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ON VARIANTS OF THE LARGER SIEVE

E. S. CROOT III (Atlanta) and C. ELSHOLTZ (Egham)

Abstract. Gallagher’s larger sieve is a powerful tool, when dealing with se-
quences of integers that avoid many residue classes. We present and discuss
various variants of Gallagher’s larger sieve.

1. Introduction

The large sieve has its origins in the work of Linnik and Rényi. It was
developed to deal with sequences that avoid a positive proportion of residue
classes. It was later strengthened and simplified by Roth, Bombieri, Daven-
port, Halberstam, Montgomery, Selberg, Gallagher and many others. For a
survey see Montgomery [15] and Bombieri [1].

It is known that Montgomery’s large sieve [15] is a useful method when
sifting sequences that avoid many residue classes modulo primes. But for
sequences that avoid on average more than half of the residue classes it is
preferable to use Gallagher’s larger sieve [8]. For example, if a sequence

A C [1,N] avoids w(p) = ’%1 residue classes modulo the primes 2 < p < VN,

then Gallagher’s larger sieve gives the upper bound A(N) < v/N. Moreover
the squares are the standard example to show that here both, the large and
the larger sieve achieve the correct order of magnitude (see Section 3).

Recently there emerged quite a few new applications of Gallagher’s larger
sieve (see e.g. Dujella [4], Elsholtz [5], [6], Gyarmati [10], Hegyvari and
Sarkozy [12]) so that it seemed worthwhile looking for variants of this sieve
having some advantages over Gallagher’s version. (We would like to point
out that Gallagher had various contributions to the large sieve. In addition
to the larger sieve that we consider here, he gave a simple approach to the
large sieve [7] and developed a sieve that allows to sift modulo powers of
primes, [9].)
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244 E. S. CROOT III and C. ELSHOLTZ

Let us state Montgomery’s large sieve and Gallagher’s larger sieve first.
We then state and prove our new variants of it. In the final section we discuss
the advantages or disadvantages of these variants.

THEOREM 1 (Montgomery [15]). Let P denote the set of primes. Let
A C [1,N] denote a set of integers which lies outside w(p) residue classes

modulo the prime p. Here w: P — N with 0 £ w(p) < p— 1. Then the fol-
lowing bound on the counting function A(N) holds:

2 _ w
A(N) £ %, where L = Z 12(q) H #z)
7=Q pla ¥ P

One usually takes Q = v/N.

THEOREM 2 (Gallagher’s larger sieve, [8]). Let S denote a set of primes
or powers of primes, such that A C [1, N] lies in at most v(q) residue classes
modulo q, for each ¢ € §. Then the following bound holds, provided the de-
nominator s positive:

Here A denotes the von Mangoldt function defined by

logp, if g =p" with prime p,
Alg) = :
0, otherwise.

2. New variants of the larger sieve

THEOREM 3 (Variant 1). Let S C [2,Q] denote a set of primes or powers

of primes such that A C [1, N] lies in at most v(q) residue classes modulo g,
for each g € S. Then,

23N exp (qus %)
exp (qus %)

For most applications one chooses S to be the set of all primes in some
interval [2,Q], where @ is less than the upper bound one is going to prove

|A] £ max | Q,
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for |A]. Then Q ~ 3 s A(q) ~ Cexp (qus ¥> for some positive con-
stant C.

THEOREM 4 (Variant 2). Let S denote a set of primes or powers of
primes such that A C [1,N] lies in at most v(q) residue classes modulo g,
for each ¢ € S. Let G = maxyesv(q). Then the following inequality holds,
provided the denominator is positive:

—Glog N + 3 csv(9)A(q) ‘

|A| =
—Glog N + qus A(q)

The following two variants look odd for a sieve bound on |A| but they
may still be useful.

