22. Untersuchen Sie die folgenden Reihen auf Konvergenz:

(a)
$$\sum_{n=1}^{\infty} {2n \choose n} \left(\frac{1}{5}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^n(n!)}{(2n)!}$$

23. Untersuchen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + 1}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n^2 + n + 1}}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n!}{(2n)!}$$

24. Bestimmen Sie die Häufungspunkte folgender Folgen $(x_n)_{n\in\mathbb{N}}$. Geben Sie zu jedem Häufungspunkt eine gegen ihn konvergente Teilfolge von x_n an.

(a)
$$x_n = (-1)^n (1 + \frac{1}{n}).$$

(b)
$$x_n = \frac{1}{2}(-1)^n + \frac{1}{3}(-1)^{\frac{n(n+1)}{2}}$$
.

25. Wenn man $(x+y+z)^5$ ausmultipliziert, ergibt sich eine Formel der Form $(x+y+z)^5 = \sum_{i,j,k} c_{i,j,k} \, x^i y^j z^k$ mit Koeffizienten $c_{i,j,k} \in \mathbb{Z}$. (Das Symbol $\sum_{i,j,k}$ bedeutet hier, dass über geeignete Kombinationen von i,j und k summiert wird).

Geben Sie $c_{5,0,0}$, $c_{1,1,3}$ und $c_{3,3,3}$ an.

(Alte Klausuraufgabe)