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Abstract. For integers m and n, we study the problem of finding good lower
bounds for the size of progression-free sets in (Zn

m,+). Let rk(Zn
m) denote the

maximal size of a subset of Zn
m without arithmetic progressions of length k

and let P−(m) denote the least prime factor of m. We construct explicit
progression-free sets and give an exponential improvement on the best previous
lower bound

rk(Zn
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(
p2(k−1) + pk−1 − 1

) n
2k

as follows:
1. If k ≥ 5 is odd and P−(m) ≥ k, then
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⌊
k−1
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⌋n
nb

k−1
k+1 mc/2

.

2. If k ≥ 4 is even, P−(m) ≥ k and m ≡ −1 mod k, then

rk(Zn
m)�m,k

⌊
k−2

k m+ 2
⌋n

nb
k−2

k
m+1c/2

.

Moreover, based on a computational method, we give some further improved
lower bounds on rk(Zn

p ) for primes p ≤ 31 and progression lengths 4 ≤ k ≤ 8.
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1. Introduction and Main Result
In additive combinatorics, it has been of great interest to find large subsets of Zn

m :=
(Z/mZ)n without arithmetic progressions of a given length k. The case n = 1 and k = 3
is closely related to progression-free sets in the integers; see the results by Behrend [1],
Roth [17] and Szemerédi [19]. The case k = 3 and m prime is strongly connected to the
well-studied case of capsets [3, 4, 5]. Nevertheless, there is not much literature on lower
bounds on these progression-free sets, not even for prime m and for general progression
length k, besides a paper by Lin and Wolf [11] and a paper by Elsholtz and Pach [6].

Our Approach. In this work, we present new results in this direction: We extend the
combinatorial method of Elsholtz and Pach [6] and hereby obtain good results on lower
bounds for the maximal size of a subset without arithmetic progressions of length k ≥ 4. In
particular, we use a digit-based “global” construction (in contrast to a product construction,
being based on a “local” low-dimensional solution) in the sense that the progression-free
sets are described explicitly in terms of its coordinate entries. This approach has similarities
to the constructions by Salem and Spencer [18] and Behrend [1] in the integer case, and
the method was used for the construction of capsets in Zn

p by Elsholtz and Lipnik [5].

Related Work. Before we come to the description of our method and the outcoming
results, let us briefly summarize related previous work. Major results in this field regarding
the upper bounds are the following:

1. Szemerédi’s theorem [19] states that the size rk(N) of the largest subset of {1, . . . , N}
with no arithmetic progression of length k satisfies rk(N) = o(N) as N → ∞. A
stronger upper bound is due to Gowers [8].

2. Croot, Lev and Pach [2] studied the problem for (Zn
4 ,+) and, by adapting the

polynomial method, showed that r3(Zn
4 ) ≤ 3.611n.

3. Ellenberg and Gijswijt [4] eventually showed that for a general prime power q = pr,
the inequality r3(Fn

q )�q c
n
q holds for some cq < q.

4. In two individual cases, there has been improvement on the upper bound, in Zn
8

in [16] and in Zn
6 in [14].

5. When k = 4, Green and Tao [9] proved the bound r4(Zn
p )�p

pn

n(2−22) .

6. When k = p and n tends to infinity, the bound rp(Zn
p ) = o(pn) already follows from

the Hales-Jewett theorem [10].

7. There are numerous upper bounds on different point set configurations, see for
example [13, 12, 15].

Lower bounds have been studied before:

1. Using a geometrically motivated construction, Behrend showed in [1] that there
is a subset S ⊆ {1, . . . , N} of size |S| ≥ Nexp(−c

√
logN) without any arithmetic

progression of length three.
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2. Lin and Wolf [11] proved that if p is a prime and k ≤ p, then

rk(Zn
p ) ≥

(
p2(k−1) + pk−1 − 1

) n
2k

holds, which one can approximately simplify to p
(k−1)n

k . Their result works more
generally in finite fields and is an application of corresponding bounds on caps by
Edel [3].

