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Diversity in rationally parameterized number fields

Benjamin Klahn

Abstract

Let X be a curve defined over Q and let t ∈ Q(X) be a non-constant ra-
tional function on X of degree v ≥ 2. For every rational number a/b pick
a point Pa/b ∈ X(Q) such that t(Pa/b) = a/b. Bilu and Luca showed that
there is a constant η > 0 only depending on v and the genus g of X such
that for large integers N there are at least N/(logN)1−η distinct fields among
Q(P1),Q(P2), . . . ,Q(PN). In this paper we obtain lower bounds on the num-
ber of distinct fields among Q(Pa/b) with 1 ≤ a, b ≤ N under some assumptions
on t. We show that if t has a pole of order at least 2 or if there is a ra-
tional number α such that t − α has a zero of order at least 2, then the set

{Q(Pa/b) ∣ 1 ≤ a, b ≤ N} contains ≫ N2

(logN)2
elements. We also obtain partial

results when t does not have a pole of order at least two.

1 Introduction

Everywhere in this paper ”curve” means ”smooth geometrically projective algebraic
curve”. Furthermore, let Q denote the algebraic closure of Q in C.

1.1 Hilbert’s Irreducibility Theorem

Let X be a curve of genus g and let t ∈ Q(X) be a non-constant rational function
on X of degree v ≥ 2. For a rational number r ∈ Q the absolute Galois group
G(Q∣Q) acts on the the fiber t−1(r) ⊂ X(Q) and we call t−1(r) irreducible if the
action is transitive or, equivalently, if [Q(Pr) ∶ Q] = v for any Pr ∈ t

−1(r). Hilbert’s
Irreducibility Theorem, HIT, tells that for infinitely many r the fiber t−1(r) is
irreducible. In fact, a quantitative version of HIT states that most fibers are
irreducible, see Theorem 2.2 below for a more precise formulation.

Related to the question of whether fibers t−1(r), r ∈ Q are irreducible is how
diverse the fibers are; HIT tells us that typically [Q(Pr) ∶ Q] = v, but what hap-
pens if one adds several points, i.e. what is the degree [Q(Pr1 , Pr2 , . . . , Prm) ∶ Q]?
Dvornicich and Zannier studied this question in [DZ] and obtained the following
result.

Theorem 1.1 (Dvornicich, Zannier). Choose for every integer n a point Pn ∈

t−1(n). There exists a constant c = c(g, v) > 0 such that for sufficiently large
integers N , independent of the choice of Pn, the degree of Q(P1, P2, . . . , PN) is at

least e
c
N

logN .

From Theorem 1.1 one also obtains a lower bound on the number of distinct
fields among Q(P1),Q(P2), . . . ,Q(PN).

Corollary 1.2 (Dvornicich, Zannier). In the setup above there is a constant c′ =
c′(g, v) such that for sufficiently large integers N there are at least c′ N

logN distinct

number fields among Q(P1),Q(P2), . . . ,Q(PN).
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From the example below, one sees that Theorem 1.1 in general is optimal, but
Corollary 1.2 is not.

Example 1.3. Consider the curve X ∶ Y Z −X2 = 0 and the rational function t = Y
Z

on X. one finds that Pn = [±
√
n ∶ n ∶ 1] and hence Q(Pn) = Q(

√
n). Therefore,

Q(P1, P2, . . . , PN) = Q(
√
p ∣ p ≤ N),

and therefore

[Q(P1, P2, . . . , PN) ∶ Q] = [Q(
√
p) ∣ p ≤ N] = 2π(N) ≤ 2

(1+ε)
N

logN ,

and
∣{Q(Pn) ∣ 1 ≤ n ≤ N}∣ = ∣{n ≤ N ∣ µ2

(n) = 1}∣ ∼ ζ(2)−1N.

However, one could hope that in many cases the growth of the degree of
Q(P1, P2, . . . , PN) would be exponential in N . Schintzel conjectured that imposing
rather weak conditions on t would ensure exponential growth. In [DZ] and [DZ2]
Dvornicich and Zannier obtained a partial results towards this conjecture. Their
result is stated in terms of the so-called critical values of t.

