Discrete Comput Geom 34:167–177 (2005) DOI: 10.1007/s00454-004-1155-x

Maximal Dimension of Unit Simplices

Christian Elsholtz¹ and Walter Klotz²

¹Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, England christian.elsholtz@rhul.ac.uk

²Institut für Mathematik, Technische Universität Clausthal, D-38678 Clausthal-Zellerfeld, Germany klotz@math.tu-clausthal.de

Abstract. For an arbitrary field \mathbb{F} the maximal number $\omega(\mathbb{F}^n)$ of points in \mathbb{F}^n mutually distance 1 apart with respect to the standard inner product is investigated. If the characteristic char(\mathbb{F}) is different from 2, then the values of $\omega(\mathbb{F}^n)$ lie between n-1 and n+2. In particular, we answer completely for which n a simplex of q points with edge length 1 can be embedded in rational n-space. Our results imply for almost all even n that $\omega(\mathbb{Q}^n) = n$ and for almost all odd n that $\omega(\mathbb{Q}^n) = n-1$.

1. Introduction

1.1. Motivation

It is well known that the unit triangle cannot be embedded into \mathbb{Q}^2 . In \mathbb{Q}^8 we easily find the regular unit simplex spanned by the following nine points:

$\left(\frac{1}{2}\right)$		$(^{0})$		$\begin{pmatrix} 0 \end{pmatrix}$		$(^{0})$		$\left(\frac{1}{2}\right)$	
$\pm \frac{1}{2}$		0		0		0		0	
0		$\frac{1}{2}$		0		0		$\frac{1}{2}$	
0		$\pm \frac{1}{2}$		0		0		Ō	
0	,	0	,	$\frac{1}{2}$,	0	,	$\frac{1}{2}$	
0		0		$\pm \frac{1}{2}$		0		Õ	
0		0		0		$\frac{1}{2}$		$\frac{1}{2}$	
(0)		(0)		(0)		$\left(\pm\frac{1}{2}\right)$		$\left(\frac{1}{0}\right)$	

In \mathbb{R}^n we can obviously place exactly n + 1 points defining a unit simplex. If we define $\omega(\mathbb{F}^n)$ to be the maximal number of points mutually at unit distance over the field \mathbb{F} , then $\omega(\mathbb{R}^n) = n + 1$. (For a precise definition of the distance function see the next subsection.) On the other hand, $\omega(\mathbb{Q}^n)$ had previously only been determined up to the solution of a diophantine equation, see [4]. In this paper we solve this diophantine equation and thus determine $\omega(\mathbb{Q}^n)$ completely. It turns out that the prime factorizations of n and n + 1 are an important ingredient in the classification. A consequence of this result is that $\omega(\mathbb{Q}^n) = n$ for almost all even n and $\omega(\mathbb{Q}^n) = n - 1$ for almost all odd n.

The problem of determining $\omega(\mathbb{F}^n)$ is loosely connected to the problem of the chromatic number of \mathbb{F}^n . Let $\chi(\mathbb{F}^n)$ be the minimum number of colours needed to colour \mathbb{F}^n so that no two points of the same colour are one unit apart. Even the determination of the chromatic number of the plane is a major outstanding problem. It is only known that $4 \leq \chi(\mathbb{R}^2) \leq 7$. For a survey see [10] and [11]. We may interpret $\omega(\mathbb{F}^n)$ as the clique number of the *unit-distance graph* $G_1(\mathbb{F}^n)$, which has vertex set \mathbb{F}^n with vertices x, y connected by an edge, if they are at unit distance, see [5]. Then $\omega(\mathbb{F}^n)$ is a lower bound for the chromatic number $\chi(G_1(\mathbb{F}^n)) = \chi(\mathbb{F}^n)$. For $\mathbb{F} = \mathbb{Q}$ some exact values are known: $\chi(\mathbb{Q}^2) = \chi(\mathbb{Q}^3) = 2$, $\chi(\mathbb{Q}^4) = 4$ [1], [12], $\chi(\mathbb{Q}^5) \geq 7$ [8], see also [13]. This compares very well with $\omega(\mathbb{Q}^2) = \omega(\mathbb{Q}^3) = 2$ and $\omega(\mathbb{Q}^4) = \omega(\mathbb{Q}^5) = 4$. While $\omega(\mathbb{Q}^n) \leq \omega(\mathbb{R}^n) = n + 1$, the chromatic numbers $\chi(\mathbb{Q}^n)$ and $\chi(\mathbb{R}^n)$ increase exponentially, see [6] and [9].