3. Elsholtz and Pach [6] adapted Behrend’s method to higher dimensions, showing that
there is a positive constant Cm such that

r3(Zn
m) ≥


Cm√

n

(
m+1

2
)n if m is odd,

Cm√
n

(
m+2

2
)n if m is even.

Using a combinatorial construction, they also showed r4(Zn
11)� 7n

n3 , and rp+1(Zp2) ≥
C ′m

(m−p+1)n

ncm holds for primes p and positive constants cm and C ′m.
Moreover, Elsholtz and Pach were also able to find the exact values of r3(Zn

4 ) for
n ≤ 5 and the values of r4(Zn

4 ) for n ≤ 4.

Main Results. The following main results of this paper provide good asymptotic lower
bounds for rk(Zn

m) for odd progression length k and for even k when m ≡ −1 mod k. We
note that the results are a direct consequence of the outcome of our construction method,
i.e., a consequence of Theorem 2.2 and Theorem 2.3.

While for k ≥ 4 an improvement over the results in [11] was only known in very special
cases (see [6]), we present in this paper a further considerable improvement for k ≥ 5,
indeed an exponential improvement in the terminology of [2].
Theorem 1.1. Let m be an integer and let k ≥ 5 be an odd integer. Let P−(m) denote
the least prime factor of m. If P−(m) ≥ k, then the following estimate holds:

rk(Zn
m)�m,k

⌊
k−1
k+1m+ 1

⌋n
nb

k−1
k+1 mc/2

.

Note that, in particular, when m = p > k is a prime, then the base b(1 − 2
k+1)pc + 1

considerably improves on the previous base of about p(k−1)/k in [11].
In the case of even k it seems more difficult to find any general pattern. At least for

certain m we have been able to increase the base of the numerator by one.
Theorem 1.2. Let k ≥ 4 be an even integer. Let m ≡ −1 mod k and assume that
P−(m) ≥ k, then we have

rk(Zn
m)�m,k

⌊
k−2

k m+ 2
⌋n

nb
k−2

k
m+1c/2

.

A result of this strength was only known in the special case k = 4 and m = 11;
see [6]. Here we can give an explicit construction of sets for all even k ≥ 4 and integers
m ≡ −1 mod k where the least prime factor of m is at least k.

Structure. The remaining part of this paper is organized as follows: We present further
results and the key idea of the corresponding method in Section 2. Section 3 contains
a description of the explicit construction of large progression-free sets in Zn

m for fixed
integers m and fixed progression length. We finally conclude the paper by giving the proofs
for our results in Section 4, and some additional helpful data can be found in Appendix A.
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2. Method and Further Results
The work of Elsholtz and Pach [6] suggests that for the construction of large subsets of Zn

m

without arithmetic progressions of length k, it is a good idea to consider vectors whose
entries only take values from a prescribed set of digits. To be more precise, we consider
the following sets.

Definition 2.1. Let n be a positive integer, let D = {d1, . . . , d|D|} ⊆ Zm be a set of digits
and let f = (f1, f2, . . . , f|D|) ∈ [0, n]|D| be an integral vector whose entries sum to n. Then
we define

S(D,n, f) :=
{
(a1, . . . , an) ∈ Zn

m | ∀i ≤ |D| : aj = di for fi values of j
}
.

Thus, S(D,n, f) is the set of n-dimensional vectors where every digit of D occurs with
a fixed frequency given by f . The task is then to construct “good ” sets D ⊆ Zm such
that for some frequency distribution the set S(D,n, f) does not contain an arithmetic
progression of a given length. For a fixed size |D| of the digit set we maximize the size of
|S(D,n, f)| by making the distribution f as uniform as possible. We will therefore mainly
consider sets S(D,n, f) where the distribution of digits is uniform. Given a digit set D
and an integer n such that |D| | n, we set

S(D,n) := S(D,n, f) with f =
( n

|D|
, . . . ,

n

|D|

)
.

If S(D,n) does not contain an arithmetic progression, then we say that the set D does not
yield an arithmetic progression in S(D,n), or that D is admissible.

