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Let f(n,d) denote the least integer such that any choice of f(n,d) elements in Z
d
n contains

a subset of size n whose sum is zero. Harborth proved that (n− 1)2d + 1 ≤ f(n,d) ≤
(n−1)nd+1. The upper bound was improved by Alon and Dubiner to cd n. It is known
that f(n,1)=2n−1 and Reiher proved that f(n,2)=4n−3. Only for n=3 it was known
that f(n,d)> (n−1)2d+1, so that it seemed possible that for a fixed dimension, but a
sufficiently large prime p, the lower bound might determine the true value of f(p,d). In
this note we show that this is not the case. In fact, for all odd n≥ 3 and d≥ 3 we show

that f(n,d)≥1.125�
d

3
�(n−1)2d+1.

1. Introduction

A classical result of Erdős, Ginzburg, and Ziv [8] states that amongst any
2n−1 integers one can choose n such that their sum is divisible by n.

Harborth [14] considered the corresponding problem for d-dimensional
integer lattices. Let f(n,d) denote the minimal number such that any choice
of f(n,d) not necessarily distinct vectors vi ∈ Z

d
n contains a subset of n

vectors whose sum is 0∈Z
d
n. Harborth proved that

(n − 1)2d + 1 ≤ f(n, d) ≤ (n − 1)nd + 1.

The lower bound follows from the example in which there are n−1 copies
of each of the 2d vectors with entries 0 or 1. The upper bound follows since
any set of (n−1)nd+1 vectors must contain, by the pigeonhole principle, n

vectors which are equivalent modulo n.
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The upper bound was greatly improved upon by Alon and Dubiner [2]:

f(n, d) ≤ cdn.

For composite integers n=n1n2 an upper bound on f(n,d) can be derived
by bounds on f(n1,d) and f(n2,d) as follows (see Harborth [14]):

f(n1n2, d) ≤ min {f(n1, d)+(f(n2, d)−1)n1, f(n2, d)+(f(n1, d)−1)n2} .(1)

One therefore often restricts the consideration to a prime argument n=p.
For d=2 it was conjectured that f(n,2)=4n−3, so that the lower bound

would determine the correct value. In fact it suffices to prove this conjecture
for prime values of n, since the conjecture then follows by (1). There were
partial results in favour of this conjecture, see Kemnitz [16], as well as Gao
[10], [11], [12], and Thangadurai [21].

Rónyai [20] proved that for primes p one has f(p,2)≤4p−2, which implies
that f(n,2)≤ 4.1n. Gao [13] extended this to powers of primes: f(pa,2)≤
4pa−2. Reiher [19] eventually proved this conjecture: f(n,2)=4n−3.

For d≥3 very little is known.

f(2a, d) = (2a − 1)2d + 1 (see Harborth [14]),
f(3, 3) = 19 (see Harborth [14], Brenner [3]),
f(3, 4) = 41 (see Pellegrino [18], Brown and

Buhler [4], Brenner [3], Kemnitz [16]),
91 ≤ f(3, 5) ≤ 121 (see Kemnitz [15]),

f(3, 5) = 91 (see Edel et al. [7], [5])
225 ≤ f(3, 6) ≤ 229 (see Edel et al. [7], [5])

f(3, 18) ≥ 300 × 212 (see Frankl, Graham, Rödl [9]),
f(3, d) ≥ 2.179d for d ≥ d′ (see Frankl, Graham, Rödl [9]),
f(3, d) ≥ 2.217389d for d ≥ d′ (see Edel [6])
f(n, d) = o(nd) for fixed n, as d → ∞ (see Alon, Dubiner [2])

where d′ is sufficiently large. The result f(3,d) = o(3d) (Brown and Buhler
[4], and Frankl, Graham and Rödl [9]) can be derived from the Szemerédi–
Roth theorem on arithmetic progressions of length 3. Ruzsa proved that

f(3,d) = O
(

3d√
d

)

holds (see Meshulam [17]) and Meshulam proved a more

general result on arithmetic progressions of length three in finite abelian

groups which implies as a special case f(3,d)≤2 3d

d
(see also [17]).

