THE DISTRIBUTION OF SEQUENCES IN RESIDUE CLASSES

CHRISTIAN ELSHOLTZ

(Communicated by David E. Rohrlich)

Abstract. We prove that any set of integers \(A \subseteq [1,x] \) with \(|A| \gg (\log x)^r \) lies in at least \(\nu_A(p) \gg p^{-r} \) many residue classes modulo most primes \(p \ll (\log x)^{r+1} \). (Here \(r \) is a positive constant.) This generalizes a result of Erdős and Ram Murty, who proved in connection with Artin’s conjecture on primitive roots that the integers below \(x \) which are multiplicatively generated by the coprime integers \(a_1, \ldots, a_r \) (i.e. whose counting function is also \(c(\log x)^r \)) lie in at least \(p \gg \log x \) residue classes, modulo most small primes \(p \), where \(c(p) \to 0 \), as \(p \to \infty \).

Let \(\text{ord}_p(a) \) denote the order of \(a \) modulo \(p \), where \((a, p) = 1 \). A quantitative version of Artin’s conjecture on primitive roots states that for a fixed integer \(a \), not a square, and not \(-1\), there is a positive proportion of primes such that \(\text{ord}_p(a) = p - 1 \). (See [7] for a survey.) In favour of this conjecture, Erdős proved in [2] that for all but \(o(\frac{x}{\log y}) \) of the primes \(p \leq y \) one has

\[\text{ord}_p(2) > p^{\frac{1}{2}}. \]

This improved upon the lower bound of \(\text{ord}_p(2) > p^\delta \) for all \(\delta < \frac{1}{2} \), proved by Bundschuh; see [1]. It is also implicit in section 3 of Hooley’s work on Artin’s conjecture (see [5]) that for all but \(O\left(\frac{x}{(\log y)^3} \right) \) primes \(p \leq y \) one has \(\text{ord}_p(a) \gg \frac{\sqrt{x}}{\log p} \). Erdős announced at the end of his paper that the lower bound can be slightly sharpened to

\[\text{ord}_p(2) \geq p^{\frac{1}{2} + \varepsilon(p)}, \]

where \(\varepsilon \) is any real function with \(\lim_{p \to \infty} \varepsilon(p) = 0 \). The details of this were provided by Erdős and Ram Murty in [3]. For related results see also Pappalardi [8].

For a more general situation, they implicitly consider the following. Let \(a_1, \ldots, a_r \) be mutually coprime positive integers and let \(p \) be a prime with \((p, a_1 a_2 \cdots a_r) = 1 \).

Let \(A_1 \) be the semigroup of positive integers multiplicatively generated by the \(a_i \) and let \(A = A_1 \cap [1,x] \). Then the elements in \(A \) have the form \(a_1^{\beta_1} a_2^{\beta_2} \cdots a_r^{\beta_r} \leq x \), where the \(\beta_i \) are nonnegative integers. Let \(f(p, a_1, \ldots, a_r) \) denote the number of distinct residue classes modulo \(p \) which are needed to cover all elements of \(A \).

Note that the number of powers of \(a \) below \(x \) is asymptotically \(c_a \log x \), and that there are about \(c_{a_1, \ldots, a_r}(\log x)^r \) many integers below \(x \) which are generated...
multiplicatively by the \(a_i \). Here and in the following, the \(c \) with various indices stand for positive constants.

In this situation, Erdős and Ram Murty prove that, for all but \(o\left(\frac{y}{\log y}\right) \) many primes \(p \leq y \) with \((p, a_1 \cdots a_r) = 1\) one has

\[
f(p, a_1, \ldots, a_r) \geq p^{\frac{r+1}{r+2}} + \varepsilon(p),
\]

where \(\varepsilon \) is an arbitrary real function with \(\lim_{p \to \infty} \varepsilon(p) = 0 \).

Giving a more quantitative version of this statement one might consider the sequence up to \(x \). It is then implicitly understood that \(y \ll (\log x)^{r+1} \), since otherwise the sequence \(\mathcal{A} \) does not have \(\gg y^{\frac{r}{r+1}} \) elements below \(x \).

In this note we generalize these results to arbitrary integer sequences. Therefore, the fact that the powers of some element \(a \) lie in many residue classes modulo many primes is not necessarily an argument in favour of Artin’s conjecture. However, for special sequences like the powers of \(a \) the result by Erdős and Ram Murty is stronger by the \(\varepsilon(p) \) refinement. We prove the following theorem:

Theorem. Let \(x > x_0 \) and let \(\mathcal{A} \subseteq [1, x] \) be a set of positive integers with \(|\mathcal{A}| \geq c_1(\log x)^r \). Let \(\nu_{\mathcal{A}}(p) \) denote the number of distinct residue classes modulo \(p \) which are necessary to cover \(\mathcal{A} \). Let \(y = c_4(\log x)^{r+1} \). Let

\[
S = \{ p \in \mathcal{P} \cap [1, y] : \nu_{\mathcal{A}}(p) \leq c_2 p^{\frac{r-1}{r+1}} \}
\]

and \(c_3 = \frac{|S|}{\pi(y)} \). Let \(\beta = \frac{1}{r+1} \) and \(C = \frac{1}{3} (1 - (1 - c_3)^\beta) c_4^\beta \). If \(C > c_2 \), then

\[
\frac{c_2 c_3 c_4}{C - c_2} c_2 \geq c_1.
\]

In typical applications, the counting function \(A(x) \), i.e. \(c_1 \) and \(r \), might be known. Suppose one wants to make the proportion \(c_3 \) of ‘bad primes’ very small so that one knows for essentially all primes \(p \leq y \), that \(\nu_{\mathcal{A}}(p) \) is large. Then one can make an admissible choice of \(c_2 \) and \(c_4 \) as follows: Choose a small \(c_3 \), choose \(c_4 \geq \frac{c_1}{c_3} \), and put \(c_2 = \frac{C}{2} \). Then trivially \(C > c_2 \) and

\[
\frac{c_2 c_3 c_4}{C - c_2} = \frac{c_2 c_3 c_4}{c_2} = c_3 c_4 \geq c_1.
\]

This implies the following corollary.

