
1

Exercise Sheet 1 Combinatorics
2014/15

Ex. 1
Let ex(n,C3) denote the maximum number of edges a graph on n vertices can
have, without containing a triangle (=cyclic graph of length 3) as a subgraph.
Determine ex(n,C3) as good as possible.

Ex. 2
Let ex(n,C4) denote the maximum number of edges a graph on n vertices can
have, without containing a cyclic graph of length 4.
Let p be prime, and let the set of vertices V be V = Zp×Zp. The vertices (x, y)
and (x′, y′) are joined by an edge if x + x′ = yy′. Show that (x, y) has at least
p − 1 neighbours. From this, show that |E| ≥ 1

2p
2(p − 1). Show that there is

no 4-cycle. (Suppose that (x, y) has two distinct neighbours (x1, y1) 6= (x2, y2),
(say). Show that, by the definition of the edges, y and then also x is uniquely
defined.)
Would the same type of proof work if p is not a prime? (if yes, for which other
values does it work?, if no, why not?)
Compare the new result on ex(n,C4) with the previous ones.

Ex. 3
Given a set of n distinct points p1, . . . pn ∈ P in the Euclidean plane, and a
set of n distinct lines l1, . . . , ln. Prove that the number of point-line incidences
(pi, lj) with pi ∈ lj is O(n3/2).
Hint: use the graph theoretic results we studied so far.

Ex. 4
Verify the number theoretic details (Lemma 1.8) of the proof of the Bruck-
Ryser-Chowla theorem, see e.g. lecture notes by Simeon Ball, Zsuzsa Weiner,
linked to on webpage.

Ex. 5 (Maybe with computer)
Give a list of 4 mutually orthogonal Latin squares of order 5.

Now let p = 3. Find an irreducible quadratic polynomial over F3. From this
construct a finite field of 9 elements. (give its addition and multiplication ta-
ble). From this, maybe with computer, give a list of 8 mutually orthogonal latin
squares of order 9.

Ex. 6 (With computer)
Determine the number of Latin squares of order 6, which are essentially distinct.
(Think about “normalizing” the Latin squares.) Try to prove: There are no two
orthogonal Latin squares of order 6.

[Maybe you should start counting problems which are way too hard and tell me later the result...]
Please cross the problems you did in the Kreuze-system, link at webpage below. Deadline, Tuesday
21st October, 10am.

http://www.math.tugraz.at/∼elsholtz/WWW/lectures/ws14/kombinatorik/vorlesung.html

Please note that by Nawi-regulatations, everybody who takes part in the exercise programme will

receive a grade. (Deregistration from the Übungen is possible during October).
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Ex. 7
Study the affine and the projective plane of order 4, i.e. give a list of all lines,
and try to visualize them.
(Hint: you have to work with the finite field F4, not with Z4).

Ex. 8
A projective space satisfies the following axioms:

P1) For any pair of two points, there is a unique line going through it.

P2) Let p, q, r, s be four distinct points. If the lines pq and rs intrsect, then
the lines pr and qs intersect as well.

P3) Each line contains at least three points.

P4) There exist three points, not all on one line.

Further, let V be a vector space of dimension d ≥ 3 over a field of q elements.
Let U1(V ) and U2(V ) denote the one- and two-dimensional subspaces of V .
Let P (V ) = (U1(V ), U2(V ),⊆) denote a geometry, where the points are the
one-dimensional subspaces, the lines are the two-dimensional subspaces, with
canonical subset-inclusion.
a) Discuss the difference to a projective plane.
b) Prove that P (V ) is a projective space.
c) Prove that P (V ) is a 2− (qd−1 + qd−2 + · · ·+ q + 1, q + 1, 1) design.

Ex. 9
Study a three-dimensional projective space over F2, i.e. determine the number
of points, lines, and describe the lines. (How do the planes look like? How many
are there?)

Ex. 10
Prove the existence of a Hadamard-matrix of order 2n by verifying the construc-
tion below: Let X = {1, . . . , n}. Let S1, . . . , S2n be the 2n subsets of X, (in any
order). Define H = (hij) by:

hij = (−1)|Si∩Sj |.

Ex. 11
a) Prove: if Hadamard matrices of order n1 and n2 exist, then a Hadamard
matrix of order n1n2 exists.

b) Find a Hadamard matrix of order 12.