1.2 Critical values

We say that α ∈ Q̄ ∪ {∞} is a critical value for the rational function t on X if
t − α ∈ Q̄(X) has a zero of multiplicity at least 2, here t − ∞ ∶= t−1. Here the
multiplicity of a zero is defined via the usual intersection multiplicity for curves.
In particular, ∞ is a critical value exactly when t has pole of order at least 2.
We call a critical value α ≠ ∞ a finite critical value. It can easily be seen that
the finite critical values of t come in Galois conjugates. Furthermore, from the
Riemann-Hurwitz genus formula

2g + 2v − 2 = ∑

P ∈X(Q)
(eP − 1)

where eP is the ramification index (multiplicity) of t at P we see that t has only
finitely many critical values. Furthermore, since the ramification index at any point
is at most v, we see that if the degree of t is at least 2, then there are at least 2
distinct critical values.

Schintzel conjectured the following

Conjecture 1.4 (Schintzel). In the set-up above, if either t has a finite critical
value not belonging to Q or the extension Q(X)/Q(t) is abelian, then there is a
c > 0 such that for sufficiently large values of N the degree of Q(P1, P2, . . . , PN) is
at least ecN .

Dvornicich and Zannier showed that Conjecture 1.4 holds true in the following
cases:

(1) If t has a finite critical value of degree 2 or 3 over Q,

(2) If all finite critical values of t are rational and the Galois group of the normal
closeure of Q(X) over Q(t) is sufficiently large.
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As remarked by Dvornicich and Zannier in [DZ] the conditions on t in Conjecture
1.4 are necessary; if not then by Kummer’s Theory one sees that there are rational
numbers γ1, γ2, . . . , γs and positive integers e1, e2, . . . , es such that

Q(X) ⊂ L(t, (t − γ1)
1/e1 , . . . , (t − γs)

1/es)

where L is a number field, and hence that there is a constant A = A(X, t) > 0 such
that Q(P1, P2 . . . , PN) is generated by eth roots of prime numbers p ≤ AN , where
e =∏s

i=1 ei.

1.3 Diversity in integrally parameterized fields

Bilu and Luca in turn considered specifically the question of counting the number of
distinct fields among Q(P1),Q(P2), . . . ,Q(PN) and conjectured from Example 1.3
that there should always be ≫ N many distinct fields among Q(P1),Q(P2), . . . ,Q(PN):

Conjecture 1.5 (Bilu, Luca). The number of distinct fields among Q(Pn) with
1 ≤ n ≤ N is ≫ N .

In [BL] They obtained the following unconditional result towards Conjecture
1.5.

Theorem 1.6 (Bilu, Luca). In the above setup, there exists a positive real number
η = η(g,v) such that for sufficiently large integers N , among the number fields
Q(P1),Q(P2), . . . ,Q(PN) there are at least N/(logN)1−δ distinct.

Furthermore, in [BL2] Bilu and Luca showed that Conjecture 1.5 holds true
when t is of degree at least 2 and all fininite critical values of t are rational. One
can notice that the only finite critical value of the degree two rational function
t = Y /Z in Example 1.3 is 0 and that the linearly many distinct fields among
Q(Pj), 1 ≤ j ≤ N therefore can be obtained via Bilu and Luca’s conditional result.

Finally, in [BG] Bilu and Gilbert generalized the question of diversity among
fields generated by points in distinct fibers to number fields K by considering fields
generated by points in fibers Pτ ∈ t

−1(τ) where τ is an integer of K. They obtained
the following result.

Theorem 1.7 (Bilu, Gilibert). Let K be a number field of degree d. In the above
setup there exists constants c = c(K,g, v) > 0 and B0 = B0(K,X, t) > 1 such that
for all B > B0 among the number fields

K(Pτ), (τ ∈ OK , H(τ) ≤ B)

where H is the ususal multiplicative Weil height, there are at least cBd/ logB dis-
tinct.