1.2. Results

As many of our arguments hold for arbitrary fields, we start with a rather general setting. The most interesting applications are perhaps to subfields of \mathbb{R} .

Let \mathbb{F} be an arbitrary field, let $x = (x_i) \in \mathbb{F}^n$ and let $y = (y_i) \in \mathbb{F}^n$, *n* a positive integer. Define the *quadratic distance* of points *x* and *y* by the standard inner product:

$$\Delta(x, y) = (x - y)^2 = \sum_{i=1}^n (x_i - y_i)^2.$$

By $\omega(\mathbb{F}^n)$ we denote the maximal number of points in \mathbb{F}^n , which mutually have quadratic distance 1.

We call the standard inner product of \mathbb{F}^n *nonisotropic* if

$$x \cdot x = 0 \iff x = 0$$
 for every $x \in \mathbb{F}^n$.

Observe that, e.g., for char(\mathbb{F}) = 2 and $n \ge 2$ the standard inner product is not non-isotropic, while it is nonisotropic for real fields.

In case of a nonisotropic inner product the next theorem completely determines $\omega(\mathbb{F}^n)$ up to the solution of a quadratic equation in the very last case, with values bounded by $n - 1 \leq \omega(\mathbb{F}^n) \leq n + 2$. For the proof we combine methods from design theory (Bruck–Ryser type arguments, see [3]) with those from linear algebra and number theory.

Theorem 1.

- (A) If char(\mathbb{F}) = 2, then $\omega(\mathbb{F}^n) = 2$ for every $n \ge 1$.
- (B) If char(\mathbb{F}) $\neq 2$ and *n* is even, then the following statements hold true: (1) If $\sqrt{n+1} \notin \mathbb{F}$, then $\omega(\mathbb{F}^n) = n$.
 - (2) Suppose that $\sqrt{n+1} \in \mathbb{F}$.
 - If n = -2 in \mathbb{F} , then $\omega(\mathbb{F}^n) = n + 2$, otherwise $\omega(\mathbb{F}^n) = n + 1$.
- (C) If char(\mathbb{F}) $\neq 2$ and *n* is odd, then the following statements hold true: (1) Suppose that $\sqrt{(n+1)/2} \in \mathbb{F}$.
 - If n = -2 in \mathbb{F} , then $\omega(\mathbb{F}^n) = n + 2$, otherwise $\omega(\mathbb{F}^n) = n + 1$. (2) Suppose that $\sqrt{(n+1)/2} \notin \mathbb{F}$.
 - If the equation

$$u^2 + 2(n-1)v^2 = n \tag{1}$$

has a solution with $u \in \mathbb{F}$ and $v \in \mathbb{F}$, then $\omega(\mathbb{F}^n) = n$. If the standard inner product of \mathbb{F}^n is nonisotropic and if equation (1) is unsolvable in \mathbb{F} , then $\omega(\mathbb{F}^n) = n - 1$.

Theorem 1 immediately implies the following corollary:

Corollary 1. The smallest field \mathbb{F} over \mathbb{Q} such that $\omega(\mathbb{F}^n) = n + 1$ for every positive integer *n* is $\mathbb{F} = \mathbb{Q}[\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \ldots]$.

The next theorem describes the complete evaluation of $\omega(\mathbb{Q}^n)$.

Theorem 2.

(A) Let n be even.

If n + 1 is the square of an integer, then $\omega(\mathbb{Q}^n) = n + 1$, otherwise $\omega(\mathbb{Q}^n) = n$. (B) Let n be odd.

