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Ex. 28

a)

Prove that R(3,4) < 10, and with an extra thought: R(3,4) < 9.
Hint: as started in class: Start with 10 vertices. Any vertex V has 9
neighbours. suppose V has 6 (or more) neighbours connected along red
edges. Then by R(3,3) = 6 there must be either a red K, or a blue
K3. Hence V has at most 5 red adjacent edges. Suppose V' has at least
4 neighbours, connected along blue edges, then again either there is a
red K, or a blue Kj.

This proves R(3,4) < 10.

Now, analyzing the proof above, and starting with 9 vertices. What
can you say about the colour of the adjacent edges? In particular prove
that it is not possible that all vertices have exactly five adjacent red
edges. Hence conclude that R(3,4) < 9.

Let G be a graph defined on 8 vertices. The vertices are numbered
from 0 to 7. Colour the edge (x,y) blue if

x—ymod8 € {1,4,7}.

(Here z — y mod 8 is assumed to be respresented by a number from 0
to 7). The edge (z,y) is coloured red if

x —ymod 8 € {0,2,3,5,6}.

Show that G has no red K; and no blue K3. Use this to show that
R(3,4) > 9.

Ex. 29

Now taking the idea of proof of the bound R(3,4) < 10 above, and prove that
R(s,t) < R(s—1,t) + R(s,t — 1). Comparing with the binomial coefficients
evaluate a concrete upper bound (for example using Stirling’s formula) for
s =t and s = 2t, as t goes to infinity.



Ex. 30

a)
b)

Prove that R(4,4) < 18, (easy).

Let X ={0,1,2,...,16} be the set of residues mod 17 and let G be the
complete graph on X. Given z,y € X with x < y, colour the edge
{z,y} red if y — x is equal to a square number modulo 17, and blue
otherwise. (For example, {2, 10} is red because 10 —2 mod 5% mod 17.)
bl) Find all square numbers modulo 17.

b2) Show that if z,y,u € X then {z,y}, {z +u,y + u} and {zu? yu?}
all have the same colour. (Note that one can assume that u # 0).

b3) Prove that G has no monochromatic 4-set. [Hint: use (b2) to
reduce the number of cases that have to be considered.]

b4) What does this imply about R(4,4)?

Ex. 31

a)

Show that an arbitrary 2-colouring of an 4 x 7 board contains the four
corners of a a monochromatic (axis-parallel) rectangle. What about
colouring of an 4 x 6 board?

Show that there exist m and n such that: an arbitrary 2-colouring of an
m x n board contains the 9 squares of a monochromatic (axe-parallel)
3 x 3 subgrid.

For example, columns 1,2,5 in lines 1,3,4 define such a grid).
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For information:

In his book “Timaios” Plato proves that there are at most 5 regular solids.
The proof is a simple folding technique from plane to three-space. He does
not discuss why (for example) a solid like the icosahedron, folded just on one
corner, actually exists.

http://12koerbe.de/pan/timaios6.htm Timaois auf Deutsch

and
http://www.math.tugraz.at/~elsholtz/WWW/lectures/ss00/kogeo/platonl.
pdf

For information

Book XIII of “The Elements” of Euclid shows the existence of the Platonic
solids, by constructions. For example, the lengths of the sides of the icosa-
hedron and dodecahedron are calculated.
http://alephO.clarku.edu/~djoyce/java/elements/bookXIII/bookXIII.html
The classical translation with commentary is by Thomas Heath (based on
the best available source, a comparison of various handwritten manuscripts,
which are actually slightly different versions of the text, due to Heiberg)
http://www.wilbourhall.org/pdfs/Heath_Euclid_III.pdf (large file!), start-
ing at page 481.

