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1. Introduction. Blecksmith, Erdds and Selfridge [1] defined a prime
p > 2 to be a cluster prime if every positive even integer 2r < p — 3 can
be written as a difference of two primes, 2r = q — ¢/, where ¢/ < ¢ < p. It
is an open question whether there exist infinitely many cluster primes. Guy
([4, Section C1]) attributes this question to Erdés. The attention of the
general audience was drawn to this problem by Peterson’s article [6] in
Science News.

Blecksmith et al. [1] proved that the counting function m¢(x) of cluster
primes can be bounded from above: for all positive s,

It is the purpose of this note to prove a better bound, i.e. that cluster primes
are rare. This new bound was indeed conjectured by Blecksmith et al. [1].

THEOREM. The number wc(x) of cluster primes below x is bounded by

x
me(e) =0 <exp (%(log log 1:)2) > '

As Blecksmith, Erdés and Selfridge show, the problem is related to the
prime k-tuple conjecture. It is proved that for a cluster prime p the interval
[p — t,p) must contain sufficiently many primes, which explains the name
cluster prime. This allows us to apply an upper bound sieve. In Blecksmith
et al. [1], Brun’s version of the small sieve is used. The principal problem
is that the authors arrive at a constant M whose dependence on the sieve
dimension s is not at all clear. This prohibits taking an increasing s.

Filaseta [3] mentioned that an application of Hooley’s almost pure sieve
proves the result with s = eloglogloga, thus obtaining an upper bound of

X

mo(x) =0 for some positive constant a.
exp(aloglog x loglog log x)
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In this note we apply the large sieve method, due to Montgomery [5].
In fact, we make use of the following lemma due to Vaughan [7], which
is an elaborated version of the large sieve method, perfectly fitting to our
application.

LEMMA 1 (Montgomery [5], Vaughan [7]). Denote by P the set of primes
and let w : P — N with 0 < w(p) < p—1. Let A C [1, N] denote a set of
integers which lies outside w(p) residue classes modulo the prime p. Then
the number A(z) of elements n € A with n < x satisfies

A(m)ﬁ%, where L = Z /ﬁ(q)HM

q<zl/? plg p—w(p)

Moreover,

L > maxexp <mlog (% > #)).

pgxl/(Qm)

2. Proof of the Theorem. If pis a cluster prime, then the even integers
like p — 9 or p — 15 are the differences of two primes ¢, ¢ with ¢,¢' < p. In
particular, there must be a prime in the interval [p — 6,p). More generally,
an even integer 2r € [p—t, p— 3] must be represented by a prime ¢ € [p—t, p]
and a prime ¢’ € [1,t]. By the prime number theorem the number of primes
in [1,t] is (14 o(1))t/logt. We see that for any € > 0 there must be at least
s:=(1/2 —¢)logt primes in [p — ¢, p).

Since the average gap between primes of size x is about logx we see
that this is a useful criterion for t = O((logz)?) (with 0 < § < 1). On the
contrary, for sufficiently large ¢ one expects that an interval of length ¢ has
about ¢/logt primes so that this criterion becomes useless.

There are (trivially) at most (i) possibilities to place s primes in an
interval of length t. For any pattern of s primes in [p — ¢,p) we will give
an upper bound on the number of prime s-tuples below x. This bound will
not depend on the particular pattern. So, multiplying this bound by the
upper bound for the number of patterns, (z), gives an upper bound on
the number of p < z such that the interval [p — ¢,p) contains (at least) s
primes.

We prove the following lemma:

LEMMA 2. Let § = 1/(2¢) and t = (logx)?. Let € be a sufficiently small
positive constant. Let A(x) denote the number of integers n < x such that
the interval [n —t,n) contains at least s = (1/2 —¢)logt primes. Then

Alz) =0 <exp((1/(462) —¢)(loglog x)2)>’
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We fix a particular pattern a; < ... < as. If all n — a; are prime simulta-
neously, then the integers n avoid the residue classes a; mod p for p < n —t.
If p > ¢, then the number of forbidden classes is w(p) = s.

We choose m = [62(loglog x)?], where z is large. With y = /™) we
have log logy = loglogz — 2logloglogz + O(1). So we find that

Z > Z w(p) > s(loglogy —loglogt + o(1))

P<y b t<p<y
> (1/2 —€)d0(loglog x)(log log x — 3logloglog x + O(1))
> (1/2 — 2¢)6(loglog x)*.

This implies the estimate
1 1
L> 62 (log1 Nlog [ ——— 6 = — 2¢ ) (log! 2
> exp (f (loglog x)] (>g<(52(10g10g36)21 (2 6)( oglog )

> exp (52(10g log 2)” log (% (% - 38)))

> exp(62(loglog z)? log(e — 6eg)) > exp(6%(1 — 7¢)(loglog x)?)

> exp <<4i62 — 5> (loglogx)2>.

Therefore, for any fixed pattern a1 < ... < a, there are at most
2x

exp((1/(4e?) — ¢)(loglog )?)
values n < x such that all n — a; are prime. Thus the lemma is proved.

To prove the theorem we only need to recall that

(2) < t 2z
OV = s exp(62(1 — 7e)(loglog z)?)”
Because of ;

() <1 < exp((1/2 — £)6*(loglog z)?)
we find that

To(z) = O<exp((1/(862) — s)(loglogﬂﬂ)Q)).

3. Further comments. No serious attempt has been made at optimiz-
ing the constant 1/60 or 1/(8¢?) — ¢ that appears in the Theorem. Some
improvement is possible. We only mention the following: Vaughan’s argu-
ment in Lemma 1 can be refined to

€—Em w(p)
L> 1 E — .
- g}g}\?exp (m o8 < m P ))

pgrl/(%n)
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Here the ¢,, are positive constants that tend to 0 as m goes to infinity. This
allows using ¢; ~ §/2 and § ~ 1/2 and proves the Theorem with 1/8 — ¢
instead of 1/60. For details see [2].

The author would like to thank the referees for helpful comments.
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