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Exercise Sheet 1 Combinatorics
2014/15

Ex. 1
Let ex(n,C3) denote the maximum number of edges a graph on n vertices can
have, without containing a triangle (=cyclic graph of length 3) as a subgraph.
Determine ex(n,C3) as good as possible.

Ex. 2
Let ex(n,C4) denote the maximum number of edges a graph on n vertices can
have, without containing a cyclic graph of length 4.
Let p be prime, and let the set of vertices V be V = Zp×Zp. The vertices (x, y)
and (x′, y′) are joined by an edge if x + x′ = yy′. Show that (x, y) has at least
p − 1 neighbours. From this, show that |E| ≥ 1

2p
2(p − 1). Show that there is

no 4-cycle. (Suppose that (x, y) has two distinct neighbours (x1, y1) 6= (x2, y2),
(say). Show that, by the definition of the edges, y and then also x is uniquely
defined.)
Would the same type of proof work if p is not a prime? (if yes, for which other
values does it work?, if no, why not?)
Compare the new result on ex(n,C4) with the previous ones.

Ex. 3
Given a set of n distinct points p1, . . . pn ∈ P in the Euclidean plane, and a
set of n distinct lines l1, . . . , ln. Prove that the number of point-line incidences
(pi, lj) with pi ∈ lj is O(n3/2).
Hint: use the graph theoretic results we studied so far.

Ex. 4
Verify the number theoretic details (Lemma 1.8) of the proof of the Bruck-
Ryser-Chowla theorem, see e.g. lecture notes by Simeon Ball, Zsuzsa Weiner,
linked to on webpage.

Ex. 5 (Maybe with computer)
Give a list of 4 mutually orthogonal Latin squares of order 5.

Now let p = 3. Find an irreducible quadratic polynomial over F3. From this
construct a finite field of 9 elements. (give its addition and multiplication ta-
ble). From this, maybe with computer, give a list of 8 mutually orthogonal latin
squares of order 9.

Ex. 6 (With computer)
Determine the number of Latin squares of order 6, which are essentially distinct.
(Think about “normalizing” the Latin squares.) Try to prove: There are no two
orthogonal Latin squares of order 6.

[Maybe you should start counting problems which are way too hard and tell me later the result...]
Please cross the problems you did in the Kreuze-system, link at webpage below. Deadline, Tuesday
21st October, 10am.

http://www.math.tugraz.at/∼elsholtz/WWW/lectures/ws14/kombinatorik/vorlesung.html

Please note that by Nawi-regulatations, everybody who takes part in the exercise programme will

receive a grade. (Deregistration from the Übungen is possible during October).
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Ex. 7
Study the affine and the projective plane of order 4, i.e. give a list of all lines,
and try to visualize them.
(Hint: you have to work with the finite field F4, not with Z4).

Ex. 8
A projective space satisfies the following axioms:

P1) For any pair of two points, there is a unique line going through it.

P2) Let p, q, r, s be four distinct points. If the lines pq and rs intrsect, then
the lines pr and qs intersect as well.

P3) Each line contains at least three points.

P4) There exist three points, not all on one line.

Further, let V be a vector space of dimension d ≥ 3 over a field of q elements.
Let U1(V ) and U2(V ) denote the one- and two-dimensional subspaces of V .
Let P (V ) = (U1(V ), U2(V ),⊆) denote a geometry, where the points are the
one-dimensional subspaces, the lines are the two-dimensional subspaces, with
canonical subset-inclusion.
a) Discuss the difference to a projective plane.
b) Prove that P (V ) is a projective space.
c) Prove that P (V ) is a 2− (qd−1 + qd−2 + · · ·+ q + 1, q + 1, 1) design.

Ex. 9
Study a three-dimensional projective space over F2, i.e. determine the number
of points, lines, and describe the lines. (How do the planes look like? How many
are there?)

Ex. 10
Prove the existence of a Hadamard-matrix of order 2n by verifying the construc-
tion below: Let X = {1, . . . , n}. Let S1, . . . , S2n be the 2n subsets of X, (in any
order). Define H = (hij) by:

hij = (−1)|Si∩Sj |.

Ex. 11
a) Prove: if Hadamard matrices of order n1 and n2 exist, then a Hadamard
matrix of order n1n2 exists.

b) Find a Hadamard matrix of order 12.

