Mathematik I für ChemikerInnen WS 2019/20 7. Übungsblatt

- 29. Man bestimme alle reellen Lösungen der folgenden Gleichungen:
 - (a) $\sin(2x) \cos(2x) = 1$.
 - (b) $2\sin^2(x) \sqrt{2}\cos(x) = 2$.
- 30. Finden Sie alle reellen Lösungen der folgenden Gleichung:

$$\ln(e^x + 1) + \ln\left(e^x - \frac{1}{2}\right) = x.$$

(Hinweise: 1) Durch welche Operation können Sie die Logarithmen wegbekommen? Wenden Sie diese Operation auf die ganze Gleichung an. 2) Substituieren Sie $t = e^x$ um alles zu vereinfachen, und nach t auzulösen. Am Ende wieder zurücksubstituieren.)

31. Es ist $\cosh x = \frac{e^x + e^{-x}}{2}$ und $\sinh x = \frac{e^x - e^{-x}}{2}$.

Zeigen Sie folgende Identitäten für $x, y \in \mathbb{R}$:

- (a) $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$,
- (b) $\sinh(x+y) = \cosh x \sinh y + \sinh x \cosh y$,
- (c) $\cosh(2x) = 2\cosh(x)^2 1$.
- 32. Wie kann man (analog zum Skript) begründen, dass $\exp(5) = \sum_{n=0}^{\infty} \frac{5^n}{n!}$ einen endlichen Wert annimmt, d.h. dass die unendliche Summe nicht unbeschränkt wächst?