Let us next determine the size of S(D,n). For a vector in this set, we have to choose n/|D|
coordinates out of n for each digit in D. Thus, the size of S(D,n) is given by a multinomial
coefficient. By Stirling’s formula, one can give the asymptotic lower bound

|S(D,n)| =
(

n
n
|D| , . . . ,

n
|D|

)
�m,k

|D|n

n(|D|−1)/2 (2.1)

as n→∞, where k is the progression length and m is the modulus.
It remains to find large digit sets D such that S(D,n) is progression-free. In [6] it has

been shown that one can take D = {0, . . . , (p − 1)/2} of size |D| = (p + 1)/2, without
having an arithmetic progression of length k = 3 in S(D,n). For odd k ≥ 5 we shall see
that we can extend the interval D found for k = 3 without having arithmetic progressions
in S(D,n) of length k.

Theorem 2.2. Let m be an integer and let the progression length k ≥ 5 be odd. If
P−(m) ≥ k and n is an integer divisible by δ = bk−1

k+1mc+ 1, then the set

D =
{

0, 1, . . . ,
⌊k − 1
k + 1m

⌋}
of size |D| = δ does not yield any arithmetic progression of length k in S(D,n).

For k = 2` ≥ 4 even and m ≡ −1 mod k with P−(m) ≥ k, we can extend the set D
found in the case k = 2`− 1 by one element.
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Theorem 2.3. Let k ≥ 4 be an even integer and let m be an integer with m ≡ −1 mod k.
If P−(m) ≥ k and n is an integer divisible by δ = bk−2

k mc+ 2, then the set

D =
{

0, 1, . . . ,
⌊k − 2

k
m
⌋
,
(k − 1)m− 1

k

}
of size |D| = δ does not yield any arithmetic progression of length k in S(D,n).

From our computations (see Appendix A) it seems likely that it should also be possible
to extend the construction from Theorem 2.2 to integers with m 6≡ −1 mod k. In particular,
based on experiments with small primes we have the following conjecture.

Conjecture 2.4. Let p ≥ 13 be a prime with p ≡ 1 mod 4 and let n ∈ N be a multiple
of p+3

2 . Then the set

D =
{

0, 1, . . . , p− 1
2 ,

p+ 3
2

}
does not yield any arithmetic progression of length 4 in S(D,n).

Finally, Table 1 provides explicit results for some values of p respectively k. As the
computational effort of finding large admissible digit sets grows for increasing p and k (see
Section 3), the values of p and k given here are rather small. In particular, we list the
size of the largest admissible digit set for each pair (p, k), or a lower bound for it if the
existence of larger digit sets cannot be excluded.

As an example we give a detailed discussion of the case p = 17 and k = 3 at the end of
Section 3; all the other cases can be dealt with analogously. A corresponding admissible
digit set of maximal cardinality as well as the number of maximal admissible digit sets for
each pair (p, k) can be found in Appendix A.

p
k 3 4 5 6 7 8
5 3 3 4 (4) 5 5 5
7 4 5 (5) 5 (5) 5 6 (6) 7
11 6 7 (7) 8 (8) 9 (9) 9 (9) 9
13 7 8 10 (9) 11 11 (10) 11
17 9 10 13 (12) 13 (13) 15 (13) 15
19 10 11 (11) 14 (13) 15 16 (15) 17
23 ≥ 12 ≥ 13 (13) ≥ 17 (16) 18 (17) ≥ 19 (18) ≥ 20 (19)
29 ≥ 15 ≥ 17 ≥ 21 (20) ≥ 22 (21) ≥ 24 (22) ≥ 25
31 ≥ 16 ≥ 18 (17) ≥ 22 (21) ≥ 23 ≥ 26 (24) ≥ 26 (25)

Table 1: Maximal size of digit sets D modulo p such that S(D,n) does not contain an
arithmetic progression of length k. The numbers given in parentheses are the
bounds that we obtain from the general Theorems 2.3 and 2.2.

