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Abstract. Call a monic integer polynomial exceptional if it has a root modulo all but
a finite number of primes, but does not have an integer root. We classify all irreducible
monic integer polynomials h for which there is an irreducible monic quadratic g such
that the product gh is exceptional. We construct exceptional polynomials with all
factors of the form Xp − b, p prime and b square-free.

1. Introduction

1.1. Earlier work on intersective polynomials. The use of local methods in algebraic
number theory and arithmetic geometry is well established. For instance, a standard
approach towards investigating the solubility of a given Diophantine equation in some
number field proceeds by first studying solubility in all completions. In certain good
situations, local solutions can be ‘patched together’ to yield global solubility. The
availability of such local–global principles (or ‘Hasse principles’) or the lack/failure
thereof is a major topic of on-going research in the area.

The object of the present investigation has a somewhat different flavour. We start
by pointing towards some related items in the literature. In [1], motivated by earlier
investigations regarding finiteness results for the number of solutions of the Diophantine
equation f(x) = n! (with f ∈ Z[X] a polynomial of degree exceeding one and n some
fixed positive integer), Berend and Bilu studied the following problem:

Question 1.1. Given a polynomial f ∈ Z[X], decide whether or not for every integer m
its reduction (f mod m) ∈ (Z/mZ)[X] admits a root.

Equivalently one may ask if f admits a solution in the p-adic integers for every rational
prime p. By Hensel’s lemma, the latter essentially boils down to f mod p admitting a
root and f mod ∆ admitting a root where ∆ is some integer related to the primes p for
which f mod p fails to be separable; this integer may be computed effectively from the
discriminants of the irreducible factors of f (see [1] for the details).

If f ∈ Z[X] has a root in the integers, then f trivially satisfies the property expounded
in Question 1.1. On the other hand, the converse does not hold in general (see, e.g.,
[1, Example 1]). However, if a monic polynomial f has degree at most 4 and has a
root modulo all primes, then f does in fact have a root in the integers [1, Remark 2].
Polynomials f ∈ Z[X] without a root in the integers, yet satisfying the property in
Question 1.1 have been called intersective in the literature.
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We mention some Galois-theoretic results on such polynomials, noting that the con-
nection to Galois theory shall prove fruitful in § 2 below. In [15], Sonn showed that any
finite non-cyclic solvable group can be realized as the Galois group of an intersective
polynomial. Furthermore, in [16], Sonn showed that, for non-cyclic, non-solvable groups,
being realizable as a Galois group is equivalent to being realizable as the Galois group of
an intersective polynomial. In [9], König constructed non-solvable groups that can be
realized as the Galois group of an intersective polynomial.

Finally, we point out that intersective polynomials have appeared in the literature with
regard to other questions whose proofs are of a rather more analytic nature, involving
tools from Fourier analysis and ergodic theory. We mention only a select few results.
For instance, Kamae and Mendes France [8] have shown that the polynomials f ∈ Z[X]
for which the value set { |f(n)| : n ∈ Z } \ {0} is a van der Corput set are precisely
the intersective ones; here a subset H of positive integers is called a van der Corput
set if for any sequence (un)n on R/Z uniform distribution of every differenced sequence
(un+h − un)n, h ∈ H, implies uniform distribution of (un)n. In additive number theory,
a well-known result of Furstenberg–Sárkőzy [7, 14] asserts that a subset A of positive
integers such that the difference set A−A = { a− a′ : a, a′ ∈ A } contains no non-zero
squares must be small in a suitable quantitative sense. This generalises to sets A ⊆ N
avoiding value sets of intersective polynomials. The interested reader is referred to [13].
In a similar direction, Bergelson, Leibman and Lesigne [2] have obtained a generalisation
of van der Waerden’s well-known theorem in Ramsey theory, involving finite families of
‘jointly intersective’ integer-valued polynomials with rational coefficients.

1.2. Exceptional polynomials. For our investigation we relax the condition of having
a root modulo every m slightly. The following may serve as an initial guiding question:

Question 1.1′. Given a polynomial f ∈ Z[X], decide whether or not f mod p admits a
root for all but at most finitely many primes p.

