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Abstract. For an arbitrary field F the maximal number ω(Fn) of points in Fn mutually
distance 1 apart with respect to the standard inner product is investigated. If the characteristic
char(F) is different from 2, then the values ofω(Fn) lie between n−1 and n+2. In particular,
we answer completely for which n a simplex of q points with edge length 1 can be embedded
in rational n-space. Our results imply for almost all even n that ω(Qn) = n and for almost
all odd n that ω(Qn) = n − 1.

1. Introduction

1.1. Motivation

It is well known that the unit triangle cannot be embedded into Q2. In Q8 we easily find
the regular unit simplex spanned by the following nine points:
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In Rn we can obviously place exactly n + 1 points defining a unit simplex. If we define
ω(Fn) to be the maximal number of points mutually at unit distance over the field F,
then ω(Rn) = n + 1. (For a precise definition of the distance function see the next
subsection.) On the other hand, ω(Qn) had previously only been determined up to the
solution of a diophantine equation, see [4]. In this paper we solve this diophantine
equation and thus determine ω(Qn) completely. It turns out that the prime factorizations
of n and n + 1 are an important ingredient in the classification. A consequence of this
result is that ω(Qn) = n for almost all even n and ω(Qn) = n − 1 for almost all
odd n.

The problem of determining ω(Fn) is loosely connected to the problem of the chro-
matic number of Fn . Let χ(Fn) be the minimum number of colours needed to colour
Fn so that no two points of the same colour are one unit apart. Even the determination
of the chromatic number of the plane is a major outstanding problem. It is only known
that 4 ≤ χ(R2) ≤ 7. For a survey see [10] and [11]. We may interpret ω(Fn) as the
clique number of the unit-distance graph G1(F

n), which has vertex set Fn with ver-
tices x, y connected by an edge, if they are at unit distance, see [5]. Then ω(Fn) is a
lower bound for the chromatic number χ(G1(F

n)) = χ(Fn). For F = Q some exact
values are known: χ(Q2) = χ(Q3) = 2, χ(Q4) = 4 [1], [12], χ(Q5) ≥ 7 [8], see
also [13]. This compares very well withω(Q2) = ω(Q3) = 2 andω(Q4) = ω(Q5) = 4.
While ω(Qn) ≤ ω(Rn) = n + 1, the chromatic numbers χ(Qn) and χ(Rn) increase
exponentially, see [6] and [9].

1.2. Results

As many of our arguments hold for arbitrary fields, we start with a rather general setting.
The most interesting applications are perhaps to subfields of R.

Let F be an arbitrary field, let x = (xi ) ∈ Fn and let y = (yi ) ∈ Fn , n a positive
integer. Define the quadratic distance of points x and y by the standard inner product:

�(x, y) = (x − y)2 =
n∑

i=1

(xi − yi )
2.

Byω(Fn)we denote the maximal number of points in Fn , which mutually have quadratic
distance 1.

We call the standard inner product of Fn nonisotropic if

x · x = 0 ⇐⇒ x = 0 for every x ∈ Fn.

Observe that, e.g., for char(F) = 2 and n ≥ 2 the standard inner product is not non-
isotropic, while it is nonisotropic for real fields.

In case of a nonisotropic inner product the next theorem completely determinesω(Fn)

up to the solution of a quadratic equation in the very last case, with values bounded
by n − 1 ≤ ω(Fn) ≤ n + 2. For the proof we combine methods from design the-
ory (Bruck–Ryser type arguments, see [3]) with those from linear algebra and number
theory.
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Theorem 1.

(A) If char(F) = 2, then ω(Fn) = 2 for every n ≥ 1.
(B) If char(F) �= 2 and n is even, then the following statements hold true:

(1) If
√

n + 1 �∈ F, then ω(Fn) = n.
(2) Suppose that

√
n + 1 ∈ F.

If n = −2 in F, then ω(Fn) = n + 2, otherwise ω(Fn) = n + 1.
(C) If char(F) �= 2 and n is odd, then the following statements hold true:

(1) Suppose that
√
(n + 1)/2 ∈ F.