1.4 Our results

The goal of this paper is to complement the mentioned results by Bilu, Dvornicich,
Luca and Zannier by considering the problem of counting the number of distinct
fields Q(Pr) where we now allow rational numbers r instead of considering only
integers, i.e. count how many distinct fields there are among Q(Pr) where r is a
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rational number with numerator and denominator bounded by, say, N . Thus, for
every rational number r ∈ Q fix a point Pr ∈ t

−1(r) and denote

RP (N) ∶= ∣{Q(Pa/b) ∣ 1 ≤ a, b ≤ N}∣. (1)

One could hope that a similar result as in Conjecture 1.5 would carry over, i.e.
that for any choice of Pr ∈ t

−1(r) one would have

RP (N) ≫ N2.

However, the following example shows that this cannot always be the case:

Example 1.8. Consider again the curve X ∶ Y Z − X2 = 0 and t = Y
Z . Then

Q(Pa/b) = Q(
√
a/b) = Q(

√
ab) and one sees that

RP (N) = ∣{Q(
√
a/b) ∣ 1 ≤ a, b ≤ N}∣ = ∣{ab ∣ 1 ≤ a, b ≤ N,µ2

(ab) = 1}∣.

From the Erdös multiplication problem one sees that there is a δ > 0 such for large
values of N the bound RP(N) ≤ N2

(logN)δ
holds. On the other hand, considering the

set {(p, a) ∣ p prime, a < p,µ2(a) = 1} one gets the trivial bound RP (N) ≫ N2

logN .

However, we will show that in many cases one can obtain lower bounds on
RP (N) not too far away from the bound N2/ logN derived in Example 1.8.

Theorem 1.9. Suppose that ∞ is a critical value of t, then independently of the
choice of Pa/b ∈ t

−1(a/b) one has RP (N) ≫ N2

(logN)2
.

Applying a transformation one readily obtains the following result from 1.9.

Corollary 1.10. Suppose that t has a rational critical value, then RP (N) ≫

N2/(logN)2.

Example 1.11. Let X ∶ Y 2Z =X3 +AXZ2 +BZ3 be an elliptic curve over Q and
let t be the x coordinate, i.e. t = X

Z . Then the critical values of t are exactly ∞ and
the x-coordinates of the zeroes of the polynomial X3+AX+B, each of multiplicity 2.
In particular, Theorem 1.9 can be applied to show that ∣{Q(

√
(a/b)3 +A(a/b) +B) ∣

1 ≤ a, b ≤ N}∣ ≫ N2/(logN)2.

We will also obtain a partial result when the critical values are not rational. This
result depends on the density of pairs of integers (a, b) in a square [1,N] × [1,N]

such that the values of a form F (x, y) ∈ Z[x, y] are square-free. Only sufficiently
strong results are known for quadratic forms. This result is as follows.

Theorem 1.12. Suppose that ∞ is not a critical value of t, and that t has exactely
two distinct critical values which are Galois conjugate to each other. There is a
constant A > 0 depending on X and t such that independentely of the choice of
Pa/b ∈ t

−1(a/b) one has RP (N) ≫ N2

(logN)A
.
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2 Toolbox – distinguishing number fields

We briefly describe the tools we will apply to prove Theorem 1.9 and Theorem 1.12.
The main idea is to distinguish two number fields by considering the ramifying
primes of the respective fields.

Lemma 2.1. Let Q ⊂K ⊂ L be number fields.

(i) The discriminant ∆Q(K) of K divides the discrriminant ∆Q(L) of L, i.e. if
a rational prime p ramifies in K then it ramifies in L.

(ii) Let K∗ ⊃ K be the normal closeure of K. Then a rational prime p ramifies
in K if and only if it ramifies in K∗. In particular, p ramifies in K if and
only if it ramifies in one of the conjugate fields of K.

We will then apply Lemma 2.1 (ii) using Hilbert’s Irreducebility Theorem, HIT.

Theorem 2.2 (Hilbert’s Irreduciblity Theorem, (see (Z) Theorem 1.2) ). In the
above set-up, the number of reducible fibers is bounded by

#{(a, b) ∈ [1,N]
2
∣ t−1

(a/b) is reducible} ≤ c(v)N logN.

Recall that the finite critical values of t come in Galois conjugates, hence

f̃(x) ∶= ∏
α∈Q̄

α critical value

(x − α) ∈ Q[x].

Normalizing f̃ we obtain a primitive integer polynomial f . The polynomial f
is called the critical polynomial of t and it roughly holds the information when
a rational prime ramifies in a number field Q(Pa/b). This relationship has been
worked out in [BG], and we state their result here.