We remark here that, as already pointed out in [1], the algorithmic aspect of such
questions is (at least in principle) settled by work of J. Ax. It transpires that Question 1.1
is equivalent to Question 1.1′ and checking whether f mod ∆ admits a root, where ∆
is the integer mentioned above. For simplicity, we shall restrict our attention to monic
polynomials f in the sequel. Let P(f) denote the set of rational primes p for which
f mod p admits a root. It is elementary to show that P(f) is an infinite set and the
density theorem of Chebotarëv even shows that P(f) has positive natural density in the
set of primes (see [1, Theorem 2] or Theorem 2.1 below). Clearly, if f admits a root in
the integers, then f mod m trivially has a solution modulo every integer m. Hence, we
shall call a monic polynomial f ∈ Z[X] exceptional if f has no root in the integers and
P(f) contains all but at most finitely many primes. For instance, both of the following
polynomials are exceptional:

(1.1) g = (X2 − 2)(X2 − 3)(X2 − 6) and h = (X2 + 108)(X3 + 2).

Incidentally, neither of these two polynomials is intersective as can be seen, for instance,
upon reducing them modulo 26. That g is exceptionally can be verified via Theorem 3.8
below. That h is exceptional is a folklore exercise in Galois theory using that −108 is the
discriminant of X3 + 2, thus identifying X2 + 108 as the quadratic resolvent of X3 + 2.
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1.3. Plan of the paper. In this paper we do the following.
(1) We adapt a Galois-theoretic answer of [1] to Question 1.1 to our Question 1.1′

(§ 2).
(2) We outline how the above can be used to construct exceptional polynomials with

few irreducible factors (§ 3.1).
(3) We completely classify all irreducible monic polynomials h ∈ Z[X] for which

there exists an irreducible monic quadratic polynomial g ∈ Z[X] such that their
product gh is exceptional (§ 3.2).

(4) We construct exceptional polynomials as products of factors Xp − b (§ 3.3).
Most of the proofs are postponed until § 4.

1.4. Acknowledgements. The authors would like to thank Yuri Bilu, Joachim König
and Marc Munsch for sharing some helpful comments on an earlier draft of this manuscript.
The second author acknowledges the support of the Austrian Science Fund (FWF): W1230.

2. Characterising exceptionality

The aim of this section is to give a Galois-theoretic answer Question 1.1′. Most of
what we do in this section is not entirely new and can be found (implicitly or explicitly)
in [1].

Fix a monic polynomial f ∈ Z[X] with non-zero discriminant of degree n. Let BK: added non-zero
discriminant (to have
well-defined action)L = Split(f,Q) ⊂ C denote the splitting field of f (embedded into C) and G = Gal(L/Q)

its Galois group. Fixing an enumeration of the roots1 α1, α2, . . . , αn, the faithful action
of G on {α1, α2, . . . , αn} induces an embedding G ↪→ Sn by means of which we shall
regard G as a subgroup of Sn in the sequel. Moreover, for i = 1, 2, . . . , n, let
(2.1) Hi = Gal(L/Q(αi)) 6 G.

In the following we briefly review some well-known results from algebraic number
theory for the reader’s convenience. Proofs may be found in standard texts such as [11]
or [10]. For a rational prime p we say that f has factorisation pattern n1 ≤ n2 ≤ . . . ≤ nt
modulo p if the reduction f mod p factors as

(f mod p) = f1f2 · · · ft,
where the fi are irreducible polynomials in Fp[X] and the ni denote their respective
degrees. Suppose now that p is a rational prime, unramified in L, with corresponding
factorisation

pOL = p1p2 · · · pk
into prime ideals of the ring OL of algebraic integers of L. Then, for every i = 1, . . . , k,
there exists a unique element σpi ∈ G such that for every x ∈ OL we have

σpi(x) ≡ xp mod pi.

The automorphism σpi is called the Frobenius element at pi and it has the property that,
when considered as an element of Sn, its cycle type equals the factorisation pattern of
f mod p. The set Cp = {σpi : pi lying above pOL } constitutes a conjugacy class of G.