- (1) If (n + 1)/2 is the square of an integer, then $\omega(\mathbb{Q}^n) = n + 1$.
- (2) Suppose that (n + 1)/2 is not the square of an integer. Let n = n₁n₂² be the factorization of n with a unique squarefree divisor n₁. If n₁ has no prime divisor p ≡ ±3 modulo 8, then ω(Qⁿ) = n, and ω(Qⁿ) = n − 1 otherwise.

Let $N_{\text{even}}(t)$ denote the number of even integers $n \leq t$ with $\omega(\mathbb{Q}^n) \neq n$ and $N_{\text{odd}}(t)$ the number of odd integers $n \leq t$ with $\omega(\mathbb{Q}^n) \neq n - 1$. Evidently, part A of Theorem 2 implies $N_{\text{even}}(t) \sim \sqrt{t}/2$. Landau's method [7, Sections 177–183] on estimating the number of positive integers $\leq t$ with specified prime factors only, allows us to conclude from part B of Theorem 2 that we have $N_{\text{odd}}(t) \sim ct/(\log t)^{1/2}$ for some positive constant c. So we may state the following consequence.

Corollary 2.

- (1) $\omega(\mathbb{Q}^n) = n$ for almost all even integers n.
- (2) $\omega(\mathbb{Q}^n) = n 1$ for almost all odd integers n.

Theorem 2 and Corollary 2 have the following geometric interpretation. For those *n* with $\omega(\mathbb{Q}^n) = n + 1$ it is possible to rotate the regular *n*-dimensional simplex with edge length 1 in \mathbb{R}^n so that all coordinates of the n + 1 vertices become rational. For almost all dimensions *n*, however, this type of rotation does not exist and only a unit simplex with up to *n* (for even *n*), respectively n - 1 (for odd *n*), vertices can be embedded into \mathbb{Q}^n .

2. Proof of Theorem 1

First we settle the case char(\mathbb{F}) = 2 and establish the upper bounds. Let x_0, \ldots, x_m be m + 1 points in \mathbb{F}^n mutually at quadratic distance 1. We may suppose $x_0 = 0$. Then the other vectors x_j , $j \ge 1$, have unit length and for $i, j \ge 1$, $i \ne j$, we have

$$(x_i - x_j)^2 = x_i^2 - 2x_i x_j + x_i^2 = 1,$$
 $2x_i x_j = 1.$

If char(\mathbb{F}) = 2 and $m \ge 2$, then the last equation implies a contradiction. This proves part A.

From now on we assume char(\mathbb{F}) $\neq 2$. Let the $(m \times n)$ -matrix A be formed by the rows x_1, \ldots, x_m . Then AA^T is an $(m \times m)$ -matrix with entries 1 in the main diagonal and $\frac{1}{2}$ in the other positions so that

$$\det AA^{T} = (m+1)\frac{1}{2^{m}}.$$
 (2)

If $m \neq -1$ in \mathbb{F} , then det $AA^T \neq 0$, so that

$$\operatorname{rank} AA^{I} = m \le \operatorname{rank} A \le n.$$
(3)

For m = n + 1 and $n \neq -2$ in \mathbb{F} inequality (3) leads to a contradiction, which implies

$$\omega(\mathbb{F}^n) \le n+1, \qquad \text{if} \quad n \ne -2 \quad \text{in } \mathbb{F}. \tag{4}$$

If n = -2 in \mathbb{F} , then a contradiction in (3) occurs for m = n + 2, which shows

$$\omega(\mathbb{F}^n) \le n+2, \qquad \text{if} \quad n = -2 \quad \text{in } \mathbb{F}. \tag{5}$$

Let m = n. Then (2) may be written as

$$n+1=2^n(\det A)^2.$$

If *n* is even, then n + 1 is the square of an element in \mathbb{F} , i.e. $\sqrt{n+1} \in \mathbb{F}$. If *n* is odd, then