Theorem 2.3 (Bilu, Gillibert). Let p be a sufficiently large prime number (in
terms of X and t) and let r ∈ Q.

(i) Assume that

(1) either νp(f(r)) = 1, or

(2) ∞ is a critical value of t and νp(r) = −1.

Then p ramifies in Q(Pr) for some Pr ∈ t
−1(r).

(ii) Assume that p ramifies in Q(P ) for some P ∈ t−1(r), then

(1) either νp(f(r)) ≥ 1, or

(2) ∞ is a critical value of t and νp(r) ≤ −1.

Note that by Hilbert’s irreducibility theorem ramification in Q(t−1(a/b)) means
ramification in Q(Pa/b) for any Pa/b ∈ t

−1(a/b) for almost all rational numbers a/b
with 1 ≤ a, b ≤ N .
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Remark 2.4. From Theorem 2.3 it follows that in order to prove Corollarry 1.5
it suffices to show that for a square-free integer polynomial f ∈ Z[x] there is a
constant c > 0 such that for N large enough there are at least cN distinct primes
p > N logN such that p ∣∣ f(n) for some 1 ≤ n ≤ N . In [MR] it is shown that a
positive proportion of values, f(n) with 1 ≤ n ≤ N , have a prime divisor p ∣ f(n)
with p > N logN . It would suffice to show that for a positive proportion of those
large primes one would have p ∣∣ f(n).

3 Proof of Theorem 1.9

Proof of Theorem 1.9. Assume that N is a large integer, and let f be the critical
polynomial of t, of degree d, say. Define the two mutually disjoint sets of primes

P1 ∶= Pf ∩ [N/4,N/2], P2(f) ∶= [N/10,N/5]

where Pf is the set of primes that divide some value of f . By the Chebotarev
Density Theorem we may choose c1 ∶= c1(f) > 0 such that

min{∣P1∣, ∣P2∣} ≥ c1
N

logN
.

In the sequel we will denote primes from P1 with p’s and primes from P2 by q’s.
We will consider the set of points from the fibers of the form t−1(n/p) where

1 ≤ n ≤ N and p ∈ P1.

Lemma 3.1. Let p ∈ P1.

(i) For any prime q ∈ P2 there is an integer 1 ≤ n ≤ N such that νq(f(
n
p )) = 1

(ii) For every integer 1 ≤ n ≤ N there are at most d primes q ∈ P2 such that
νq(f(

n
p )) ≥ 1.

(iii) There is a subset N (p) ⊆ [1,N] with at least mp = ⌊ c1d
N

logN ⌋ distinct elements

{n1, n2, . . . , nmp} ⊂ [1,N] such that there is a prime q1 ∈ P2 with νq1(f(
n1

p )) =

1 and such that j ≥ 2 there is a prime qj ∈ P2 such that νqj(f(
nj
p )) = 1 and

νqj(f(
ni
p )) = 0 for i < j.

Proof of Lemma 3.1. Ad (i): Let q ∈ P2 and denote by ρf(q
j) the number of roots

of f mod qj in Z/qjZ. By Hensel’s lemma ρf(q
j) = ρf(q) > 0 for any j ≥ 1. Since

n/p ≡ n′/p mod qi if and only if n ≡ n′ mod qi we see that

[1,N] ⊃ {1 ≤ n ≤ 2q + 1 ∣ νq(f(
n
p )) ≥ 1}

has 2ρf(q) elements. Furthermore, since q2 > N we see that

[1,N] ⊃ {1 ≤ n ≤ 2q + 1 ∣ νq(f(
n
p )) ≥ 2}

has at most ρf(q) elements. Hence, there are at least ρf(q) > 0 integers 1 ≤ n ≤ N
such that νq(f(

n
p )) = 1.



3 PROOF OF THEOREM ?? 7

Ad (ii) Write f(x) = adx
d + ad−1x

d−1 +⋯ + a0, then

f(np ) =
adn

d + ad−1n
d−1p +⋯ + a1np

d−1 + a0p
d

pd
.