1We do not assume the roots to be distinct although there would be no loss of generality in doing so,
because having repeated irreducible factors does not affect exceptionality (or lack thereof) of f .
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Chebotarëv’s density theorem determines the natural density of primes p for which a
given conjugacy class C of G occurs as Cp:

Theorem (Chebotarëv’s density theorem over Q). Let K/Q be a Galois extension and
let C be a conjugacy class of G = Gal(K/Q). Then the natural density of rational primes
p for which Cp = C exists, and equals |C|/|G|.

This was applied by Berend and Bilu [1] to obtain the following result:

Theorem 2.1. Keep the notation from above. Then the natural density δ(P(f)) of
rational primes p for which f mod p has a root is

δ(P(f)) := lim
N→∞

|{ primes p ≤ N : f mod p has a root }|
|{primes p ≤ N}| = 1

|G|

∣∣∣∣ n⋃
i=1

Hi

∣∣∣∣,
where the Hi are given by (2.1).

Recall that only finitely many rational primes p ramify in L. Moreover, since, for
unramified primes p, the Frobenius elements over p have the same cycle type as the
factorisation pattern of f mod p, we see that f is exceptional if and only if it has no root
in the integers and every element of G has a fixed point. The second part of the last
statement is clearly equivalent to every element of G fixing a root αi of f . We obtain the
following classical result BK: "classical result"

instead of "result of
Sonn", since Theorem
2.2, apparently, goes
way back

Theorem 2.2. Keep the notation from above. Then f is exceptional if and only if f has
no integer root and

(2.2) G =
n⋃
i=1

Hi.

Note that, in particular, Theorem 2.2 furnishes a means to decide whether some
polynomial f is exceptional in terms of its Galois group. From this one easily deduces
the next result which is also due to Sonn [15] in the case of intersective polynomials (see
also [4, 9]).

Corollary 2.3. All exceptional polynomials are reducible.

Proof. Suppose that f is exceptional and irreducible. Then the action of the Galois
group of f acts transitively on the roots of f . However, a consequence of Burnside’s
Lemma says that not all elements of a transitive group have a fixed point unless the
group is trivial. Thus, by Theorem Theorem 2.2 the Galois group of f must be trivial,
contradicting that f does not have an integer root. �

Remark 2.4. For a group G we let s(G) be the minimal number of proper subgroups of
G having the property that the union of their conjugates cover G and intersect trivially.
Further, we let r(G) be the minimal number of irreducible factors of an intersective
polynomial with Galois group equal to G over Q. Then Theorem 2.2 implies that
s(G) ≤ r(G). In [5], Bubboloni and Sonn showed that for G = Sn one has r(G) = s(G)
or r(G) = s(G) + 1 for any n. Further it was shown that r(G) = s(G) for odd n and for
some even values of n. For G = Sn or G = An the following is known:

• if G = Sn and s(G) = 2, then 3 ≤ n ≤ 6;
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• if G = An and s(G) = 2, then 4 ≤ n ≤ 8.
Rabayev and Sonn [12] showed that in any of the above cases r(G) = 2 by constructing
explicit irreducible polynomials whose product has Galois group G.

3. Constructing exceptional polynomials

3.1. Constructing exceptional polynomials via Galois theory. As a first appli-
cation of Theorem 2.2 we show how any given Galois extension L/Q with non-cyclic
Galois group G may be used to construct an exceptional polynomial. Indeed, since G is
non-cyclic, every element of G is contained in a proper subgroup of G. Thus, we may
cover G with proper non-trivial subgroups:

G =
n⋃
i=1

Hi.

By Galois correspondence, Hi may be written as Hi = Gal(L/Ki) for some intermediate
field Ki of the extension L/Q. The primitive element theorem guarantees that Ki is
simple, that is, Ki = Q(αi) for some αi ∈ Ki. We let fi be the minimal polynomial of
αi over Q and denote by K̃i the splitting field of fi in L. Then the splitting field M of
f = f1f2 · · · fn is

M = K̃1K̃2 · · · K̃n ⊆ L.
Recall the projection

Gal(L/Q)� Gal(M/Q), ψ 7→ ψ|M .
As every element of G fixes one of the αi we see that any element of Gal(f,Q) fixes a
root of f , showing that f is exceptional.