THEOREM b5 (Variant 3). Let S denote a set of primes or powers of
primes such that A C [1, N] lies in at most v(q) residue classes modulo q, for
each q € S. Suppose that |A| > 3 s A(g). Then,

A(q)
v(q)

1+logN = z
qeS

THEOREM 6 (Variant 4). Let S denote a set of primes or powers of
primes such that A C [1, N] lies in at most v(q) residue classes modulo q, for
each g € §. Then the following inequality holds, provided the denominator is
positive:

Al < —logN—i—ZquA(q)
~ —log N + quesl\(q) S ilaeA: a=cmod g

PROOF OF VARIANT 1. For any integer ¢ let

B(g) = |{(a,d") e A: a#d, q|a—d}]

and
q—1

C(q) ::Z‘{aEA: azcmodq}‘z.

c=0

Note that B(q) = C(q) — |A|.
For any pair of distinct integers a,a’ € A, we have that

Z A(g) = Z logp = log|a — a'| < log N,

qla—d’ prla—d
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where ) , is taken over all primes and powers of primes that divide

p'la—a

a—a'. So,

M > D Y M@= B@h@ < (P~ |A]) log N.
acA d'cA, qla—d ¢SN

a' #a

C(q) attains its minimum value when all the elements of A are as evenly
distributed as possible amongst the v(gq) progressions modulo ¢ which A oc-

cupies. Thus,
2 2
o zvia) (L) = EL

This gives

(2) 3" B(g)A(q) 2 AP Z—j— A1 S Alg).

qeS qeS

For ¢ ¢ S we do not assume that the set 4 avoids any residue class modulo q.
Thus, for each ¢ the smallest that B(g) can be occurs if all the elements of
A are equally distributed amongst the ¢ progressions modulo g; so we use

for ¢ < |A| with g € S,

2
Blg) = Clg) — A] > % Al
Thus,
Y BoA@zA? Y Ay A
q<|Al, ¢¢S q<|Al, ¢S q<|Al, ¢ES
- |A|2( T ?—Z%) A Y AW
q<| A qes q<|Al, ¢¢S

> |A|2<log A = 2.06 > %) — A ) A

qeS q§|A|a qZS

Here we have used formula (3.21) of Rosser and Schoenfeld [18] which im-
plies that Zq<|A| ) > >p<1A] (p) > log |A| + E — 2loé\A\ > log | A| — 2.06
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for |A| = 2, where E = —1.33258. .. . For larger |A| the constant 2.06 can be
replaced by a better constant.

Combining this with (1) and (2), we get

(JAI* = |A]) log N > Y~ B(g)A(g)

a=|A|

= > Bl@Aa+ Y. B@A)

q<| A, q€S q<|Al, q¢S

VRS %—w Y AW

q<|Al, q€S q<|Al, q€S

+|A|2(—2.06+10g|A|— 3 M)—w S A

q<| A, q€S q<| A, q¢S

Dividing through by |A[?, gives

<1 - L) log N + L Z A(q) = —2.06 + log |A|
Al Al

b
v
q<|Al, g8 a q<|Al, qe8 (9)

simplifying and rearranging terms gives

A A
log | Al §3.1+logN+Z (9) _Z ((Q))
qeS qeS vigq

Here we used Theorem 12 of Rosser and Schoenfeld [18], which implies that
for |A|na0 we have ﬁ >g<i4) Alg) < 1.039.
It then follows that
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PROOF OF GALLAGHER’S LARGER SIEVE AND OF VARIANT 4. From (1)
and (2) we can also easily arrive at Gallagher’s original version:

(12— JA) log N > 3" B@)Alg) 2 |42 2D 143 4(g).
qES

qeS V(q) qeS

Dividing through by |.A| proves

A< BN+ Tues M)
= A
—log N +3 s U((Z))
If we work with C(q) instead of C(q) 2 %, then the same line of argument

proves Variant 4. Il

PROOF OF VARIANT 2. The proof closely follows Gallagher. Let A(h,q)
denote the number of elements of the set .4 with « = A mod ¢q. Then by the
Cauchy—Schwarz inequality

q

q 2
AP = (ZA(h,q>) <)Y (Alhg)>.
h=1

h=1
since A(h,q) = 0 for all but v(g) values of h. Summing over S we find that

APY M) D AMovlg > 1= > > Agwlg)

qeS qeS a,a' €A with |d|EN a—ad'=d q|d,q€S
a=a' mod ¢

< A Aa)v(g) + G(JAP — | Al) log N,

qgeS

since for d # 0 one has that }° , A(g) = log|d| < log N. This implies that

AP (= Gl + T AW) £ 141( - GlosN + X Ata(o)).
qeS geS
which proves the theorem. O

PrROOF OF VARIANT 3. This is an immediate corollary of Gallagher’s
original version: Suppose that