Remark 2.5. It may be possible to obtain slightly better denominators in the bounds given
in Theorem 1.1 and Theorem 1.2, for example by fixing the frequency of only some digits in
the vectors of S(D,n) instead of fixing the frequencies of all digits. A description of some
successful approaches in this direction can be found in [5] and [6, Proof of Theorem 3.11].
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3. Approaches for Finding Admissible Digit Sets
In this section, we present approaches to find admissible digit sets—the most important
part of our method for obtaining large progression-free sets. Most of the ideas given in
this section can also found in [5], where the authors use similar techniques for capset
constructions.

Modelling the Problem. As already seen in the previous section, the described construc-
tion relies on finding large digit sets D ⊆ Zp such that S(D,n) does not contain arithmetic
progressions for all dimensions n ∈ N with |D| | n. For this purpose, let k ≥ 3 be the
progression length and let p be a prime. Moreover, let

Pk(D) := {v ∈ Dk | v is a non-trivial arithmetic progression modulo p}

be the set of k-term arithmetic progressions in D. Assume that there are k points
in S(D,n) which form an arithmetic progression for some n ∈ N. For each progres-
sion v = (v1, . . . , vk) ∈ Pk(D), let xv be a variable which counts the occurrences of v in
the components of these k points. Due to the fact that each digit d ∈ D has to occur the
same number of time in each of the k points, the equation∑

v∈Pk(D)
vi=d

xv =
∑

v∈Pk(D)
vj=d

xv (3.1)

has to hold for each digit d ∈ D and for any pair (i, j) with 1 ≤ i < j ≤ k.
It is easy to check that the non-existence of a non-negative non-trivial integral solution

(xv | v ∈ Pk(D)) of the system of equations given in (3.1) is equivalent to the non-existence
of a k-term arithmetic progression in S(D,n). Hence, if we want to prove admissibility of
some digit set D, we have to ensure that the set

P(D) =
{
x ∈ Z`

≥0
∣∣Ax = 0

}
only contains the zero vector, where the system of linear equations Ax = 0 describes the
equations stated in (3.1). If we want to show that a digit set is not admissible, on the other
hand, then we have to find a non-negative non-trivial solution of Ax = 0. This solution
directly corresponds to a k-term arithmetic progression in S(D,n) (for infinitely many
dimensions n).
Both can be achieved by methods of integer linear programming. Unfortunately, the

problem of deciding if a polyhedron contains an integral point is computationally hard
and in general NP-complete [7]. This indicates that checking this condition for all possible
digit sets modulo p can only be done for small p—and has been done for primes 5 ≤ p ≤ 31
and progression length 3 ≤ k ≤ 8, as Table 1 indicates.

Reducibility as a Sufficient Condition. Next, we describe a technique which allows to
show admissibility in a computationally simple and comprehensible way. For some fixed
digit set D and the corresponding constraint matrix A, let B be a fixed matrix which is
equivalent to A in the sense that there exists an invertible matrix T such that TA = B.
This certainly implies{

x ∈ Z`
≥0
∣∣Ax = 0

}
= P(D) =

{
x ∈ Z`

≥0
∣∣Bx = 0

}
.
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This matrix B is the starting point of the procedure.
Remember that we want to show the emptiness of P(D). Therefore, if some non-zero

row i of B only contains non-negative or non-positive entries, then it clearly follows that
the variables corresponding to non-zero entries of this row have to be zero. This is because
we are looking for non-negative solutions x of Bx = 0, and if the said variables were
non-zero, then the equation corresponding to row i of B would not have such a solution.
Consequently, we remove those columns of B which belong to these variables, i.e.,

columns of B with non-zero entry in row i, and then proceed with the remaining matrix
and the next non-negative or non-positive row. We want to emphasize that the deletion of
columns possibly brings out new non-negative or non-positive rows. Naturally, the process
determines if no non-negative or non-positive non-zero row is left in the matrix. If at the
end all columns of B are deleted—which means that all variables xi have to be zero and
that this is the only non-negative integral solution—, then the digit set D is admissible.
Furthermore, we say that D is reducible with initial matrix B if B is equivalent to A

and all columns of B can be deleted by the process above.
Two very natural choices1 for the initial matrix B are B = A and B = Aech, where Aech

denotes the reduced row echelon form of A. It turns out that these choices are not only
intuitive, but also very successful and good enough for our purpose: We were able to verify
50 of the 54 bounds given in Table 1 using them; see Appendix A. One comprehensible
example with a different choice of B can be found at the end of this section.