Ex. 12 (Small excursion to coding theory)
Let C be the set of words of length 8, consisting of all cyclic shifts of the three
words below 11010000, 11100100, 10101010, and of 00000000, 11111111. (What
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is |C| ?).
a) Show that any two words differ in at least two positions. How many compar-
isons are required to do this? (The real answer is smaller than the trivial upper
bound).
b) Try the following:
b1) either find a set with more than |C| words, where any two elements differ
in at least three positions.
b2) or prove that the number |C| is the maximum number with this property.
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Ex. 13
Let (G,+) be a finite abelian group. A family of sets Bi ⊂ G is called a difference
family, if for each d ∈ G\{0} there is a triple (i, b, b′) with i ∈ {1, . . . , s} and
b, b′ ∈ Bi such that d = b− b′. If |G| = v and |Bi| = k, for all i, this is called a
(v, k)-difference family.
Prove that D = (G,Bi+g : g ∈ G, i ∈ {1, . . . , s},∈) defines a 2−(v, k, 1) design.
Let v = 18n + 1. Define
Bi = {0, 3i− 2, 4n + 2i}, i = 1, . . . , n
Bn+i = {0, 3i− 1, 8n + 2i}, i = 1, . . . , n
B2n+i = {0, 3i, 6n + 1 + i}, i = 1, . . . , n− 1
B3n = {0, 3n, 6n + 1}.
Show that this is a (18n + 1, 3)-difference family in (Z18n+1,+).

Ex. 14
Construct a 2− (21, 3, 1) design. Show that there is no such construction based
on difference designs.

Ex. 15
Prove the existence of 2− (6n + 1, 3, 1) designs.

Ex. 16
Prove necessary conditions on v for the existence of a 2− (v, 4, 1) design.

Ex. 17
Inform yourself about results of Teirlinck on designs, (e.g. “Non-trivial t-designs
without repeated blocks exist for all t”)
Inform yourself about results of Betten, Kerber, (and maybe other colleagues
from Bayreuth) about t-designs, particularly t = 6, 7.
Inform yourself about “Wilson’s theorem”, (no proof needed...).
Inform yourself abot Peter Keevash very recent result on designs “The existence
of designs”, (no proof needed...).
(No proofs needed at all, but list a few highlights of the development of modern
results on t-designs.)

Ex. 18
Prove that the 2− (4n− 1, 2n− 1, n− 1)-design (i.e. a Hadamard design) can
be extended to a 3− (4n, 2n, n− 1)-design.

Ex. 19
Study Theorem 4.9 of the lecture notes of Anderson and Honkola, (A Short
Course in Combinatorial Designs.)
http://www.utu.fi/fi/yksikot/sci/yksikot/mattil/opiskelu/kurssit/Documents/comb2.pdf
Verify (or correct) the details.



5

Ex. 20
Let C be the (linear) code over F8

2, defined by all 16 subsums over the 4 rows of

the generator matrix G =


1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

. Prove that 14 words

have weight 4, (all words apart from 00000000 and 11111111). Show that these
14 words define a 3− (8, 4, 1) design .

Ex. 21
Let C be the (linear) code C ⊂ F12

3 , defined by all 36 = 729 linear combinations
over the 6 rows of the generator matrix

G =


1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 −1 −1 1 −1
0 0 1 0 0 0 1 0 1 −1 −1 −1
0 0 0 1 0 0 −1 1 0 1 −1 −1
0 0 0 0 1 0 −1 −1 1 0 1 −1
0 0 0 0 0 1 1 −1 −1 1 0 −1

 .

Prove (possibly by a computer check) that the minimal non-zero weight (of all
codewords) is 6. How many words have weight 6? (Note that they come in
pairs, c and −c, Now, from this one finds 132 codewords which are the block
of a 5− (12, 6, 1) design, the so-called Mathieu 5-design on 12 points. (Using a
computer it can be easily tested that each subset of 5 of the 12 positions occurs
exactly once).
How often do quadruples, triples, pairs, single elements occur, respectively?

Do these 132 words form an e-error correcting code? If yes, for which e? Is it a
perfect code?
Now, delete the first column of G. What does it mean in terms of a code (parity
check). Does this give a 4− (11, 5, 1) design? Is the corresponding code perfect?
((For comparison, the quite similar matrix

G =


1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 −1 −1 −1 −1
0 0 1 0 0 0 −1 0 1 −1 −1 −1
0 0 0 1 0 0 −1 −1 0 1 −1 −1
0 0 0 0 1 0 −1 −1 −1 0 1 −1
0 0 0 0 0 1 1 −1 −1 −1 0 −1

 .

does not work, the minimum (non-zero) weight is 5 etc. ))


