- 35. Geben Sie alle komplexen Lösungen von $e^z = i$ an.
- 36. (a) Geben Sie alle rellen Lösungen x von $\cosh x = 2$ an.
 - (b) Die komplexe Funktion cosh z ist analog zur rellen definiert, für alle $z \in \mathbb{C}$. Entweder über die Potenzreihe, oder als $\cosh z = \frac{e^z + e^{-z}}{2}$. Geben Sie alle komplexen Lösungen z von $\cosh z = \frac{1}{2}$ an.
- 37. Geben Sie alle komplexen Lösungen von $z^6 + (2 6i)z^3 = 11 + 2i$ an. Geben Sie die Lösungen jeweils in kartesischen und in Polarkoordinaten an. (Hinweis: Lösen Sie mit $w = z^3$ zunächst eine quadratische Gleichung in w.)
- 38. Beweisen Sie: Ist $f:[a,b] \to [a,b]$ stetig, so gibt es ein $\xi \in [a,b]$ mit $f(\xi) = \xi$. Der Punkt ξ heißt Fixpunkt der Funktion f. (Hinweis: betrachten Sie die Funktion g(x) = f(x) x)

Erinnerung: bitte zur T1-Klausur im Tug-online anmelden. (Für T1a haben wir dies gemacht).

Genaue Raumeinteilung erfolgt noch.

Prüfungsstoff für T1: insbesondere die Übungsblätter 1-7 für T1a insbesondere die Übungsblätter 4-7

Es sind keine elektronischen Hilfsmittel, also auch keine Taschenrechner, erlaubt.