Illustration of the Method in the Case k = 3 and p = 11. In the following, we exemplarily
illustrate the concept of reducibility. For this purpose, let us have a look at the modulus
p = 11 and the progression length k = 3.
First, we show that the digit set D1 = {0, 1, 2, 3, 4, 5} is admissible (even though this

is already known from [6]) by deducing its reducibility with reduced row echelon form as
initial matrix. The set P3(D1) of non-trivial 3-term arithmetic progressions in D1 is given
by

P3(D1) =
{
(0, 1, 2), (0, 2, 4), (1, 2, 3), (1, 3, 5), (2, 3, 4), (2, 1, 0),
(3, 4, 5), (3, 2, 1), (4, 2, 0), (4, 3, 2), (5, 3, 1), (5, 4, 3)

}
,

and thus, the constraint matrix A is given by

A =



1 1 0 0 0 0 0 0 0 0 0 0
−1 0 1 1 0 −1 0 0 0 0 0 0
0 −1 −1 0 1 1 0 −1 −1 0 0 0
0 0 0 −1 −1 0 1 1 0 −1 −1 0
0 0 0 0 0 0 −1 0 1 1 0 −1
0 0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 −1 0 0 −1 0 0 0
0 0 1 1 0 0 0 −1 0 0 −1 0
−1 0 0 0 1 1 0 0 0 −1 0 0
0 0 −1 0 0 0 1 1 0 0 0 −1
0 −1 0 0 −1 0 0 0 1 1 0 0
0 0 0 −1 0 0 −1 0 0 0 1 1


,

where the first six rows represent equations which arise from the first and second position
in the vectors of P3(D1) (i.e., i = 1 and j = 2 in (3.1)), and the latter six rows represent
the constraints for the positions one and three in the vectors of P3(D1) (i.e., i = 1 and

1Note the approach of reducing the set Pk(D) due to certain conditions on the occurring digits which is
used in [5, 6] is a special case of the reducibility presented here, namely with initial matrix B = A. For
further details we refer to the mentioned papers.
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j = 3 in (3.1)). Moreover, its reduced row echelon form is given by

Aech =



1 0 0 0 0 0 0 −1 −1 0 0 1
0 1 0 0 0 0 0 1 1 0 0 −1
0 0 1 0 0 0 0 −1 −1 −1 0 2
0 0 0 1 0 0 0 0 1 1 0 −1
0 0 0 0 1 0 0 −1 −2 −1 0 1
0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 −1 −1 0 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


.

The described matrix reduction is given as follows, where the non-negative respectively
non-positive rows as well as the columns which have to be deleted in the next step are
marked:

1 0 0 0 0 0 0 −1 −1 0 0 1
0 1 0 0 0 0 0 1 1 0 0 −1
0 0 1 0 0 0 0 −1 −1 −1 0 2
0 0 0 1 0 0 0 0 1 1 0 −1
0 0 0 0 1 0 0 −1 −2 −1 0 1
0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 −1 −1 0 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


 



1 0 0 0 0 0 −1 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 −1 −1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


 



1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 




.