Ex. 12 (Small excursion to coding theory)
Let C be the set of words of length 8, consisting of all cyclic shifts of the three
words below 11010000, 11100100, 10101010, and of 00000000, 11111111. (What
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is |C| ?).
a) Show that any two words differ in at least two positions. How many compar-
isons are required to do this? (The real answer is smaller than the trivial upper
bound).
b) Try the following:
b1) either find a set with more than |C| words, where any two elements differ
in at least three positions.
b2) or prove that the number |C| is the maximum number with this property.
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Ex. 13
Let (G,+) be a finite abelian group. A family of sets Bi ⊂ G is called a difference
family, if for each d ∈ G\{0} there is a triple (i, b, b′) with i ∈ {1, . . . , s} and
b, b′ ∈ Bi such that d = b− b′. If |G| = v and |Bi| = k, for all i, this is called a
(v, k)-difference family.
Prove that D = (G,Bi+g : g ∈ G, i ∈ {1, . . . , s},∈) defines a 2−(v, k, 1) design.
Let v = 18n + 1. Define
Bi = {0, 3i− 2, 4n + 2i}, i = 1, . . . , n
Bn+i = {0, 3i− 1, 8n + 2i}, i = 1, . . . , n
B2n+i = {0, 3i, 6n + 1 + i}, i = 1, . . . , n− 1
B3n = {0, 3n, 6n + 1}.
Show that this is a (18n + 1, 3)-difference family in (Z18n+1,+).

Ex. 14
Construct a 2− (21, 3, 1) design. Show that there is no such construction based
on difference designs.

Ex. 15
Prove the existence of 2− (6n + 1, 3, 1) designs.

Ex. 16
Prove necessary conditions on v for the existence of a 2− (v, 4, 1) design.

Ex. 17
Inform yourself about results of Teirlinck on designs, (e.g. “Non-trivial t-designs
without repeated blocks exist for all t”)
Inform yourself about results of Betten, Kerber, (and maybe other colleagues
from Bayreuth) about t-designs, particularly t = 6, 7.
Inform yourself about “Wilson’s theorem”, (no proof needed...).
Inform yourself abot Peter Keevash very recent result on designs “The existence
of designs”, (no proof needed...).
(No proofs needed at all, but list a few highlights of the development of modern
results on t-designs.)

Ex. 18
Prove that the 2− (4n− 1, 2n− 1, n− 1)-design (i.e. a Hadamard design) can
be extended to a 3− (4n, 2n, n− 1)-design.

Ex. 19
Study Theorem 4.9 of the lecture notes of Anderson and Honkola, (A Short
Course in Combinatorial Designs.)
http://www.utu.fi/fi/yksikot/sci/yksikot/mattil/opiskelu/kurssit/Documents/comb2.pdf
Verify (or correct) the details.
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Ex. 20
Let C be the (linear) code over F8

2, defined by all 16 subsums over the 4 rows of

the generator matrix G =


1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

. Prove that 14 words

have weight 4, (all words apart from 00000000 and 11111111). Show that these
14 words define a 3− (8, 4, 1) design .

Ex. 21
Let C be the (linear) code C ⊂ F12

3 , defined by all 36 = 729 linear combinations
over the 6 rows of the generator matrix

G =


1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 −1 −1 1 −1
0 0 1 0 0 0 1 0 1 −1 −1 −1
0 0 0 1 0 0 −1 1 0 1 −1 −1
0 0 0 0 1 0 −1 −1 1 0 1 −1
0 0 0 0 0 1 1 −1 −1 1 0 −1

 .

Prove (possibly by a computer check) that the minimal non-zero weight (of all
codewords) is 6. How many words have weight 6? (Note that they come in
pairs, c and −c, Now, from this one finds 132 codewords which are the block
of a 5− (12, 6, 1) design, the so-called Mathieu 5-design on 12 points. (Using a
computer it can be easily tested that each subset of 5 of the 12 positions occurs
exactly once).
How often do quadruples, triples, pairs, single elements occur, respectively?