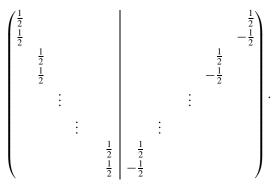
$$(n+1)/2 = 2^{n-1} (\det A)^2$$

is the square of an element in \mathbb{F} , i.e. $\sqrt{(n+1)/2} \in \mathbb{F}$. So we know

$$\omega(\mathbb{F}^n) \le n, \qquad \text{if} \quad \begin{cases} n \text{ is even and } \sqrt{n+1} \notin \mathbb{F}, \\ n \text{ is odd and } \sqrt{(n+1)/2} \notin \mathbb{F}. \end{cases}$$
(6)

To establish lower bounds we start the constructive part of our proof. We define a system σ of *n* points $x^{(1)}, \ldots, x^{(n)}$ if *n* is even, and of n - 1 points $x^{(1)}, \ldots, x^{(n-1)}$ if *n*

is odd. If we take the vectors of σ as the rows of a matrix, this matrix has the following shape:



Positions left empty have to be filled with zeros. If *n* is odd, a last column consisting of zeros only has to be added. Clearly, the points in σ are mutually at distance 1. Thus we have $\omega(\mathbb{F}^n) \ge n$ if *n* is even and $\omega(\mathbb{F}^n) \ge n - 1$ if *n* is odd.

We try to extend the system σ equidistantly by a point $y = (y_1, \ldots, y_n) \in \mathbb{F}^n$. *First we suppose that n is even.*

The additional point y must have quadratic distance 1 to all points $x^{(1)}, \ldots, x^{(n)}$ of σ , which for $m = 1, \ldots, n/2$ implies

$$\Delta(y, x^{(2m-1)}) = (y_m - \frac{1}{2})^2 + (y_{n-m+1} - \frac{1}{2})^2 + \sum_{i \neq m, n-m+1} (y_i)^2 = 1,$$

$$\Delta(y, x^{(2m)}) = (y_m - \frac{1}{2})^2 + (y_{n-m+1} + \frac{1}{2})^2 + \sum_{i \neq m, n-m+1} (y_i)^2 = 1.$$

Taking the difference of these equations yields

$$y_{n-m+1} = 0$$
 for $m = 1, ..., \frac{n}{2}$.

Now we have for $1 \le m \le n/2 - 1$,

$$\Delta(y, x^{(2m-1)}) = (y_m - \frac{1}{2})^2 + \frac{1}{4} + \sum_{i \neq m} (y_i)^2 = 1,$$

$$\Delta(y, x^{(2m+1)}) = (y_m - \frac{1}{2})^2 + \frac{1}{4} + \sum_{i \neq m} (y_i)^2 = 1$$

$$\Delta(y, x^{(2m+1)}) = (y_{m+1} - \frac{1}{2})^2 + \frac{1}{4} + \sum_{i \neq m+1} (y_i)^2 = 1$$

Again subtracting equations leads to

$$y_{m+1} = y_m$$
 for $m = 1, \dots, \frac{n}{2} - 1$.

Thus we see that *y* must have the form

$$y = y(s) = (\underbrace{s, \dots, s}_{n/2 \text{ entries}}, \underbrace{0, \dots, 0}_{n/2 \text{ entries}}), \qquad s \in \mathbb{F}.$$

C. Elsholtz and W. Klotz

Indeed, in this shape *y* has the same distance to all points $x^{(j)}$, $j \le n$.

$$\Delta(y, x^{(j)}) = (s - \frac{1}{2})^2 + \left(\frac{n}{2} - 1\right)s^2 + \frac{1}{4} = 1,$$

$$\frac{n}{2}s^2 - s - \frac{1}{2} = 0.$$
 (7)

If n = 0 in \mathbb{F} , then σ can be extended equidistantly by $y(-\frac{1}{2})$ to a system of n+1 points. According to (4) this is optimal, hence $\omega(\mathbb{F}^n) = n + 1$. Notice that $\sqrt{n+1} = 1 \in \mathbb{F}$ in this case, which corresponds to part B(2) of Theorem 1.

If $n \neq 0$ in \mathbb{F} , then we solve (7) for *s*:

$$s = \frac{1}{n}(1 \pm \sqrt{n+1}).$$

An equidistant extension of σ exists if and only if $\sqrt{n+1} \in \mathbb{F}$. If $\sqrt{n+1} \in \mathbb{F}$ and $n \neq -2$ in \mathbb{F} , then $\omega(\mathbb{F}^n) = n+1$ according to (4).