Ex. 32
A much simpler construction of the icosahedron is due to Luca Pacioli (14451517):
Look it up: (pages 22 and 24) of John Stillwell, Mathematics and Its History

http://books.google.at/books?7id=3bE_AAAAQBAJ&printsec=frontcover&hl=
de#v=onepage&q&f=false

or http://en.wikipedia.org/wiki/Golden_rectangle

The construction starts with three (orthogonally placed) “golden” rectangles,

of side ratio @ : 1. Prove that the resulting triangles (see triangle ABC
in Stillwell’s book) are equilateral, and then observe by symmetry that all
triangles are of the same type.
Let 7 = @ = 1.61... The twelve vertices of the icosahedron (with edge
length 2) are:

(0, £7,£1), (£1,0,%7), (£7,£1,0).

The twenty midpoints of the faces (and therefore, also the corners of a do-
decahedron are:
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The thirty midpoints of edges are:
1 1 1
(£7,0,0), (0,47,0), (0,0, £7), §(j:72, +1,£7), 5(ir, +7% £1), 5(il, +7,£77).

In principle, one can work out the 60 rotation matrices. All you need to recall
is a formula of this matrix, given the axis, and given the rotation angle:
If (n1,n2,n3) with n} + n3 + nj = 1 is the rotation axis:

cosf +n3(l —cosf)  nyny(l —cosh) —nzsin® nynz(1l — cosd) + nysinb)
nina(l —cosf) + nzsinf  cos® + nZ(1 — cosb) nanz(1l — cosf) —nysiné
ninz(l — cosf) — nysin® ngnz(1l — cosf) + ny sinf cos O + n3(1 — cosh)

One more thing: from Pacioli’s construction one can easily see that one
can circumscribe a cube around the icosahedron, just use the 6 sides of the
“golden” rectangles. For a picture see here:
http://www.georgehart.com/virtual-polyhedra/ex-prl.html

Similarly one can inscribe cubes, and the rotations correspond to the even
permutations of cubes inside (or outside) in five distinct positions, (giving
the 60 even permutations of As).

Information: The classification of the finite subgroups of the group of ro-
tations SOs5 is due to Felix Klein. You can view at his famous book “Vor-
lesungen tiber das Ikosaeder und die Auflosung der Gleichungen vom fiinften
Grade” here: https://archive.org/stream/vorlesungenberOOkleiuoft#page/
n5/mode/2up

starting on page 16 the group of rotations of the icosahedron is studied, and
the isomorphy to the group As is shown.

(There is much information above, for the purpose of the exercise in class:
Just do (at least) Pacioli’s construction, and and write down 3 corresponding
rotation matrices, one of order 2,3, and 5.) If you have time try to understand
why there are cubes inside the icosahedron/dodecahedron (maybe also search
for pictures on the internet).

Ex. 33

As is smallest nonabelian “simple” group. A group is simple if it has only
trivial “normal subgroups”.

Prove that As is simple by studying the even permutations. (A permutation
is even, if the number of transpositions describing the permutation is even.
(123) = (13)(12) is even.) List all conjugacy classes, (they are related to


http://www.georgehart.com/virtual-polyhedra/ex-pr1.html
https://archive.org/stream/vorlesungenber00kleiuoft#page/n5/mode/2up
https://archive.org/stream/vorlesungenber00kleiuoft#page/n5/mode/2up

those of S5, even though in some cases a class in .5, splits into two classes
in A,,). Note that a normal subgroup must contain the union of (complete!)
conjugacy classes, and that there is no combination of these which could
possibly be a subgroup of As, according to Lagrange’s theorem.

An alternative, geometric proof!

A Simple Proof for the Simplicity of A; Benno Artmann, American Math.
Monthly 95, no 4. (1988) 344-349.
http://www.jstor.org/stable/2323573 (For this link you need to be logged
into TU/library account).

The author proves that all rotations of order 2 are conjugate, and generate
As. The same for rotations of order 3. For order 5, rotations by 27 /5 and
47 /5 are not conjugate, but they all generate As.


http://www.jstor.org/stable/2323573