The last step trivially follows. As a consequence, the only non-negative vector x that solves
Ax = 0 is the zero vector. This implies that D1 is reducible and thus, also admissible. So
the largest admissible digit for k = 3 and p = 11 contains at least |D1| = 6 elements. In
order to show that no larger digit set is admissible, one can find a non-negative non-trivial
integral solution to Ax = 0 by solving the integer linear program

max 0
s.t. x ∈ P(D)

(1 · · · 1) · x ≥ 1

for all digit sets D with |D| = 7, with appropriate software. As a consequence, the largest
admissible digit set for p = 11 and k = 3 has indeed cardinality 6, as stated in Table 1.
Finally, let us have a look at a second digit set of size 6: Consider the digit set

D2 = {0, 1, 4, 6, 8, 10}. The set of non-trivial progressions in D2 of length 3 is given by

P3(D2) =
{
(0, 4, 8), (0, 6, 1), (1, 6, 0), (1, 8, 4), (1, 10, 8), (1, 0, 10), (4, 6, 8),
(4, 8, 1), (6, 8, 10), (8, 10, 1), (8, 4, 0), (8, 6, 4), (10, 0, 1), (10, 8, 6)

}
.

The corresponding constraint matrix is

A =



1 1 0 0 0 −1 0 0 0 0 0 0 −1 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 1 0 0 −1 0 0 0
0 −1 −1 0 0 0 −1 0 1 0 0 −1 0 0
0 0 0 −1 0 0 0 −1 −1 1 1 1 0 −1
0 0 0 0 −1 0 0 0 0 −1 0 0 1 1
1 1 −1 0 0 0 0 0 0 0 −1 0 0 0
0 −1 1 1 1 1 0 −1 0 −1 0 0 −1 0
0 0 0 −1 0 0 1 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 −1
−1 0 0 0 −1 0 −1 0 0 1 1 1 0 0
0 0 0 0 0 −1 0 0 −1 0 0 0 1 1


,
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and its reduced row echelon form Aech and the reduction steps are given by

Aech =



1 0 0 0 0 0 0 0 0 −1 0 −1 4 1
0 1 0 0 0 0 0 0 0 1 0 1 5 −1
0 0 1 0 0 0 0 0 0 0 1 0 9 0
0 0 0 1 0 0 0 0 0 −1 −1 0 4 1
0 0 0 0 1 0 0 0 0 1 0 0 10 −1
0 0 0 0 0 1 0 0 0 0 0 0 10 0
0 0 0 0 0 0 1 0 0 −1 −1 0 8 0
0 0 0 0 0 0 0 1 0 0 0 −1 7 1
0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


 · · · 



1 0 0 0 0 0 0 −1 −1 1
0 1 0 0 0 0 0 1 1 −1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 1
0 0 0 1 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 1 0 0 −1 1
0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

where the matrix on the right hand-side is the result of the reduction. This implies that D2
is not reducible with initial matrix Aech. The reduction stopped because there is neither
a non-negative nor a non-positive row left. However, we can add the second to the forth
row, which is a valid row transformation at this point in the sense that no solution of
the corresponding linear system gets lost. Moreover, this transformation yields a new
non-negative row (namely the forth one), and the reduction can be proceeded with this
new matrix, which can be fully reduced now:

1 0 0 0 0 0 0 −1 −1 1
0 1 0 0 0 0 0 1 1 −1
0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 1 0 0 −1 1
0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


 · · · 




.

Consequently, the digit set D2 is reducible with initial matrix B = TAech, where T is
chosen in such a way that the multiplication results in an addition of the second row of Aech
to its forth row. Hence, also D2 is admissible.

4. Proofs
The following proofs do not directly make use of approaches presented in the previous
section. Nevertheless, reducibility was essential to find admissible sets which can be
generalized as stated in the Theorems 2.2 and 2.3.

Proof of Theorem 2.2. This result is proven inductively as follows: We show that if for
some d < t := bm(k−1)/(k+1)c the set Dd := {0, . . . , d} does not yield a k-term arithmetic
progression in S(Dd, n) for any n ∈ N with |D| | n, then the digit set Dd+1 = Dd ∪ {d+ 1}
does not either.
The base case is obviously fulfilled as D0 = {0} does not yield a non-trivial k-term

arithmetic progression in S(D0, n) = {(0, . . . , 0)} for any dimension n ∈ N.
Next, assume for d < t there does not exist any non-trivial arithmetic progression of

length k in S(Dd, n) for all n ∈ N with |D| | n, and consider S(Dd+1, n). Assume for the
sake of contradiction that there is an arithmetic progression of length k in S(Dd+1, n