To finish the case of even *n*, suppose now n = -2 in \mathbb{F} and $\sqrt{n+1} = \sqrt{-1} \in \mathbb{F}$. The only candidates for an equidistant extension of σ are

$$y^{(1)} = y(s_1)$$
 with $s_1 = \frac{1}{n}(1 + \sqrt{n+1}) = -\frac{1}{2}(1 + \sqrt{-1}),$
 $y^{(2)} = y(s_2)$ with $s_2 = \frac{1}{n}(1 - \sqrt{n+1}) = -\frac{1}{2}(1 - \sqrt{-1}).$

The quadratic distance of $y^{(1)}$ and $y^{(2)}$ is

$$\Delta(y^{(1)}, y^{(2)}) = \frac{n}{2}(s_1 - s_2)^2 = -(\sqrt{-1})^2 = 1,$$

which means that in this case the system σ can be extended equidistantly to a system of n + 2 points. According to (5) no further extension is possible, $\omega(\mathbb{F}^n) = n + 2$.

We now consider the case of odd n.

In this case the system σ consists of n - 1 points $x^{(1)}, \ldots, x^{(n-1)}$. Again we try to extend σ equidistantly by a point $y = (y_1, \ldots, y_n)$. As above, the distance conditions

$$\Delta(y, x^{(j)}) = 1$$
 for $j = 1, ..., n - 1$

force *y* to take the following form:

$$y = y(s, v) = (\underbrace{s, \dots, s}_{(n-1)/2 \text{ entries}}, \underbrace{0, \dots, 0}_{(n-1)/2 \text{ entries}}, v), \quad s \in \mathbb{F}, v \in \mathbb{F}.$$

Indeed, in this shape *y* has the same distance to all points $x^{(j)}$, j < n.

$$\Delta(y, x^{(j)}) = (s - \frac{1}{2})^2 + \left(\frac{n-1}{2} - 1\right)s^2 + \frac{1}{4} + v^2 = 1,$$

$$\frac{n-1}{2}s^2 - s + v^2 - \frac{1}{2} = 0.$$
 (8)

An equidistant extension of σ exists if and only if (8) has a solution with $s \in \mathbb{F}$ and $v \in \mathbb{F}$.

If n = 1 in \mathbb{F} , then (8) reduces to

$$s = v^2 - \frac{1}{2}$$
.

For $v = \pm \frac{1}{2}$, $s = -\frac{1}{4}$ we get two points, which extend σ equidistantly to a system of n+1 points. If $n \neq -2$ in \mathbb{F} , this leads to $\omega(\mathbb{F}^n) = n+1$ according to (4). Notice that in this case $\sqrt{(n+1)/2} = 1 \in \mathbb{F}$, which supports part C(1) of Theorem 1. If simultaneously n = 1 and n = -2 in \mathbb{F} , then char(\mathbb{F}) = 3. In this case we can find three points for an equidistant extension of σ :

$$y^{(1)} = y(\frac{1}{2}, 1),$$
 $y^{(2)} = y(\frac{1}{2}, -1),$ $y^{(3)} = y(-\frac{1}{2}, 0).$

According to (5) no further extension is possible. So in this case $\omega(\mathbb{F}^n) = n + 2$, which again corresponds to part C(1) of Theorem 1.

Suppose now $n \neq 1$ in \mathbb{F} . We solve (8) for *s*:

$$s = \frac{1}{n-1} \left(1 \pm \sqrt{1 - 2(n-1)(v^2 - \frac{1}{2})} \right).$$
(9)

There is an equidistant extension of σ if and only if the equation

$$1 - 2(n - 1)(v^{2} - \frac{1}{2}) = u^{2} \quad \text{or, equivalently,}$$
$$u^{2} + 2(n - 1)v^{2} = n \tag{10}$$

has a solution with $u \in \mathbb{F}$ and $v \in \mathbb{F}$. We try to find a solution of (10) for $v = \pm \frac{1}{2}$.