If n = −2 in F, then ω(Fn) = n + 2, otherwise ω(Fn) = n + 1.
(2) Suppose that

√
(n + 1)/2 �∈ F.

If the equation

u2 + 2(n − 1)v2 = n (1)

has a solution with u ∈ F and v ∈ F, then ω(Fn) = n.
If the standard inner product of Fn is nonisotropic and if equation (1) is
unsolvable in F, then ω(Fn) = n − 1.

Theorem 1 immediately implies the following corollary:

Corollary 1. The smallest field F over Q such that ω(Fn) = n + 1 for every positive
integer n is F = Q[

√
2,
√

3,
√

5,
√

7, . . .].

The next theorem describes the complete evaluation of ω(Qn).

Theorem 2.

(A) Let n be even.
If n + 1 is the square of an integer, then ω(Qn) = n + 1, otherwise ω(Qn) = n.

(B) Let n be odd.
(1) If (n + 1)/2 is the square of an integer, then ω(Qn) = n + 1.
(2) Suppose that (n + 1)/2 is not the square of an integer. Let n = n1n2

2 be the
factorization of n with a unique squarefree divisor n1. If n1 has no prime
divisor p ≡ ±3 modulo 8, then ω(Qn) = n, and ω(Qn) = n − 1 otherwise.

Let Neven(t) denote the number of even integers n ≤ t with ω(Qn) �= n and Nodd(t)
the number of odd integers n ≤ t with ω(Qn) �= n − 1. Evidently, part A of Theorem
2 implies Neven(t) ∼

√
t/2. Landau’s method [7, Sections 177–183] on estimating the

number of positive integers ≤ t with specified prime factors only, allows us to conclude
from part B of Theorem 2 that we have Nodd(t) ∼ ct/(log t)1/2 for some positive
constant c. So we may state the following consequence.

Corollary 2.

(1) ω(Qn) = n for almost all even integers n.
(2) ω(Qn) = n − 1 for almost all odd integers n.
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Theorem 2 and Corollary 2 have the following geometric interpretation. For those n
with ω(Qn) = n+ 1 it is possible to rotate the regular n-dimensional simplex with edge
length 1 inRn so that all coordinates of the n+1 vertices become rational. For almost all
dimensions n, however, this type of rotation does not exist and only a unit simplex with
up to n (for even n), respectively n − 1 (for odd n), vertices can be embedded into Qn .

2. Proof of Theorem 1

First we settle the case char(F) = 2 and establish the upper bounds. Let x0, . . . , xm be
m + 1 points in Fn mutually at quadratic distance 1. We may suppose x0 = 0. Then the
other vectors xj , j ≥ 1, have unit length and for i, j ≥ 1, i �= j , we have

(xi − xj )
2 = x2

i − 2xi xj + x2
j = 1, 2xi xj = 1.

If char(F) = 2 and m ≥ 2, then the last equation implies a contradiction. This proves
part A.

From now on we assume char(F) �= 2. Let the (m × n)-matrix A be formed by the
rows x1, . . . , xm . Then AAT is an (m × m)-matrix with entries 1 in the main diagonal
and 1

2 in the other positions so that

det AAT = (m + 1)
1

2m
. (2)

If m �= −1 in F, then det AAT �= 0, so that

rank AAT = m ≤ rank A ≤ n. (3)

For m = n + 1 and n �= −2 in F inequality (3) leads to a contradiction, which implies

ω(Fn) ≤ n + 1, if n �= −2 in F. (4)

If n = −2 in F, then a contradiction in (3) occurs for m = n + 2, which shows

ω(Fn) ≤ n + 2, if n = −2 in F. (5)

Let m = n. Then (2) may be written as

n + 1 = 2n(detA)2.