The numerator in the expression above can be bounded by MdNd where M is
the maximum absolute value of the coefficients of f . Since N was chosen large we
see that there can be at most d primes, q, from P2 such that νq(f(

n
p )) ≥ 1 since

(N/10)d+1 >MdNd for large enough N .
Ad (iii): Let q1 ∈ P2, and choose an integer n1 ∈ [1,N] such that

νq1(f(
n1

p )) = 1.

Furthermore, put
S1 ∶= {q ∈ P2 ∣ νq(f(

n1

p )) ≥ 1}.

Recursively, for i ≥ 2 choose qi ∈ P2 ∖ Si−1 and ni ∈ [1,N] such that

νqi(f(
ni
p )) = 1.

Furthermore, put
Si ∶= Si−1 ∪ {q ∈ P2 ∣ νq(f(

ni
p )) ≥ 1}.

By (ii) we then find

∣Sj ∣ = ∣⋃
i≤j

{q ∈ P2 ∣ f(nip ) ≥ 1}∣ ≤
j

∑
i=1

∣{q ∈ P2 ∣ f(nip ) ≥ 1}∣ ≤ jd,

showing that we may repeat the recursion at least

∣P2∣/d ≥
c1

d

N

logN

times.

For a fixed p ∈ P1 we fix for every nj ∈ N (p) a prime qj with the property that
νqj(f(

nj
p )) = 1 and νqj(f(

ni
p )) = 0 for all i < j. We call this the fresh prime of nj

and denote it by Fresh(nj).

Lemma 3.2. Let p1, p2 ∈ P1 be distinct primes, then

(a) There are at most 4d values of n ∈ [1,N] such that νp1(f(
n
p2

)) ≥ 1 in the

interval [1,N].

(b) There are at most 4d2 primes q ∈ P2 for which there is an integer 1 ≤ n ≤ N
with νq(f(

n
p2

)) ≥ 1 and νp1(f(
n
p2

)) ≥ 1.

Proof of Lemma 3.2. Ad (a): For any integer m ∈ [1, p1] there are at most N/p1 ≤ 4
integers n ∈ [1,N] such that n/p2 ≡m mod p1. Since ρf(p1) ≤ d, the claim follows.

Ad (b): Similar to the proof of (ii) in Lemma 3.1 we see that each of the at
most 4d values of 1 ≤ n ≤ N with νp1(f(

n
p2

)) ≥ 1 there are at most d primes q ∈ P2

with positive q-adic valuation, thus in total at most 4d2 such primes.
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We now formulate the main Lemma for the proof of Theorem 1.9:

Lemma 3.3. Let A ⊂ P1. Then for every p ∈ P1 there is a subset M(A, p) ⊂ N (p)
with

∣M(A, p)∣ ≥ ∣N (p)∣ − 4d2
∣A∣,

such that for all p′ ∈ A and nj ∈M(A, p) with corresponding fresh prime qj one
has the implication

(νp(f(
s
p′ )) ≥ 1, for some 1 ≤ s ≤ N)Ô⇒ νqj(f(

s
p′ )) = 0 (2)

Proof of Lemma 3.3. Let p ∈ P1. For p′ ∈ A ⊂ P1 Lemma 3.2 yields that the set

B(p, p′) ∶= {q ∈ P2 ∣ ∃ s ∈ [1,N] ∶ νp(f(
s
p′ )), νq(f(

n
p′ )) ≥ 1}

contains at most 4d2 elements, and hence

Bad(p) ∶= ⋃
p′∈A

B(p, p′)

satisfies
∣Bad(p)∣ ≤ 4d2

∣A∣.

Now, let
NB(p) = {n ∈ N (p) ∣ Fresh(n) ∈ Bad(p)}

and put
M(A, p) = N (p) ∖NB(p).

It is then easy to see that M(A, p) contains at least ∣N (p)∣ − 4d2∣A∣ elements and
satisfies (2).

Now, let A ⊂ P1 be a set with

∣A∣ =
c1

16d3

N

logN
.

For p ∈ A one has by Lemma 3.3

∣M(A, p)∣ ≥
c1

3d

N

logN
.

Let
S ∶= {

n

p
∣ p ∈ A, n ∈M(A, p)}.