$$u^{2} + 2(n-1)\frac{1}{4} = n, \qquad u = \pm \sqrt{(n+1)/2}.$$

If $\sqrt{(n+1)/2} \in \mathbb{F}$, then we determine $s \in \mathbb{F}$ for $v = \pm \frac{1}{2}$ by (9). The points $y^{(1)} = y(s, \frac{1}{2}), y^{(2)} = y(s, -\frac{1}{2})$ extend σ equidistantly to a system of n + 1 points. If $n \neq -2$ in \mathbb{F} , then by (4) we conclude $\omega(\mathbb{F}^n) = n + 1$. If n = -2 in \mathbb{F} , then we take a closer look at the common element *s* in $y^{(1)}$ and $y^{(2)}$, which we get from (9):

$$s = -\frac{1}{3}(1 + \sqrt{-\frac{1}{2}}) = -\frac{1}{3}(1 + \frac{1}{2}\sqrt{-2}).$$

Notice that char(\mathbb{F}) $\neq 3$ and $\sqrt{-2} \in \mathbb{F}$ in this case. Now (10) has a further solution in \mathbb{F} : v = 0, $u = \sqrt{-2}$. For v = 0 we determine s_0 by (9):

$$s_0 = -\frac{1}{3}(1 - \sqrt{-2}).$$

It is easily checked that σ can be extended equidistantly by the following three points:

$$y^{(1)} = y(s, \frac{1}{2}), y^{(2)} = y(s, -\frac{1}{2}), \qquad y^{(3)} = y(s_0, 0).$$

This shows $\omega(\mathbb{F}^n) = n+2$ in this case and completes the proof of part C(1) in Theorem 1.

To finish the proof of part C(2) of Theorem 1 we may assume that n is odd and $\sqrt{(n+1)/2} \notin \mathbb{F}$. In this case the possible values of $\omega(\mathbb{F}^n)$ are n-1 and n. We show that it is no loss of generality, if we start with the special points studied above. For the points $x^{(1)}, \ldots, x^{(n-1)}$ of σ we set

$$w^{(j)} = x^{(j+1)} - x^{(1)}, \qquad j = 1, \dots, n-2.$$

Then we have $(w^{(j)})^2 = 1$ and $w^{(j)}w^{(k)} = \frac{1}{2}$ for $j \neq k$. If there is any system of *n* points in \mathbb{F}^n mutually at quadratic distance 1, then we could analogously find vectors $z^{(1)}, \ldots, z^{(n-1)}$ satisfying $(z^{(j)})^2 = 1$ and $z^{(j)}z^{(k)} = \frac{1}{2}$ for $j \neq k$. Now a theorem from linear algebra (Proposition 2 of the Appendix) guarantees the existence of an isometry f of \mathbb{F}^n with

$$f(z^{(j)}) = w^{(j)}$$
 for $j = 1, ..., n - 2$.

For this proposition we need char(\mathbb{F}) $\neq 2$ and the assumption that the standard inner product of \mathbb{F}^n is nonisotropic. Now

$$y = x^{(1)} + f(z^{(n-1)})$$

would have quadratic distance 1 to every point $x^{(j)}$, j < n. This means that $\omega(\mathbb{F}^n) = n$ if and only if the system σ of points $x^{(1)}, \ldots, x^{(n-1)}$ has an equidistant extension by an additional point y. We have already shown that such an extension exists if and only if (10) is solvable in \mathbb{F} . This completes the proof of Theorem 1.

3. Proof of Theorem 2

Parts A and B(1) immediately follow from Theorem 1. Let n be odd and let (n + 1)/2not be the square of an integer. From Theorem 1 part C(2) we conclude $\omega(\mathbb{Q}^n) = n$, if the equation

$$u^2 + 2(n-1)v^2 = n$$

has a solution with $u, v \in \mathbb{Q}$ and $\omega(\mathbb{Q}^n) = n - 1$, if this equation is unsolvable in \mathbb{Q} . We may set

$$u = \frac{z}{x}, \quad v = \frac{y}{x}$$
 with integers $x, y, z, x \neq 0$,

and so arrive at the diophantine equation of Chilakamarri [4]: ł

$$nx^2 - 2(n-1)y^2 = z^2$$
.