If n is even, then n+1 is the square of an element in F, i.e.
√

n + 1 ∈ F. If n is odd, then

(n + 1)/2 = 2n−1(detA)2

is the square of an element in F, i.e.
√
(n + 1)/2 ∈ F. So we know

ω(Fn) ≤ n, if

{
n is even and

√
n + 1 �∈ F,

n is odd and
√
(n + 1)/2 �∈ F. (6)

To establish lower bounds we start the constructive part of our proof. We define a
system σ of n points x (1), . . . , x (n) if n is even, and of n − 1 points x (1), . . . , x (n−1) if n
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is odd. If we take the vectors of σ as the rows of a matrix, this matrix has the following
shape:




1
2

1
2

1
2 − 1

2
1
2

1
2

1
2 − 1

2
...

...

...
...

1
2

1
2

1
2 − 1

2




.

Positions left empty have to be filled with zeros. If n is odd, a last column consisting of
zeros only has to be added. Clearly, the points in σ are mutually at distance 1. Thus we
have ω(Fn) ≥ n if n is even and ω(Fn) ≥ n − 1 if n is odd.

We try to extend the system σ equidistantly by a point y = (y1, . . . , yn) ∈ Fn .
First we suppose that n is even.
The additional point y must have quadratic distance 1 to all points x (1), . . . , x (n) of

σ , which for m = 1, . . . , n/2 implies

�(y, x (2m−1)) = (ym − 1
2 )

2 + (yn−m+1 − 1
2 )

2 +
∑

i �=m,n−m+1

(yi )
2 = 1,

�(y, x (2m)) = (ym − 1
2 )

2 + (yn−m+1 + 1
2 )

2 +
∑

i �=m,n−m+1

(yi )
2 = 1.

Taking the difference of these equations yields

yn−m+1 = 0 for m = 1, . . . ,
n

2
.

Now we have for 1 ≤ m ≤ n/2− 1,

�(y, x (2m−1)) = (ym − 1
2 )

2 + 1
4 +

∑
i �=m

(yi )
2 = 1,

�(y, x (2m+1)) = (ym+1 − 1
2 )

2 + 1
4 +

∑
i �=m+1

(yi )
2 = 1.

Again subtracting equations leads to

ym+1 = ym for m = 1, . . . ,
n

2
− 1.

Thus we see that y must have the form

y = y(s) = (s, . . . , s︸ ︷︷ ︸
n/2 entries

, 0, . . . , 0︸ ︷︷ ︸
n/2 entries

), s ∈ F.
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Indeed, in this shape y has the same distance to all points x ( j), j ≤ n.

�(y, x ( j)) = (s − 1
2 )

2 +
(n

2
− 1

)
s2 + 1

4 = 1,

n

2
s2 − s − 1

2 = 0. (7)

If n = 0 inF, thenσ can be extended equidistantly by y(− 1
2 ) to a system of n+1 points.

According to (4) this is optimal, hence ω(Fn) = n + 1. Notice that
√

n + 1 = 1 ∈ F in
this case, which corresponds to part B(2) of Theorem 1.

If n �= 0 in F, then we solve (7) for s:

s = 1

n
(1 ± √n + 1).

An equidistant extension of σ exists if and only if
√

n + 1 ∈ F. If
√

n + 1 ∈ F and
n �= −2 in F, then ω(Fn) = n + 1 according to (4).

To finish the case of even n, suppose now n = −2 in F and
√

n + 1 = √−1 ∈ F.
The only candidates for an equidistant extension of σ are

y(1) = y(s1) with s1 = 1

n
(1+√n + 1) = − 1

2 (1+
√−1),

y(2) = y(s2) with s2 = 1

n
(1−√n + 1) = − 1

2 (1−
√−1).

The quadratic distance of y(1) and y(2) is

�(y(1), y(2)) = n

2
(s1 − s2)

2 = −(√−1)2 = 1,

which means that in this case the system σ can be extended equidistantly to a system of
n + 2 points. According to (5) no further extension is possible, ω(Fn) = n + 2.

We now consider the case of odd n.
In this case the system σ consists of n − 1 points x (1), . . . , x (n−1). Again we try to

extend σ equidistantly by a point y = (y1, . . . , yn). As above, the distance conditions

�(y, x ( j)) = 1 for j = 1, . . . , n − 1

force y to take the following form:

y = y(s, v) = ( s, . . . , s︸ ︷︷ ︸
(n−1)/2 entries

, 0, . . . , 0,︸ ︷︷ ︸
(n−1)/2 entries

v), s ∈ F, v ∈ F.