′) for
some n′ ∈ N. As there is no such progression in S(Dd, n

′), there has to exist a coordinate
such that the progression in Dd formed by the digits in this coordinate is non-constant and
makes use of the digit d+ 1. Therefore, the digit d+ 1 occurs in a non-trivial progression
in each of the k positions, and, in particular d + 1 must also occur non-trivially in the
centre position, i.e., in the position (k + 1)/2 = `+ 1 for ` = (k − 1)/2. Let us denote this
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arithmetic progression in the said coordinate by v = (v1, . . . , vk) ∈ (Dd+1)k; then we have
v`+1 = d+ 1. We show that this leads to a contradiction.
The elements v1, v2, . . . , vk may be described as vi = v1 + (i − 1)c for some non-zero

element c ∈ Zm, and as P−(m) ≥ k we see that all elements v1, v2, . . . , vk are pairwise
different. If any digit vi with i ≤ ` is contained in the interval [m(`− 1)/(`+ 1), d], then
vi+` cannot be in {0, . . . , d}. Thus, all digits v1, . . ., v` are contained in the interval
[0,m(`− 1)/(`+ 1)). By the pigeon hole principle, there are two of the digits vi and vj

with 0 ≤ i, j ≤ ` and vi > vj which satisfy 0 < vi − vj < m/(`+ 1). However, this implies
that v`+i−j ∈ {d+ 1, . . . ,m− 1}, which cannot be true.
Thus, d+ 1 never occurs in the middle of a progression, which is a contradiction. This

completes the induction step.

Proof of Theorem 2.3. By Theorem 2.5 it suffices to show that a non-trivial arithmetic
progression in D cannot have h := (k−1)m−1

k in the first position. Assume that there is such
a progression a1, a2, . . . , ak with a1 = h. Again, as P−(m) ≥ k all elements a1, a2, . . . , ak

are pairwise different. Note that the nearest elements in D to h, namely the residue classes
of m (which is 0) and b (k−2)m

k c, both have distance

|m− h| =
∣∣∣h− ⌊(k − 2)m

k

⌋∣∣∣ = m+ 1
k

(4.1)

to h.
The elements a2, a3, . . . , ak are all different from h and must therefore all lie in the

interval [0, b (k−2)m
k c]. Thus, by the pigeon hole principle there are two elements ai and

aj with k ≥ j > i ≥ 2 and distance |ai − aj | < m
k . But this would mean that also

|a1 − aj−i+1| < m
k , contradicting the minimal distance from h to another element given

in (4.1). Thus, there can be no such progression.

Proof of Theorem 1.1. By Theorem 2.2 we can find a digit set D of size at least m(k −
1)/(k + 1) such that there is no arithmetic progression of length k in S(D,n) for n ∈ N
with |D| | n. By (2.1) we find

|S(D,n)| �m,k

⌊
k−1
k+1m+ 1

⌋n
nb

k−1
k+1 mc/2

.

If |D| - n with n = |D|m + r and 1 ≤ r < |D|, we can embed the set S(D,n − r) into
Zn

m by simply putting zeroes in the last r coordinates. The image does not contain any
arithmetic progressions and is also of size

|S(D,n− r)| �m,k

⌊
k−1
k+1m+ 1

⌋n
nb

k−1
k+1 mc/2

,

as claimed.

Theorem 1.2 can be proven analogously, as a conclusion of Theorem 2.3.
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Appendix A. Maximal Admissible Digit Sets (Verification of
Table 1)

In the following, we list one maximal admissible set for each pair (p, k) with 5 ≤ p ≤ 31 and
3 ≤ k ≤ 8. Admissibility was checked via reducibility as presented in Section 3; we list the
lexicographically first admissible digit set which is reducible with initial matrix A or Aech,
where this is possible. We also give the initial matrices with which we have established
reducibility of the corresponding digit sets.
Moreover, for small primes we also give the number of maximal admissible digit sets.