The exact determination of f(n,d) is a very difficult problem. Harborth’s
lower bound has been improved only in the above mentioned very few special
cases with n=3. Not a single case for odd n> 3 was known with f(n,d)>
2d(n − 1) + 1. It seemed conceivable that for any fixed dimension and a
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sufficiently large prime p the lower bound determines the correct value of
f(p,d). In this note we show that this is not the case. We prove the following
theorem:

Theorem. Let n≥3 be an odd integer. The following inequality holds:

f(n, d) ≥ 1.125

d
3
�(n − 1)2d + 1.

Formally, the bound is also valid for d=1 and d=2, but is not new in
these cases. This theorem has a number of simple corollaries:

Corollary 1. For fixed d this implies that the constant cd in Alon and

Dubiner’s result must satisfy

cd ≥ 2d1.125

d
3
�.

If we take a fixed n and a large dimension d, then this implies:

Corollary 2. For odd n and sufficiently large d ≥ d′ the following lower
bound holds:

f(n, d) ≥ 2.08d.

For n=3 this is weaker than the existing bound f(3,d)≥2.217389d (for
large d).

It is interesting to note that we have for the general case considered in
the Theorem a simple and uniform proof based on only one particular value:
f(3,3)=19. It is not surprising that this can be extended to f(3,d), but it
is certainly surprising that the proof can be extended to different n.

For the related problem, where g(n,d) denotes the minimal number such
that any set of g(n,d) distinct vectors in Z

d
n has a zero sum of length n, we

show similar bounds. It is known that g(n,d) ≥ (n− 1)2d−1 +1 for n ≥ 3,
and g(n,d) ≥ n2d−1+1 for even n, g(3,3) = 10, g(3,4) = 21, (see Harborth
[14], Brenner [3], Frankl, Graham and Rödl [9], and Kemnitz [15], [16]). By

the pigeonhole principle we have that g(n,d) ≥ f(n,d)−1
n−1 +1. Therefore the

theorem immediately implies the following

Corollary 3. Let n≥3 be an odd integer. The following bound holds:

g(n, d) ≥ 1.125

d
3
�2d + 1.

In particular, for large d:

g(n, d) ≥ 2.08d.
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For fixed d and large n the corollary is much weaker than the theorem.
One trivially has that n≤g(n,d). The lower bound of the corollary is inde-
pendent of n and therefore in this respect not optimal. But for fixed n and
large d the corollary above may be of interest.

2. Proof

In the proof of the theorem we start off from Harborth’s example which
shows that f(3,3)≥ 19. We first extend this in dimension 3 from n= 3 to
arbitrary n. We then increase the dimension by an explicit product con-
struction.

We take the 9 vectors considered by Harborth but we consider these in
Z

3
n (not only in Z

3
3).
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If n≥3, then these vectors are distinct in Z
3
n. We shall prove:

Lemma. Let n≥3 be an odd integer. If any n vectors taken from a multiset

of the above 9 vectors add to 0∈Z
3
n, then necessarily one has taken n times

the very same vector.

To avoid such kind of zero sum our example in d=3 starts off with n−1
copies of each of the above 9 elements in Z

3
n. In dimension d>3 we construct

our vectors as follows. Up to dimension 3
⌊

d
3

⌋

we take all 9

d
3
� vectors which

are composed out of any of the 9 vectors in the coordinates 3i+1 up to

3i+3, where i=0, . . . ,
⌊

d−3
3

⌋

. In the remaining d0=0,1 or 2 coordinates we

take all 2d0 combinations of vectors composed of 0 and 1 only. Note that

2d0×23� d
3
�=2d. We take any of these vectors n−1 times such that the total

number of used vectors is 1.125

d
3
�2d(n−1).

Suppose that there is a choice of n vectors which sums to the zero vector,
modulo n. Any choice of n vectors which sums in the last d0 coordinates to
0 or n must necessarily have n times the same value of εi∈{0,1}. Moreover,
we use the lemma for triples of dimensions (3i + 1,3i + 2,3i + 3), where

i=0, . . . ,
⌊

d
3

⌋

. Suppose for a moment the lemma is proven: then a zero sum

must take in these three coordinates n copies of the same entries. But since
there are n−1 copies of each d-dimensional vector only, the n vectors cannot
be identical. They differ in at least one of the three dimensions 3i+1 up to
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3i+3 (say) or in the last d0 dimensions. In these dimensions there is no zero
sum of length n, which proves the theorem.