Remark 3.1. As G is assumed non-cyclic one may choose a denser cover (Hi)I of subgroups
of G such that the intersection of the conjugates of the Hi is trivial. In that way the
splitting field of f actually becomes equal to L such that the Galois group of f is equal
to G. This shows that any non-cyclic group can be realised as the Galois group of an
exceptional polynomial. Applying stronger tools, Sonn used such a cover in [15] to prove
that any solvable non-cyclic group can be realised as the Galois group of an intersective
polynomial.

3.2. Exceptional polynomials with quadratic factor. In view of Corollary 2.3 one
may try to construct exceptional polynomials with few irreducible factors. The guiding
principle for the present section may be phrased as follows:

Question 3.2. Given an irreducible monic polynomial h ∈ Z[X] without a root in the
integers. Does there exist some polynomial g ∈ Z[X] such that f = gh is exceptional?

We are able to settle this question under the additional restriction that g be quadratic.
Indeed, we have the following full characterisation:

Theorem 3.3. Let h be an irreducible monic integer polynomial and let G denote its
Galois group. Then the following statements are equivalent:

(1) There is an irreducible monic quadratic polynomial g ∈ Z[X] such that the product
gh has a root modulo all but finitely many primes.
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(2) There is a subgroup H of G of index two such that every element in the coset
G \H has a unique fixed point, i.e., fixing a unique root of h.

Remark 3.4. It can be observed that ‘completing towards exceptionality’ as asked for
in Question 3.2 can easily be extended to ‘completing towards intersectivity’. Indeed,
starting with an exceptional polynomial f it is easy to use quadratic reciprocity and
the Chinese remainder theorem to construct from the finitely many rational primes not
belonging to P(f) an integer d ≡ 1 mod 4 such that (X2 − d)f is intersective.

The next result shows that a polynomial h can only satisfy one of the equivalent
conditions in Theorem 3.3 if the degree of h is odd.

Proposition 3.5. Let h be an irreducible monic integer polynomial of degree n. If (1)
in Theorem 3.3 holds, then n is odd.

Next we want to show that for all odd integers n, there is actually an irreducible monic
integer polynomial h of degree n that satisfies the conditions of Theorem 3.3. More
precisely, we show that for any integer n the Dihedral group Dn with 2n elements is
realisable as the Galois group of an irreducible polynomial of degree n and that, when n is
odd, all elements outside the unique subgroup of index two fix a root of that polynomial.

Proposition 3.6. Let n ≥ 3 be a positive integer. There is an irreducible polynomial
h of degree n such that G := Gal(h,Q) ∼= Dn. Let H be the unique subgroup of G of
index 2. If n is odd, then every element of G \H fixes a root of h.

Combining Theorem 3.3 and Proposition 3.6 we easily see that for every odd integer
n ≥ 3 there is an irreducible monic integer polynomial h of degree n such that there is
an irreducible monic quadratic polynomial g for which gh is exceptional.

Corollary 3.7. For any n ≥ 2 there exists a monic irreducible non-exceptional polynomial
h ∈ Z[X] of degree n with the following property: h can be completed to an exceptional
polynomial gh by multiplying by a quadratic polynomial g if and only if n is odd.

3.3. Exceptional polynomials built from Xp−b factors. Next we turn our attention
to considering exceptional polynomials where all factors are of the form Xp − b for a
fixed prime p and a square-free integer b. By Eisenstein’s irreducibility criterion these
polynomials are irreducible in Q[X].

For a finite set L of rational primes, consider the set

BL =
{ ∏
`∈P

` : non-empty subsets P of L with P = L∩ [min P,max P]
}

consisting of all square-free integers > 1 whose set of prime factors is a subset of
consecutive elements of L. Finally, let fL be the polynomial given by

fL =
∏
b∈BL

(Xp − b).

Theorem 3.8. Let L be a set of primes, and let the notation be as above. Then the
polynomial fL is exceptional if and only if |L| ≥ p.

