
Number theory exercises WS 2019, TU Graz

Sheet 5, solutions (on paper) to be handed in on 7th January 2020

5-1. The four squares theorem can be generalised: For every k let g(k) be the least integer such
that every positive integer n is a sum of g(k) kth powers. (Hence g(2) = 4.) Hilbert proved
that g(k) is finite, for all positive k. In this exercise you shall give an upper bound on g(4)
and g(6).
(a) Use an identity of Liouville (below) to prove that every integer is a sum of at most 53

fourth powers.

6(a2 + b2 + c2 + d2)2 =
+(a + b)4 + (a− b)4 + (a + c)4 + (a− c)4 + (a + d)4 + (a− d)4

+(b + c)4 + (b− c)4 + (b + d)4 + (b− d)4 + (c + d)4 + (c− d)4

(b) Let ∑
1 =

∑16
a···d[a± b± c]6

= +(a + b + c)6 + (−a + b + c)6 + (a− b + c)6 + (a + b− c)6

+(a + b + d)6 + (−a + b + d)6 + (a− b + d)6 + (a + b− d)6

+(a + c + d)6 + (−a + c + d)6 + (a− c + d)6 + (a + c− d)6

+(b + c + d)6 + (−b + c + d)6 + (b− c + d)6 + (b + c− d)6.∑
2 = 2

∑12
a···d[a± b]6 =

+2(a + b)6 + 2(a− b)6 + 2(a + c)6 + 2(a− c)6 + 2(a + d)6 + 2(a− d)6

+2(b + c)6 + 2(b− c)6 + 2(b + d)6 + 2(b− d)6 + 2(c + d)6 + 2(c− d)6.∑
3 = 36

∑4
a···d[a]6 = 36a6 + 36b6 + 36c6 + 36d6.

Verify (for example using a Computer algebra package, or by observing which terms
cancel) that ∑

1

+
∑
2

+
∑
3

= 60(a2 + b2 + c2 + d2)3.

From this prove that every integer 60n+ i is a sum of at most ... sixth powers, i.e. prove
that g(6) is finite and give an upper bound on it.
Also give a lower bound on g(6), by studying “small” integers which need many powers
16 and 26.

5-2. Prove that 1 has infinitely many different representations as the sum of three cubes (including
negative cubes). Hint: study

(9x4)3 + (3x− 9x4)3 + (1 − 9x3)3 = 1.

From this (or otherwise) prove that

(9m4)3 + (3mn3 − 9m4)3 + (n4 − 9m3n)3 = n12.

From this prove that the number r3,3(N) of representations of N = n12 as a sum of 3 positive
cubes is r3,3(N) ≥ 9−1/3N1/12.

Look up “Conjecture K” of Hardy and Littlewood and observe that the example above
gives a counter example to that conjecture.

5-3. Prove the following Theorem, by verifying (and giving some more details) to the outline
below.
Theorem: A positive-definite binary quadratic form of discriminant 1 represents an odd prime

1



p if and only if p ≡ 1 mod 4. (This shall use some of the theory of binary quadratic forms,
relating it to x2 + y2, but do not use that primes p ≡ 1 mod 4 can be written in this form!)

Sketch proof: If p ≡ 1 mod 4, then m2 ≡ −1 mod p has a solution. Let m2 = −1 + np.
(Can we choose m to be even?) Define the following quadratic form:

f(x, y) = px2 + 2
m

2
xy + ny2.

This form has discriminant 1, is positive definite and respresents p (choose (x, y) = (1, 0)).
Every form which is equivalent to f represents the same integers. Now, for discriminant
d = 1, there is only one equivalence class. Hence f is equivalent to f2(x, y) = x2 + y2. Hence
f2 respresents p. Conversely, for p ≡ 3 mod 4: these are not represented by f2, hence not
represented by any other positive-definite binary quadratic form of discriminant 1.

5-4. (not to be handed in, unless you make an interesting observation) Think about an identity
of type (x2

1 + x2
2 + x2

3)(y
2
1 + y22 + y23) = (z21 + z22 + z23).

Thinking about it, quaternions were discovered! For some history, see:
http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Letters/BroomeBridge.html

Other identities: http://sites.google.com/site/tpiezas/004

Hand in solutions to problems 5.1-5.3
Deadline for crosses are: Tuesday 9.55am.

https://www.math.tugraz.at/~elsholtz/WWW/lectures/ws19/numbertheory/vorlesung.html

Possibly the problem sheet will be extended a bit. You have about 4 weeks of time...

Happy Christmas!

https://www.math.tugraz.at/~elsholtz/WWW/lectures/ws19/numbertheory/vorlesung.html