This result was obtained by the computational integer programming approach. Note that
many admissible digit sets are in some sense symmetric to each other. We have refrained
from filtering out such patterns because the given number should only convey a sense
for its range. To keep the following tables concise, we use the usual notation for discrete
intervals, i.e.,

[a, b] := {x ∈ Z | a ≤ x ≤ b}

for integers a and b with 0 ≤ a ≤ b < p, and we consider these sets to be subsets of Zp.
The admissibility of the four digit sets marked with a star (*) has been checked by using

the integer programming approach which is described in Section 3, because no reducible
digit set has been found of the same size, neither with initial matrix A nor with initial
matrix Aech. (Numerous digit sets with one element less are reducible with initial matrix A
respectively Aech, though.)

p
one maximal

admissible digit set
initial

matrix B
number of maximal
admissible digit sets

5 [0, 2] A, Aech 10
7 [0, 3] A, Aech 35
11 [0, 5] A, Aech 275
13 [0, 6] A 546
17 [0, 8] A 1496
19 [0, 9] A 2223
23 [0, 11] A 4301
29 [0, 14] A –
31 [0, 15] A –

Table 2: Progression length k = 3 (see also [6])

12



p
one maximal

admissible digit set
initial

matrix B
number of maximal
admissible digit sets

5 [0, 2] A, Aech 10
7 [0, 4] A, Aech 21
11 [0, 6] Aech 220
13 [0, 6] ∪ {8} Aech 468
17 [0, 8] ∪ {10} Aech 5848
19 [0, 10] Aech 16416
23 [0, 12] Aech –
29 [0, 12] ∪ {14, 25, 27, 28} Aech –
31 [0, 12] ∪ {14, 16, 27, 29, 30} Aech –

Table 3: Progression length k = 4

p
one maximal

admissible digit set
initial

matrix B
number of maximal
admissible digit sets

5 [0, 3] A, Aech 5
7 [0, 4] A, Aech 21
11 [0, 7] A, Aech 165
13 [0, 9] Aech 286
17 [0, 9] ∪ [11, 13] A 1768
19 [0, 13] Aech 10089
23 [0, 12] ∪ [14, 16] ∪ {18} A –
29 [0, 15] ∪ [17, 20] ∪ {26} A –
31 [0, 17] ∪ {19, 20, 26, 29} A –

Table 4: Progression length k = 5

p
one maximal

admissible digit set
initial

matrix B
number of maximal
admissible digit sets

5 [0, 4] A, Aech 1
7 [0, 4] A, Aech 21
11 [0, 8] A, Aech 55
13 [0, 10] Aech 78
17 [0, 12] Aech 2312
19 [0, 14] Aech 2052
23 [0, 13] ∪ {15, 19, 21, 22} Aech 23529
29 [0, 15] ∪ {17, 18, 23} ∪ [25, 17] Aech –
31 [0, 18] ∪ {20, 26, 29, 30} Aech –

Table 5: Progression length k = 6
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p
one maximal

admissible digit set
initial

matrix B
number of maximal
admissible digit sets

5 [0, 4] A, Aech 1
7 [0, 5] A, Aech 7
11 [0, 8] A, Aech 55
13 [0, 10] A, Aech 78
17 [0, 14]∗ – 136
19 [0, 15] Aech 969
23 [0, 18] Aech –
29 [0, 23]∗ – –
31 [0, 25]∗ – –

Table 6: Progression length k = 7

p
one maximal

admissible digit set
initial

matrix B
number of maximal
admissible digit sets

5 [0, 4] A, Aech 1
7 [0, 6] A, Aech 1
11 [0, 8] A, Aech 55
13 [0, 10] A, Aech 78
17 [0, 14] Aech 136
19 [0, 14] ∪ {16, 17} Aech 171
23 [0, 15] ∪ {18, 19, 21, 22} Aech 1771
29 [0, 24]∗ – –
31 [0, 19] ∪ {22, 24, 25} ∪ [28, 30] A –

Table 7: Progression length k = 8
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