It is therefore sufficient to prove the lemma. Suppose our choice of the
n vectors uses ai copies of the i-th vector, where i = 1, . . . ,9 and where
0≤ai≤n−1. We then have the following system of equations.

(1) a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 = n

(2) 2a1 + a6 + a7 + a8 + a9 ≡ 0 mod n

(3) a1 + a4 + a5 + a8 + 2a9 ≡ 0 mod n

(4) 2a1 + a3 + a5 + a7 + 2a8 + 2a9 ≡ 0 mod n.

We show first that the three expressions on the left hand side of (2), (3) and
(4) must be equal to n. In order to see this, we must consider various cases.

Case 1) In equation (2) we must exclude that 2a1+a6+a7+a8+a9=0 or
≥2n. Similarly, cases 2) and 3) will treat the equations (3) and (4).

Case 1a) Equation (1) and 0≤ai <n shows that 2a1+a6+a7+a8+a9 <2n.

Case 1b) So let us suppose for a contradiction that 2a1+a6+a7+a8+a9=0.
This implies that a1 = a6 = a7 = a8 = a9 = 0. Our system of equations
simplifies to

(1′) a2 + a3 + a4 + a5 = n

(3′) a4 + a5 ≡ 0 mod n

(4′) a3 + a5 ≡ 0 mod n.

Moreover

(1′)− (3′) a2 + a3 ≡ 0 mod n

(1′)− (4′) a2 + a4 ≡ 0 mod n.

If we assume that a4 + a5 = n, then a2 = a3 = 0, by (1′). But then by
(1′)− (4′): a4 ≡ 0 mod n. Then 0≤ ai < n shows that a4 =0, so that a5 =n,
a contradiction to a5 < n. Similarly, if we assume that a2+a3 = n, so that
a4 = a5 = 0, then the same kind of contradiction follows from (1′)− (4′):
a2≡0 mod n, and a3=n.

Case 2a) Since a9 <n we can exclude that

(3) a1 + a4 + a5 + a8 + 2a9 ≥ 2n.

Case 2b) So, let us suppose that

(3) a1 + a4 + a5 + a8 + 2a9 = 0,
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which implies that a1=a4=a5=a8=a9=0.
Our system of equations then is

(1′) a2 + a3 + a6 + a7 = n

(2′) a6 + a7 = n by case 1)

(4′) a3 + a7 ≡ 0 mod n.

This implies a2 = a3 = 0. Then (4′) implies that a7 ≡ 0 mod n, i.e. a7 = 0,
which contradicts a6 <n.

Case 3a) Suppose that

(4) 2a1 + a3 + a5 + a7 + 2a8 + 2a9 ≥ 2n.

Then 2(1)−(4) gives

2a2 + a3 + 2a4 + a5 + 2a6 + a7 ≤ 0,

so that

a2 = a3 = a4 = a5 = a6 = a7 = 0.

Our system of equations then is:

(1′) a1 + a8 + a9 = n

(2′) 2a1 + a8 + a9 = n by case 1)

(3′) a1 + a8 + 2a9 = n by case 2).

This implies that a1=a9=0, a8=n, which contradicts a8 <n.

Case 3b) So, we assume that

(4) 2a1 + a3 + a5 + a7 + 2a8 + 2a9 = 0,

which implies

a1 = a3 = a5 = a7 = a8 = a9 = 0.

By equation (2) we see that a6=n, which contradicts a6 <n.
The above case study shows that the left hand sides of (1), (2), (3), (4)

are all equal to n. Let us look at equation

(1) + (4)− (2)− (3) a2 + 2a3 + a5 + a7 + a8 = 0.

Because of 0≤ai we find that

a2 = a3 = a5 = a7 = a8 = 0.

Therefore equation (4) simplifies to

2a1 + 2a9 = n,

which is a contradiction, since n is odd, by assumption.
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Remarks. It seems conceivable that starting off from other examples for
small fixed n and d, one might be able to improve the lower bound. But it
is not at all obvious that this will work for any particular value of f(n,d). It
is indeed somewhat surprising that an argument modulo 3 can be extended
to an argument modulo all odd integers.

For even n the lower bound cannot hold in general since for n=2a one
knows that f(2a,d)=(2a−1)2d+1.

The author would like to thank N. Alon, T. Bekehermes, I. Ruzsa, the
anonymous referees, and in particular S. Kubertin for remarks on an earlier
version of this manuscript.
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