Do these 132 words form an e-error correcting code? If yes, for which e? Is it a
perfect code?
Now, delete the first column of G. What does it mean in terms of a code (parity
check). Does this give a 4− (11, 5, 1) design? Is the corresponding code perfect?
((For comparison, the quite similar matrix

G =


1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 −1 −1 −1 −1
0 0 1 0 0 0 −1 0 1 −1 −1 −1
0 0 0 1 0 0 −1 −1 0 1 −1 −1
0 0 0 0 1 0 −1 −1 −1 0 1 −1
0 0 0 0 0 1 1 −1 −1 −1 0 −1

 .

does not work, the minimum (non-zero) weight is 5 etc. ))
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Ex. 22
On comet 67P/Churyumov-Gerasimenko there are 100 football clubs in the
comet-league. Each pair of clubs plays each other once.
Show that the following is possible:
i) for each n ∈ {0, . . . , 99} there is one club, winning exactly n times.
ii) for each triple {x, y, z} of three clubs there is one other club c(x, y, z) beating
x, y and z. (You can try to find an explicit solution, maybe starting with smaller
numbers, but this seems complicated.) Complete the following outline: Let’s
assume that all games are played by tossing a fair coin. Show: the probability
that there is some triple {x, y, z} such that there is no club beating them all is:
p =

(
100
3

)
( 7
8 )97. Show that p < 1, and think about what this means!

Ex. 23
Revise the notion of group action:
If G is a group and X is a set, then a (left) group action ϕ of G on X is a
function

ϕ : G×X → X : (g, x) 7→ ϕ(g, x)

that satisfies the following two axioms (where we denote ϕ(g, x) as g · x).
1. Compatibility: (∀g, h ∈ G) (∀x ∈ X) : (gh) · x = g · (h · x).
2. Identity: ∀x ∈ X : e ·x = x. (Here, e denotes the identity of the group G.)
(The set X is called a (left) G-set. The group G is said to act on X (on the
left)).
Verify that the following examples are group actions:
a) G is an arbitrary group. Conjugation is an action of G on G : g ·x = gxg−1.
One often writes for the right-action: xg = g−1xg; it satisfies (xg)h = xgh.
b) The symmetric group Sn and its subgroups act on the set {1, . . . , n} by
permuting its elements.

Ex. 24
Determine the cycle index of S2, . . . , S4. (Think about the possible cycle types
of the permutations).

Ex. 25 (Isaacs, Finite group theory, 1A.8.)
Let G be a finite group, let n > 0 be an integer, and let C be the additive group
of the integers modulo n. Let Ω be the set of n-tuples (x1, x2, ..., xn) of elements
of G such that x1 · x2 · · ·xn = 1.
(Here 1 is the identity in G).
(a) Show that C acts on Ω according to the formula (x1, x2, . . . , xn) · k =
(x1+k, x2+k, . . . , xn+k), where k ∈ C and the subscripts are interpreted modulo
n.

(b) Now suppose that n = p is a prime number that divides |G|. Show that p
divides the number of C-orbits of size 1 on Ω, and deduce that the number of
elements of order p in G is congruent to −1 mod p.
Note. In particular, if a prime p divides |G|, then G has at least one element of
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order p. This is a theorem of Cauchy, and the proof in this problem is due to
J. H. McKay. Cauchy’s theorem can also be derived as a corollary of Sylow’s
theorem. Alternatively, a proof of Sylow’s theorem can be based on Cauchy’s
theorem.

Ex. 26
An involution is a map f : S → S with f2 = id.
A beautiful example of the power of an involution is here: Don Zagier: A one-
sentence proof that every prime p ≡ 1 mod 4 is a sum of two squares (Amer.
Math. Monthly 97 (1990), p. 144).
http://people.mpim-bonn.mpg.de/zagier/files/doi/10.2307/2323918/fulltext.pdf
“The involution on the finite set S = {(x, y, z) ∈ N3 : x2 + 4yz = p} defined by

(x, y, z) 7→

 (x + 2z, z, y − x− z) if x < y − z
(2y − x, y, x− y + z) if y − z < x < 2y
(x− 2y, x− y + z, y) if x > 2y

has exactly one fixed point, so |S| is odd and the involution defined by (x, y, z)→
(x, z, y) also has a fixed point. 2”
Work through it and make sure that you understand all(!) details of the proof.
In particular verify the implicitly made claims that the maps are well defined
and are involutions.

Ex. 27
a) Use a book or the internet to get information about the 5 Platonic solids.

How many faces, edges, corners do these have? How many rotations are
there? (which angle, which axis?) Which group is the group of rotations?
(No need to prove this here, this is a rather algebraic question).

b) Study the rotations of the dodecahedron. How many are there? How
many of these have which order? Use the orbit stabilizer theorem, applied
to a) the corners, b) the faces, c) the edges.


