert, für alle $z \in \mathbb{C}$. Entweder über die Potenzreihe, oder als cosh $z = \frac{e^z + e^{-z}}{2}$. Geben Sie alle komplexen Lösungen z von cosh $z = \frac{1}{2}$ an.
- 38. Geben Sie alle komplexen Lösungen von $z^6 + (2 6i)z^3 = 11 + 2i$ an. Geben Sie die Lösungen jeweils in kartesischen und in Polarkoordinaten an. (Hinweis: Lösen Sie mit $w = z^3$ zunächst eine quadratische Gleichung in w.)

Teilnehmer von Analysis T1: bitte zur Prüfung vom 30.11. anmelden (falls noch nicht geschehen). (Teilnehmer von Analysis T1a (Telematik) sollten bereits automatisch angemeldet sein).