Examples. Let p < q < r be primes. Then the following polynomials are exceptional:
(1)

∏
b∈{p,q,pq}(X2 − b);
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(2) g = (X2 − 2)(X2 − 3)(X2 − 6) from (1.1);
(3)

∏
b∈{p,q,r,pq,qr,pqr}(X3 − b);

(4) (X3 − 2)(X3 − 3)(X3 − 5)(X3 − 6)(X3 − 15)(X3 − 30).

4. Proofs

4.1. Proofs of the results about quadratic factors. Let g and h be polynomials
with rational coefficients of degree m and n, respectively, and let f := gh. Let M :=
Split(f,Q) ⊂ C, K := Split(g,Q) ⊂ M , and L = Split(h,Q) ⊂ M denote the splitting
fields (in C) of f , g and h, respectively. Finally, let N := Gal(M/Q), P = Gal(K/Q) and
G = Gal(L/Q) be the Galois group of f , g and h, respectively.

We have an embedding

ι : N ↪→ P ×G, ψ 7→ (ψ|K , ψ|L)

and the image of N under ι consists of all pairs (ψ1, ψ2) ∈ P ×G where ψ1|K∩L = ψ2|K∩L.
It follows, in particular, that ι is an isomorphism when K ∩ L = Q.

Proof of Theorem 3.3. We keep the notation from the above discussion but assume now
that g has degree 2. Assume first that h is an irreducible monic integer polynomial such
that there is an irreducible monic quadratic g such that f := gh is exceptional.

We claim that K ⊂ L. If not, then K ∩ L = Q and ι is therefore an isomorphism. As
both g and h are irreducible there are elements ψ1 ∈ P and ψ2 ∈ G such that ψ1 does
not fix a root of g and ψ2 does not fix a root of h. It follows that ψ := ι−1((ψ1, ψ2)) ∈ G
does not fix a root of f , by Theorem 2.2 contradicting that f is exceptional.

Thus, K ⊂ L and H := Gal(L/K) is a subgroup of G of index 2. The preimage
ι−1(P ×H) corresponds exactly to the elements in N = Gal(M/Q) that fix a root of g,
and by Theorem 2.2 every element of G \H must therefore fix at least one root of h.

As h is irreducible we get via an enumeration of the roots of h a transitive action of G
on X := {1, 2, . . . , n}. By Burnside’s lemma we thereby find

|G| = |G||X/G| =
∑
g∈G
|Xg| =

∑
g∈G\H

|Xg|+
∑
g∈H
|Xg|

≥ |G \H|+ |H||X/H| ≥
(1

2 + 1
2
)
|G| = |G|,

where the first inequality only can be an equality when every element of G \H fixes a
unique root of h.

For the converse, let H 6 G be such a subgroup and let Q ⊂ K ⊂ L be the
corresponding intermediate field extension. We may write K = Q(

√
d) for some square-

free integer d. Let
g := X2 − d.

The Galois group N of gh under ι may then be described as the pairs of maps (ψ1, ψ2) ∈
P ×G such that ψ1(

√
d) = ψ2(

√
d). For ψ ∈ N write ι(ψ) := (ψ1, ψ2). If ψ(

√
d) =

√
d,

then ψ1 fixes a root of g, and if ψ(
√
d) = −

√
d, then ψ2 ∈ G \ H. Therefore, by

construction, ψ1 fixes a root of h. Thus, all elements in N have a fixed point, and by
Theorem 2.2 gh has a root modulo all but finitely many primes, as desired. �
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Proof of Proposition 3.5. Let h be an irreducible monic integer polynomial of degree n
such that there exists a quadratic, g, such that gh is exceptional, and assume for the
sake of a contradiction that n is even.

Let G := Gal(L/Q) be the Galois group of h over Q where L is the splitting field of h,
and let H 6 G be a subgroup of G satisfying (2) in Theorem 3.3. By Galois theory, we
must have H = Gal(L/Q(

√
d)) for some square-free integer d.