If this equation has a solution in integers x, y, z with $x \neq 0$, then $\omega(\mathbb{Q}^n) = n$, otherwise $\omega(\mathbb{Q}^n) = n - 1$. So the proof of Theorem 2 will be accomplished, if the following proposition is shown to be true.

Proposition 1. Let n be an integer $\neq 0$ and let $n = n_1 n_2^2$ be the factorization of n with unique squarefree divisor n_1 . The diophantine equation

$$nx^2 - 2(n-1)y^2 = z^2$$
(11)

has a solution in integers x, y, z, $x \neq 0$, if and only if n_1 has no prime divisor $p \equiv \pm 3$ modulo 8.

To prove Proposition 1 we take advantage of the following result from number theory.

Lemma 1. Let *n* be an integer $\neq 0$ and let $n = n_1 n_2^2$ be the factorization of *n* with unique squarefree divisor n_1 . The diophantine equation

 $x^2 - 2y^2 = n$

has a solution in integers $x, y, z, x \neq 0$, if and only if n_1 has no prime divisor $p \equiv \pm 3$ modulo 8.

The proof of Lemma 1 is analogous to the well-known classification of those integers that can be written as the sum of two squares. A full proof of Lemma 1 can be found as Theorem 35.3 in [2].

Proof of Proposition 1. Equation (11) can be transformed to

$$n(x^{2} - 2y^{2}) = z^{2} - 2y^{2}.$$
 (12)

Suppose $x, y, z, x \neq 0$, are integers satisfying (11). As $n \neq 0$, $x \neq 0$ and as $\sqrt{2}$ is irrational, the integers $x^2 - 2y^2$, $z^2 - 2y^2$ are nonzero and according to Lemma 1 have prime divisors $p \equiv \pm 3$ modulo 8 only with even multiplicity ≥ 0 . Equation (12) implies that the same must be true for n.

Now let *n* have prime divisors $p \equiv \pm 3$ modulo 8 only with even multiplicity ≥ 0 . By Lemma 1 we can find integers *a*, *b* with $a^2 - 2b^2 = n$. We may assume that $a \neq 1$. It is easily checked that

$$x = a - 1$$
, $y = b$, $z = a(a - 1) - 2b^2$

solves (11).

4. Problems and Remarks

The above investigation can no doubt be extended in various directions.

- 1. Find a complete evaluation of $\omega(\mathbb{F}^n)$ for special fields such as finite fields or $\mathbb{Q}[\sqrt{p}]$, p a prime number.
- 2. Try to extend Corollary 2 to finite extensions of \mathbb{Q} .
- 3. If \mathbb{F} is not a real field, then another distance function may be more appropriate.

Acknowledgement

We thank the unknown referees for their helpful comments.

175

Appendix

To make this paper more self-contained we outline the result from linear algebra used for the proof of the last case in Theorem 1.

Assume char(\mathbb{F}) $\neq 2$ and let the standard inner product of \mathbb{F}^n be nonisotropic. An *isometry* f of \mathbb{F}^n is a length preserving endomorphism of \mathbb{F}^n .

$$f(x) \cdot f(x) = x \cdot x$$
 for every $x \in \mathbb{F}^n \iff f(x) \cdot f(y) = x \cdot y$ for all $x, y \in \mathbb{F}^n$.

For $\nu \in \mathbb{F}^n$, $\nu \neq 0$ let $H(\nu) = \{x \in \mathbb{F}^n : \nu \cdot x = 0\}$ be the hyperplane with normal vector ν . Every $x \in \mathbb{F}^n$ can be uniquely written as

$$x = x_H + \lambda \nu, \qquad x_H \in H(\nu), \qquad \lambda \in \mathbb{F}.$$

The *reflection* S_{ν} at the hyperplane $H(\nu)$ is defined by $S_{\nu}(x) = x_H - \lambda \nu$. Clearly, S_{ν} is an isometry.