A0
qezsy(q) > 14 logN.
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Then
< TN+ Ees MO Eies A0)
IOgN + ZqES # a 1
which contradicts the assumption |A| >3~ s A(g). The same holds if one
takes

AQZ log p) ZHQEA a_cmodp}‘

| p<Q

instead of Zp<Q ng)z by the intermediate steps of the proof of Gallagher’s

sieve. O

3. A standard example

The squares are the standard example of a sequence for which both Mont-
gomery’s and Gallagher’s sieve, are sharp. As we could not find the details
of this important example anywhere in the literature we decided to include
them here.

Let A= {n?: n € N} be the sequence of the squares. These lie mod-
ulo odd primes in v(p) = ’il residue classes. For p =2 we have v(p) = 2.
Gallagher’s larger sieve (Theorem 2) and Variant 1 give the correct upper
bound A(N) = O(N 1/ 2) which of course is best possible, apart from the
O-constant. To see this (in the case of Theorem 2), one simply chooses

Q = ¢N'/2 with a sufficiently large constant ¢ and obtains:

< —log N +3_,<ologp Q
I I
—log N +3",<0 005 (FEsite
Q _ 1/2
< <L Q=0(N'?).

—log N +2log@ + O(1)

The O-constant can be improved by recalling that Gallagher’s larger sieve
can also sift modulo powers of primes, and observing that a? #Z kp mod p?,
fork=1,....,p—1.

Montgomery’s sieve also gives the correct order of magnitude. Here
w(2) =0 and w(p) = %1 for odd primes. Since f defined by

2 w(p)
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is a multiplicative function,

L= o) [ -2

— W
¢=Q plg p (p)

can be evaluated by Wirsing’s theorem, see for example Theorem I1.4.1 of
[20]. Here <, f(p)logp = (1+0(1)) z holds and therefore L ~ CQ for a

suitable positive constant C. Again, with Q = ¢N'/? it follows that A(N)
= O(N 1/ 2) . As in the application of Gallagher’s larger sieve, the fact that

the sequence avoids modulo squares of odd primes @ + p — 1 classes can

be used for a slight improvement of the O-constant. But one would have to
appeal to an extension of Montgomery’s sieve (see for example Johnsen [13],
Gallagher [9], Selberg [21], Motohashi [16], and Ramaré and Ruzsa [17]).
Here an application of formula (4) of [9] would suffice. In this applications
it would be important to sieve as before modulo p the w(p) classes, and only
to use the p — 1 additional classes modulo p?. An application of this sieve,
where one sifts modulo p? any @
modulo p) would lead to a much weaker result, only.

+ p — 1 classes (ignoring the information

4. Discussion

We now discuss the advantages of the variants of the larger sieve, pre-
sented above. In many standard applications the original version and these
variants are of the same strength. Let us consider a sieve problem with w(p)
= p —v(p) = ¢p, where ¢ is a constant with 0 < ¢ < 1. Of course, w(p) and

v(p) are integers, so that usually one would have for example w(p) = ’%1, if
c= %, but let us put for simplicity w(p) = p — v(p) = cp. Wirsing’s theorem
allows to estimate the denominator of Montgomery’s sieve:

L=> 1*9]] pf(iizp) > Q(log Q) =",

7=Q plg
Choosing Q = V/N gives

Al < \/N(logN)%.
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Using Gallagher’s larger sieve, we find that for some sufficiently large
constant C' the choice S = {p: p £ Q = CN' ¢} gives

|A| < N'7°.

