- 29. Man skizziere die folgenden Punktmengen in der Gauß'schen Zahlenebene:
 - (a) $\{z \in \mathbb{C} \mid |z+1| < |z-1|\}$
 - (b) $\{z \in \mathbb{C} \mid 1 < |z 3i| < 7\}$
 - (c) $\{z \in \mathbb{C} \mid |z^2 z| < 1\}$
 - (d) $\{z \in \mathbb{C} \mid z\bar{z} + z + \bar{z} < 0\}$
 - (e) $\{z \in \mathbb{C} \mid |z i| + |z + i| \le 3\}$
 - (f) $\{z \in \mathbb{C} \mid \text{Im } z^2 < 4\}$
- 30. Für die nachstehende Funktionen ist zu jedem $\epsilon > 0$ ein $\delta_{\epsilon} > 0$ so zu bestimmen, dass aus $|x - x_0| < \delta_{\epsilon}$ die Beziehung $|f(x) - f(x_0)| < \epsilon$ folgt.

$$f(x) = x^3$$
, $D(f) = \mathbb{R}$.

31. Untersuchen Sie, in welchen Punkten die folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$ stetig sind:

(a)
$$f(x) = \begin{cases} -x & \text{falls } x < 0 \text{ oder } x > 1 \\ x^2 & \text{sonst} \end{cases}$$
 (Skizze!)

(b)
$$f(x) = \begin{cases} x^2 + 2x + 1 & \text{falls } -1 \le x \le 0 \\ 1 - x & \text{sonst} \end{cases}$$
 (Skizze!)

Untersuchen Sie die folgenden Funktionen auf Stetigkeit in $[-\pi,\pi]$:

(c)
$$f(x) = \begin{cases} \sin\frac{1}{x} & \text{falls } x \neq 0 \\ 0 & \text{falls } x = 0 \end{cases}$$
 (Skizze!)

(d)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{falls } x \neq 0 \\ 0 & \text{falls } x = 0 \end{cases}$$
 (Skizze!)

- 32. Es seien zwei Funktionen definiert durch $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$ und $g(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$
 - (a) Zeigen Sie, dass die Potenzreihe von g für alle $x \in \mathbb{C}$ konvergiert, d.h., dass die Funktion für $g: \mathbb{C} \to \mathbb{C}$ definiert ist.
 - (b) Beweisen Sie, dass $f(x) = \frac{1}{2}(\exp(x) \exp(-x))$ und $g(x) = \frac{1}{2}(\exp(x) + \exp(-x))$
 - (c) Beweisen Sie, dass $g^2(x) f^2(x) = 1$ gilt.
 - (d) Weisen Sie g(x+y) = g(x)g(y) + f(x)f(y) nach.
 - (e) Benutzen Sie die Potenzreihe, um f(ix) durch $\sin(x)$ auszudrücken.
 - (f) Finden Sie analog einen Ausdruck für g(ix).
- 33. Es sei $\tan x = \frac{\sin x}{\cos x}$. Berechnen Sie die ersten Koeffizienten der Potenzreihe der Tangens-

funktion (entwickelt um $x_0 = 0$), bis zum Koeffizienten von x^7 . Anleitung: Es sei $\sum_{n=0}^{\infty} \frac{a_n x^n}{b_n x^n} = \sum_{n=0}^{\infty} c_n x^n$. Wenn die a_n und b_n bekannt sind, kann man nacheinander c_0, c_1, \ldots ausrechnen.

34. Drücken Sie $\sin(5s)$ nur durch $\sin(s)$ (und Potenzen hiervon) aus.

Erinnerung: bitte zur T1-Klausur im Tug-online anmelden. (Für T1a machen wir dies direkt).