Then

∣S ∣ = ∑
p∈A

∣(M(A, p))∣ ≥ (
c1

16d3

N

logN
)(
c1

3d

N

logN
) ≥ c2

N2

(logN)2
,

for some c2 > 0. Let

S
′
= {

a

b
∈ S ∣ t−1

(a/b) irreducible},
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and notice that by Hilbert’s irreducibility Theorem

∣S
′
∣ ≥ c3

N2

(logN)2
,

for some c3 > 0.
We now claim that the number fields Q(Pa/b) with a/b ∈ S ′ and any Pa/b ∈

t−1(a/b) are pairwise distinct. Since the fibers t−1(a/b) are irreducible we see by
Lemma 2.1 and Theorem 2.3 that it suffices to show that for any n/p, n′/p′ in S ′

one of the two statements below hold true:

• There is a prime q ∈ P2 such that νq(f(
n
p )) = 1 and νq(f(

n′

p′ )) = 0, or

• p ≠ p′ and νp(f(
n′

p′ )) = 0 or νp′(f(
n
p )) = 0.

Thus, let n/p and n′/p′ be distinct elements from S ′. If p = p′ we may write n = nj
and n′ = nk where nj and nk are elements from M(A, p) and, without loss of
generality j > k. Then by the existence of the fresh prime qj of nj we may take
q = Fresh(nj) in the first bullet above. If p ≠ p′ and we are not in the case of the
second bullet, then by the construction of M(A, p) we may take q = Fresh(n). In
conclusion, the sets of ramifying primes in any fields Q(Pa/b) and Q(Pa′/b′) with
distinct a/b, a′/b′ in S ′ are different, and in particular, all the fields Q(Pa/b) with
a
b ∈ S

′ are distinct.

4 Proof of Corollary 1.10

Proof of Corollary 1.10. Suppose α ∶= a0
b0

is a critical value of t. Then

t−1
(a/b) = t̃−1

((ab − α)
−1

),

where

t̃ =
1

t − α

is a rational function on X which has ∞ as a critical value. Since any rational
number a′

b′ with 1 ≤ a′, b′ ≤ N
3a0b0

can be written in the form (ab −α)
−1 with 1 ≤ a, b ≤

N we obtain from Theorem 1.9 that

RP (N) ≫
(N/3a0b0)

2

(logN/3a0b0)2
≫

N2

(logN)2
,

as desired.

5 Proof of Theorem 1.12

Again, let f be the critical polynomial of t, which now by assumption is an ir-
reducible quadratic polynomial. By Theorem 2.3 the ramification of primes in
Q(Pa/b) is controlled by the divisors of the numerator in

f(a/b) ∶=
F (a, b)

b2
,
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where F (x, y) ∈ Z[x, y] is an irreducible quadratic form. In [LX] it is proved that
if F does not have a fixed square divisor other than 1, then

∣{(a, b) ∈ [1,N]
2
∣ µ2

(F (a, b)) = 1}∣ ∼∏
p

(1 −
ρF (p

2)

p4
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
CF

N2,

and that the constant CF is positive since the number of solutions ρF (p
k) of

p2
∣ F (a, b), 1 ≤ a, b ≤ N

can be bounded by p2k−2 for k ≥ 2. In our situation we do not know apriori whether
F does not have a fixed square divisor greater than one, but we can obtain a result
that fits in to our framework by altering the proof of Lapkova and Xiao’s result
slightly. Call a prime p a fixed square prime of F if p2 ∣ F (a, b) for all a, b ∈ Z, and
notice that there are at most finitely many such.

Proposition 5.1. Let c be a constant greater than all fixed square primes of F
and greater than all coeffcients of F . Then

∣{(a, b) ∈ [1,N]
2
∣ ∃p ≥ c ∶ p ∣ F (a, b), ∀q ≥ c, q2 - F (a, b)}∣ ∼∏

p≥c

(1 −
ρF (p

2)

p4
)N2.