Consider any map ψ ∈ G \H, which must satisfy ψ(
√
d) = −

√
d and therefore have

even order, say, ord(ψ) = 2km for some positive k and some odd integer m. Then ψm
has order 2k and the cycles of ψm in Sn must consequently all have length 2` for some
`. Furthermore, ψm is in G \ H and must therefore have a unique cycle of length 1.
However, as n is even, and the cycles of ψm correspond to a partition of n, there must
be an even number of 1-cycles in ψm, contradicting (2) in Theorem 3.3. �

Proof of Proposition 3.6. We first show that for every n ≥ 3 the Dihedral group Dn

with 2n elements can be realized as the Galois group of an irreducible polynomial of
degree n. Let g ∈ Q[X] be a polynomial with Galois group G isomorphic to Dn. The
existence of g is ensured by Shafarevich’s theorem, as Dn is solvable for every n ≥ 3.
Let L = Split(g,Q) ⊂ C be the splitting field of g. Notice that [L : Q] = 2n and
G = Gal(L/Q). Let K ⊂ L be an intermediate field such that H := Gal(L/K) 6 G
is a subgroup of G of order 2, meaning that [K : Q] = n. Let α be an integer in L
that is a primitive element of K, i.e., K = Q(α). Let h = Irr(α,Q) ∈ Z[X] be the
minimal polynomial of α over Q, which is a polynomial of degree n. Let G′ = Gal(h,Q)
and M = Split(h,Q). We claim that G′ ∼= Dn. As L is normal and α ∈ L we have
K ⊂M ⊂ L. It is easily seen that H is not normal in G and that the inclusion K ⊂M
therefore is strict, implying that M = L. This shows that Dn can be realized as the
Galois group of an irreducible polynomial of degree n.

Let n ≥ 3 be an odd integer and let h be a polynomial of degree n with Galois group
G := Gal(h,Q) ∼= Dn. G has a unique subgroup H of index 2 and that subgroup is cyclic
of order n. Furthermore, all elements in G \H have order 2.

Fixing an enumeration of the roots of h we again find an embedding
η : G ↪→ Sn

via the obvious action of G on the roots of h. Every element in η(G \H) has order 2,
and hence must consist of 2-cycles and 1-cycles. However, as n is odd, there must be
at least one 1-cycle in every element of η(G \H), meaning that every element of G \H
fixes a root of h, as claimed. �

Proof of Corollary 3.7. Proposition 3.5 implies that h necessarily has odd degree. Con-
versely, if n is odd, then the result follows immediately upon taking h to be any irreducible
polynomial of degree n with Galois group isomorphic to Dn. By Corollary 2.3 such a
polynomial is guaranteed to be non-exceptional and the result follows from Proposi-
tion 3.6. �

The following observation was kindly pointed out to the second author by Joachim
König (private communication).

Remark 4.1. The results of this subsection can be generalized in the following way: let
p and q be primes with p ≡ 1 mod q. Up to isomorphism, there is a unique non-trivial
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semi-direct product G := Cp o Cq of the cyclic groups of order p and q. In a similar
fashion as in the proof of Proposition 3.6 one might show that G can be realized as
the Galois group of an irreducible polynomial h of degree p with splitting field, say, L.
Choose a subfield K ⊂ L with [L : K] = p. It follows that Q ⊂ K is normal and thus,
that K is the splitting field of a polynomial g of degree q. Putting H = Gal(L/K) 6 G it
follows that H is a subgroup of G of order p, and as in the proof of Proposition 3.6 it can
be seen that every element of G \H fixes a root of h and therefore that gh is exceptional.

We conclude that for any prime q there is a prime p such that there are irreducible
monic integer polynomials g and h of degree q and p, respectively, such that the product
gh is exceptional.

4.2. Proof of Theorem 3.8. We keep the notation from the formulation of Theorem 3.8.
For the proof of Theorem 3.8 we shall check that every element of the Galois group
of fL fixes a root of fL. If b is some non-negative real number, we write b1/p for the
(unique) positive real root of Xp − b. The other roots of Xp − b are then given by ζνp b1/p

(ν = 1, . . . , p−1), where ζp may be taken to be any primitive p-th root of unity. It follows
that the splitting field LL of fL is

LL = Q({ `1/p : ` ∈ L} ∪ {ζp}).