This shows that for w(p) < § one should use Montgomery’s sieve. For w(p)

> £ Gallagher’s sieve is the preferable choice. For ¢ = % both sieves are
of about the same strength as was studied before with the example of the
squares. However, the upper bounds above suggest an asymmetry. If w(p)
oscillates around & this oscillation can be used for a saving, using Gallagher’s
larger sieve.

If for example, for a constant 0 < a < %,

b b .
— 4+ ——— if p=1mod4
) 2+2(logp)a np ©
wp =
b p .
———— if p= 4
2~ 20logp)” if p =3 mod4,

then one can work out that Montgomery’s sieve will still give |A| < N1/2,
whereas Gallagher’s larger sieve will give an upper bound of

|A| _0 N1/2
B exp (ca(log N)'2%) )’

for a suitable positive constant c,.
Similarly, it is possible to construct an example, where the arithmetic

mean of % is well below %, but where it is preferable to use Gallagher’s

sieve. Let

9p if p=1mod4
w(p)=q7
0 if p=3mod4.

Here the arithmetic mean is %, but using Gallagher’s sieve one finds an upper

bound of O(N2/7) .

Even though these examples may appear to be artificial, let us remark
that such a kind of asymmetry between Gallagher’s and Montgomery’s sieve
was successfully used in Elsholtz [5].
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For the case of cubes, A = {n®: n € N}, Gallagher’s sieve is not optimal.
Here one has that

2 if p=2,3

p if p=—1mod®6
v(p) =

p+2

3 if p= 1mod 6.

In an application of Montgomery’s sieve such an oscillation influences the
power of the logarithmic factor only, giving here an upper bound estimate of
A(N) = O(N'?(log N)l/z) . For an application of Gallagher’s sieve in this
case the optimal choice of the set S is not obvious. One considers whether

it is better that the set S contains the primes p = —1 mod 6 or not. If S
contains all primes up to some level (), then we find that

—log N +Q+ O(1) Q 1
Al < < N7,
A —logN—i—lE%Q—i—iong—i—O(l) —log N +2log@Q + O(1)

with Q = CN SIS only contains the primes p = 1 mod 6 up to some level
@, then we have

Al <

—log N + % +0(1)

with Q = CN 5 Here, the fact that primes without any sifting effect were
omitted even weakens the result.
The situation is different in the case of Variant 1. Here we choose S = { P

SQ:p=1mod6}.

N exp (qus #) _ Nexp (%logQ) _ NQ>
exp (qus /u\((g))) P (% tog Q) Q%

Al <

N
-5

In making the optimal choice of @ we have to respect > s A(p) < |A| (or
Q < |A]) so that

A] < N7,
withQ =CN %, Interestingly enough, the other choice S = {p : p £ Q} leads

to the very same result. It is an advantage of Variant 1 that an addi-
tional prime with v(p) = p does not influence the result since here a factor
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Alg)
q
cancel each other. So, in the case of Variant 1 the choice of S is easier here.

It is only necessary to choose the optimal Q).

If v(p) = p® (with 0 < @ < 1), then Montgomery’s sieve gives A(N) <
N2, whereas Gallagher’s sieve with S = {p :p S Q =C(log N)ﬁ} shows
that A(N) < (log N)™a. Variant 1 cannot handle this case. Moreover, if
|A| is very small, then |A]* — |A| < |A]? in equality (1) weakens the result.

Variant 2 cannot handle the above cases with w(p) = ¢p since one needs

that G < IOgLN. But it can deal with problems that use small values v(p).

For v(p) ~ p® we also find with () = C'(log N)T== that A(N) < (log N)T==.

Even though Gallagher’s original version might be stronger than Vari-
ant 2, for many applications Variant 2 will completely suffice. In some ap-
plications it may be easier to have control over »_ v(p)logp rather than

of exp ( ) occurs in the numerator and denominator, so that these factors

> ly—o(%. Moreover, the term _ v(p)logp is more familiar in applications
of the small sieve.
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