Corollary. Let \(\mathcal{A} \) be an infinite set of positive integers with counting function \(A(x) \gg (\log x)^r \). Let \(\nu_{\mathcal{A}}(p) \) denote the number of distinct residue classes modulo \(p \) which are necessary to cover \(\mathcal{A} \cap [1, x] \). Then for all \(c_3 > 0 \) one can find positive \(c_2 \) and \(c_4 \) such that for all but at most \(\frac{c_3 y}{\log y} \) primes \(p \leq y \), where \(y = c_4(\log x)^{r+1} \), one has \(\nu_{\mathcal{A}}(p) \geq c_2 p^{\frac{r-1}{r+1}} \).

Unfortunately, it appears, if one allows at most \(o\left(\frac{y}{\log y}\right) \) exceptional primes, that is if one requires that \(c_3 \to 0 \) as \(x \to \infty \), then one has to allow that \(c_2 \) and \(c_4 \) vary accordingly.

1Strictly speaking, their theorem is stated in a more general form for rational numbers. Let us take the opportunity to mention that there is a slight inaccuracy in the description of the \(\varepsilon \) in Theorem 4 and part 3 of Theorem 5 of their results (and also in the abstracts in the Math. Reviews and the Zentralblatt): Obviously, one should either replace \(p/\varepsilon(p) \) by \(p\varepsilon(p) \) or one should take \(p/\varepsilon(p) \) with \(\lim_{p \to \infty} \varepsilon(p) = \infty \).
Our main tool is Gallagher’s larger sieve, which we state for completeness.

Lemma (Gallagher’s larger sieve; see [4]). Let \(A \subseteq [1, x] \) be a set that lies in at most \(\nu_A(p) \) residue classes modulo \(p \), for \(p \in S \). Then

\[
|A| \leq -\log x + \sum_{p \in S} \frac{\log p}{\log p - \log x + \sum_{p \in S} \frac{\log p}{\nu_A(p)}},
\]

provided the denominator is positive.

Proof of the Theorem. Since we deal with upper bounds and since \(\log p \) and \(\frac{\log p}{p+1} \) are monotonic functions for \(p > p_0 \), the worst case distribution of the primes in \(S \) is that these primes are as large as possible. If \(x \) tends to infinity, then the intervals \([0, cy] \) and \(([1 - c)y, y]\) contain asymptotically the same number of primes, \(cy \log y \).

The worst case distribution is determined by the primes in \([(1 - c_3 + o(1))y, y] \). For simplicity, we omit \(o(1) \) expressions and write instead of \(\geq \) instead of \(\leq \). Moreover, recall that it follows from \(\sum_{p \leq z} \frac{\log p}{p^\beta} \sim z^{1-\alpha} \) by partial summation that for \(0 < \alpha < 1 \) one has

\[
\sum_{p \leq z} \frac{\log p}{p^\beta} \sim \frac{z^{1-\alpha}}{1-\alpha}.
\]

With \(\alpha = \frac{c}{1+c} \), so that \(1 - \alpha = \frac{1}{1+c} = \beta \), we find that

\[
|A| \lesssim -\log x + \sum_{p \leq y} \frac{\log p}{(1-c_3)y \leq p \leq y} \lesssim -\log x + \frac{c_3 y}{c_2 p^{\beta + 1}} \lesssim -\log x + \frac{c_3 y}{c_2 p^{\beta + 1}} (y^\beta - (1 - c_3)^\beta y^\beta)
\]

\[
= \frac{c_3 c_4 (\log x)^{\beta+1}}{-\log x + \frac{c_2 \log x}{c_2} \log x} = \frac{c_2 c_3 c_4}{c_2 - c_2} (\log x)^\beta.
\]

Suppose that we have \(C > c_2 \) but \(\frac{c_2 c_3 c_4}{c_2 - c_2} < c_1 \). This is, for sufficiently large \(x \), a contradiction to our assumption \(|A| \geq c_1 (\log x)^\beta \).

Remark. Matthews (see [6]) considered questions related to that of Erdős and Ram Murty in a more general context of algebraic groups and abelian varieties. For the classical case of Artin’s conjecture he proved that for almost all primes and for all positive \(\varepsilon \) one has \(\nu(p) > p^{\frac{c}{2} - \varepsilon} \). (Apparently he was unaware of [1] and [2].) He mentions further applications to nilpotent groups and to manifolds due to Milnor, Tits, and Wolf.

References

Institut für Mathematik, Technische Universität Clausthal, Erzstrasse 1, D-38678 Clausthal-Zellerfeld, Germany

E-mail address: elsholtz@math.tu-clausthal.de