Proposition 2. Assume that the standard inner product of \mathbb{F}^n is nonisotropic and char(\mathbb{F}) $\neq 2$. Let $a_1, \ldots, a_m, b_1, \ldots, b_m$ be vectors in \mathbb{F}^n satisfying

$$a_i \cdot a_j = b_i \cdot b_j$$
 for all $i, j = 1, \dots, m$.

Then there is an isometry f of \mathbb{F}^n with $f(a_i) = b_i$ for every i = 1, ..., m. Either f = id or f is the product of at most m hyperplane reflections.

Proof. We may start the induction on *m* formally with m = 0 and f = id. For the inductive step suppose that $m \ge 1$ and that the assertion is true for m - 1. If $a_1, \ldots, a_m, b_1, \ldots, b_m$ satisfy the conditions of the proposition, then there is an isometry φ with $\varphi(a_i) = b_i$ for $i = 1, \ldots, m - 1$, where $\varphi = id$ or φ is the product of at most m - 1 hyperplane reflections. If $\varphi(a_m) = b_m$, then we may take $f = \varphi$. Let $v = \varphi(a_m) - b_m \neq 0$, $f = S_v \varphi$. For i < m we have

$$v \cdot \varphi(a_i) = \varphi(a_m) \cdot \varphi(a_i) - b_m \cdot \varphi(a_i) = a_m \cdot a_i - b_m \cdot b_i = 0.$$

Therefore $\varphi(a_i) \in H(\nu)$ and

$$f(a_i) = S_{\nu}(\varphi(a_i)) = \varphi(a_i) = b_i$$
 for every $i, 1 \le i < m$.

Now $(\varphi(a_m))^2 - b_m^2 = a_m^2 - b_m^2 = 0$ implies $(\varphi(a_m) - b_m) \cdot (\varphi(a_m) + b_m) = 0$. From $\nu = \varphi(a_m) - b_m$ and $(\varphi(a_m) + b_m) \in H(\nu)$ we conclude

$$S_{\nu}(\varphi(a_m) + b_m) = \varphi(a_m) + b_m \\ S_{\nu}(\varphi(a_m) - b_m) = -\varphi(a_m) + b_m \\ \Longrightarrow \quad S_{\nu}(\varphi(a_m)) = f(a_m) = b_m. \qquad \Box$$

References

2. E.D. Bolker, Elementary Number Theory, Benjamin, New York, 1970.

^{1.} M. Benda and M. Perles, Colorings of metric spaces, Geombinatorics 9(3) (2000), 113-126.

- 3. R.H. Bruck and H.J. Ryser, The nonexistence of certain finite projective planes, *Canad. J. Math.* **1** (1949), 88–93.
- 4. K.B. Chilakamarri, Unit-distance graphs in rational n-spaces, Discrete Math. 69 (1988), 213-218.
- K.B. Chilakamarri, The unit-distance graph problem: a brief survey and some new results, *Bull. Inst. Combin. Appl.* 8 (1993), 39–60.
- P. Frankl and R.M. Wilson, Intersection theorems with geometric consequences. *Combinatorica* 1(4) (1981), 357–368.
- 7. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea (reprint), New York, 1953.
- 8. M. Mann, A new bound for the chromatic number of the rational five-space, *Geombinatorics* **11**(2) (2001), 49–54.
- 9. A.M. Raigorodskij, Borsuk's problem and the chromatic numbers of some metric spaces, *Russian Math. Surveys* **56** (2001), 103–139.
- S. Shelah and A. Soifer, Axiom of choice and chromatic number of the plane, J. Combin. Theory Ser. A 103 (2003), 387–391.
- 11. A. Soifer, Chromatic number of the plane: its past and future, Congr. Numer. 160 (2003), 69-82.
- 12. J. Zaks, On four-colourings of the rational four-space, Aequationes Math. 37 (1989), 259-266.
- 13. J. Zaks, On the chromatic number of some rational spaces. Ars Combin. 33 (1992), 253–256.

Received December 4, 2003, and in revised form August 8, 2004. Online publication January 14, 2005.