In [3, Theorem 2] it was shown that the p-th roots of different primes are independent,
meaning that

[Q({ `1/p : ` ∈ L}) : Q] = pn.

As [Q(ζp),Q] = p− 1, it follows that

[LL : Q] = pn(p− 1).

Every element of ψ ∈ G := Gal(LL/Q) is completely determined by its values on `1/p
(for ` ∈ L) and ζp. Moreover, for every ` ∈ L there is some ν(`) ∈ {0, . . . , p− 1} such
that ψ(`1/p) = ζ

ν(`)
p `1/p. Similarly, ψ(ζp) = ν(ζp) for some ν(`) ∈ {1, . . . , p− 1}. Because

of reasons of cardinality, it follows that mapping ψ to the function ν just described gives
rise to a bijection of sets

(4.1) G
1:1−−−→ {maps ν : L∪ {ζp} → {0, . . . , p− 1} such that ν(ζp) 6= 0}.

We will use the following well-known elementary fact from zero-sum theory. We include
a proof for the reader’s convenience.

Lemma 4.2. Let (gi)i be a finite sequence of not necessarily distinct elements in some
abelian group (G,+) with n elements. If the sequence consists of at least n terms, then it
admits a subsequence of consecutive elements whose sum is zero in G.

Proof. It suffices to prove the result for a sequence g1, . . . , gn of length n. Let sk =
∑k
i=1 gi.

Then either {s1, . . . , sn} = G 3 0 or we have sk = s` for two integers 1 ≤ k < ` ≤ n.
In the former case, we are already done, but in the latter case, we are also done, for
0 = s` − sk =

∑`
i=k+1 gi. �

Proof of Theorem 3.8. For p = 2 the result is immediate from the multiplicativity of the
Legendre symbol. Therefore, we may assume that p is an odd prime.
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We first show that for any set L of at least p rational primes, the polynomial fL is
exceptional. To this end, let ψ be an element of G and let ν be the map corresponding to
ψ under (4.1). By Lemma 4.2, there is a subset L′ ⊆ L of consecutive primes such that

1 =
∏

`
ζν(`)
p ,

where the product is taken over all ` ∈ L′. This implies that

ψ
(∏

`
`1/p

)
=
∏

`
ψ(`1/p) =

∏
`
ζν(`)
p `1/p =

(∏
`
ζν(`)
p

)∏
`
`1/p =

∏
`
`1/p.

Hence, ψ fixes a root of fL and we deduce (2.2). Theorem 2.2 now shows that fL is
exceptional.

Now, let L be a set consisting of exactly p− 1 primes. Consider the map ψ ∈ G which
fixes ζp and maps `1/p to ζp`1/p for every ` ∈ L. Pick any root α of fL. Then, for some
subset {`1, `2, . . . , `r} ⊆ L and some ν0 we have α = ζν0

p (`1 · · · `r)1/p. Therefore, α gets
mapped by ψ to ζrpα 6= α, implying that ψ does not fix any root of fL and, hence, that
fL is not exceptional. �

Remark 4.3. In Theorem 3.8 we have restricted ourselves to considering a very special
class of polynomials. It is an interesting question to determine the minimum size of an
arbitrary set B of square-free integers such that the polynomial

fB(x) =
∏
b∈B

(Xp − b)

is exceptional. Theorem 3.8 yields such a set B with |B| = 1
2p(p + 1). For p = 2 and

p = 3 one can check that this is actually the minimum size, and we conjecture that this
is indeed always the minimum.

For an integer n, let Sn ⊆ Fp[X1, X2, . . . , Xn] denote the set

Sn :=
{ ∑
X∈X

X : non-empty subsets X⊆ {X1, . . . , Xn}
}
.

Call a subset Tn ⊆ Sn good if the polynomial
∏
t∈Tn

t ∈ Fp[X1, X2, . . . , Xn] vanishes on
all points of Fnp . Arguing as in the proof of Theorem 3.8, it follows that the minimal size
of a set of square-free integers B such that fB is exceptional is

min
n∈N

min{ |Tn| : good subsets Tn ⊆ Sn }.

This translates the question of determining the minimum size of B into problem of
combinatorial/geometric flavour.
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