Proof of Proposition 5.1. We adapt the proof of Theorem 1.2 in [LX]. Let ξ1 =
1
4 logN and ξ2 = N(logN)1/2 and

SF (N) = {(a, b) ∈ [1,N]2 ∣ ∃p ≥ c ∶ p ∣ F (a, b), ∀q ≥ c, q2 - F (a, b)},

S0(N) = {(a, b) ∈ [1,N]2 ∣ p ∣ F (a, b)Ô⇒ p ≤ c},

S1(N) = {(a, b) ∈ [1,N]2 ∣ p2 ∣ F (a, b)Ô⇒ c ≤ p or p > ξ1},

S2(N) = {(a, b) ∈ [1,N]2 ∣ p2 ∣ F (a, b)Ô⇒ p > ξ1, ∃ξ1 < p ≤ ξ2 ∶ p
2 ∣ F (a, b)},

S3(N) = {(a, b) ∈ [1,N]2 ∣ p2 ∣ F (a, b)Ô⇒ p > ξ2, ∃p ≥ ξ2 ∶ p
2 ∣ F (a, b)}.

Denote the size of SF (N) and Si(N) by SF (N) and Si(N), respectively. It is seen
that

S1(N) − S0(N) − S2(N) − S3(N) ≤ SF (N) ≤ S1(N). (3)

The sets S2(N) and S3(N) have also been considered in [LX], and it is shown
in their setting that both of these sets are of size o(N2). The proofs of these
bounds depend only on large primes dividing values of F (x, y), and the proofs can
be adapted 1-to-1 to our situation to give S2(N), S3(N) = o(N2).

Let B ∶= π(c) denote the number of primes less than c and recall that

#{n ≤ N ∣ p ∣ nÔ⇒ p ≤ c} ≪ (logN)
B. (4)
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For any integer m the equation F (a, b) = m obviously has at most 2N solutions
with 1 ≤ a, b ≤ N , hence

S0(N) ≤ (logN)
B
(2N) = o(N2

).

Finally, S1(N) can be bounded in the same manner as in [LX]:

S1(N) = ∑
h∈N

p∣h⇒c≤p≤ξ1

µ(h)ρF (p
2
)(
N2

h4
+O(

N

h2
+ 1))

= N2
∏

c≤p≤ξ1

(1 −
ρF (p

2)

p4
) +O( ∑

h≤e2ξ1

h−2+ε
(Nh−2

+ 1))

= N2
∏
p≥c

(1 −
ρF (p

2)

p4
) +O(N2ξ−1

1 ) + o(N2
)

∼ N2
∏
p≥c

(1 −
ρF (p

2)

p4
).

Putting all the estimates for the different Si(N)’s together in (3) we obtain the
result.

Lemma 5.2. Let c be as in Proposition 5.1 and let m ∈ SF (N), then

∣{(a, b) ∈ [1,N]
2
∣ F (a, b) =m}∣ ≪ logN.

Proof of Lemma 5.2. Write F (x, y) = αx2 + βxy + γy2 with α,β, γ ∈ Z. Solving the
equation F (a, b) =m for a we find

a =
−βy ±

√
β2y2 − 4α(γy2 −m)

2α
,

showing that
β2y2

+ 4α(γy2
−m) = k2 (5)

for some integer k. Rewriting (5) we obtain the Pell equation

(β2
− 4αγ)y2

− k2
= −4αm.

Since F is irreducible β2 − 4αγ is not a square. Since m ∈ SF (N) m has a prime
factor p ≥ c with multiplicity 1, and so 4αm is not a square number since c was
assumed larger than α. From the standard theory of Pellian equations, see [M], it
follows that there are bounded by logN many solutions to (5) with 1 ≤ y ≤ N , as
needed.

Proof of Theorem 1.12. Let c > 0 be a constant as in the formulation of Proposition
5.1. Let again B = π(c) be the number of primes less than c, and let A = B + 1.
Call two numbers m,m′ ∈ SF (N) related if νp(m) = νp(m

′) for all p ≥ c. Notice
that by (4) any m ∈ SF (m) is related to at most (logN)B numbers from SF (m).
Using Lemma 5.2 we see that

{F (a, b) ∣ (a, b) ∈ [1,N]
2
}

consists of at least M ∶= N2/(logN)A classes of related numbers. For any of these
classes C of related numbers let mC be a representative such that there is a rational
number amC /bmC , 1 ≤ amC , bmC ≤ N with F (amC , bmC) = m. Applying Theorem
2.3 we see that almost all the fields Q(PamC /bmC ) are distinct.
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