Number theory exercises WS 2019, TU Graz

Sheet 2, solutions (on paper) to be handed in on 22th October 2019
2-1. Prove: If $a^{n}+1$ is prime, then $n=2^{k}$, where $k \geq 0$ is an integer. (Hint: compare with: if $2^{n}-1$ is a prime, then n is a prime.)
$\mathbf{2 - 2}$. Prove that

$$
\operatorname{gcd}\left(a^{m}-1, a^{n}-1\right)=a^{\operatorname{gcd}(m, n)}-1
$$

2-3. If $p \mid 2^{2^{n}}+1$, then $p \equiv 1 \bmod 2^{n+1}$. Conclude that for all $n \geq 2$ there exist infinitely many primes $p \equiv 1 \bmod 2^{n}$,
2-4. Let $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ be a so called Dirichlet series. Here $a_{n} \in \mathbb{C}$ are coefficients and s is a complex variable. Let $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$. The series is convergent when $\operatorname{Re}(s)>1$. Prove that

$$
(\zeta(s))^{2}=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}
$$

2-5. Prove that $\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O(\sqrt{x})$. (Counting of lattice points.) You can use for example Apostol, Introduction to analytic number theory, Theorem 3.3. (NOT for crosses, and not to be handed in.)
Deadline for crosses are: Tuesday 9.55am.
https://www.math.tugraz.at/~elsholtz/WWW/lectures/ws19/numbertheory/vorlesung.html