Indeed, in this shape y has the same distance to all points x ( j), j < n.

�(y, x ( j)) = (s − 1
2 )

2 +
(

n − 1

2
− 1

)
s2 + 1

4 + v2 = 1,

n − 1

2
s2 − s + v2 − 1

2 = 0. (8)



Maximal Dimension of Unit Simplices 173

An equidistant extension of σ exists if and only if (8) has a solution with s ∈ F and
v ∈ F.

If n = 1 in F, then (8) reduces to

s = v2 − 1
2 .

For v = ± 1
2 , s = − 1

4 we get two points, which extend σ equidistantly to a system of n+1
points. If n �= −2 in F, this leads to ω(Fn) = n + 1 according to (4). Notice that in this
case
√
(n + 1)/2 = 1 ∈ F, which supports part C(1) of Theorem 1. If simultaneously

n = 1 and n = −2 in F, then char(F) = 3. In this case we can find three points for an
equidistant extension of σ :

y(1) = y( 1
2 , 1), y(2) = y( 1

2 ,−1), y(3) = y(− 1
2 , 0).

According to (5) no further extension is possible. So in this case ω(Fn) = n + 2, which
again corresponds to part C(1) of Theorem 1.

Suppose now n �= 1 in F. We solve (8) for s:

s = 1

n − 1

(
1±

√
1− 2(n − 1)(v2 − 1

2 )

)
. (9)

There is an equidistant extension of σ if and only if the equation

1− 2(n − 1)(v2 − 1
2 ) = u2 or, equivalently,

u2 + 2(n − 1)v2 = n (10)

has a solution with u ∈ F and v ∈ F. We try to find a solution of (10) for v = ± 1
2 .

u2 + 2(n − 1) 1
4 = n, u = ±

√
(n + 1)/2.

If
√
(n + 1)/2 ∈ F, then we determine s ∈ F for v = ± 1

2 by (9). The points y(1) =
y(s, 1

2 ), y(2) = y(s,− 1
2 ) extend σ equidistantly to a system of n + 1 points. If n �= −2

in F, then by (4) we conclude ω(Fn) = n+ 1. If n = −2 in F, then we take a closer look
at the common element s in y(1) and y(2), which we get from (9):

s = − 1
3 (1+

√
− 1

2 ) = − 1
3 (1+ 1

2

√−2).

Notice that char(F) �= 3 and
√−2 ∈ F in this case. Now (10) has a further solution in

F: v = 0, u = √−2. For v = 0 we determine s0 by (9):

s0 = − 1
3 (1−

√−2).

It is easily checked that σ can be extended equidistantly by the following three points:

y(1) = y(s, 1
2 ), y(2) = y(s,− 1

2 ), y(3) = y(s0, 0).

This showsω(Fn) = n+2 in this case and completes the proof of part C(1) in Theorem 1.
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To finish the proof of part C(2) of Theorem 1 we may assume that n is odd and√
(n + 1)/2 �∈ F. In this case the possible values of ω(Fn) are n − 1 and n. We show

that it is no loss of generality, if we start with the special points studied above. For the
points x (1), . . . , x (n−1) of σ we set

w( j) = x ( j+1) − x (1), j = 1, . . . , n − 2.

Then we have (w( j))2 = 1 and w( j)w(k) = 1
2 for j �= k. If there is any system of n

points in Fn mutually at quadratic distance 1, then we could analogously find vectors
z(1), . . . , z(n−1) satisfying (z( j))2 = 1 and z( j)z(k) = 1

2 for j �= k. Now a theorem from
linear algebra (Proposition 2 of the Appendix) guarantees the existence of an isometry
f of Fn with

f (z( j)) = w( j) for j = 1, . . . , n − 2.

For this proposition we need char(F) �= 2 and the assumption that the standard inner
product of Fn is nonisotropic. Now

y = x (1) + f (z(n−1))

would have quadratic distance 1 to every point x ( j), j < n. This means that ω(Fn) = n
if and only if the system σ of points x (1), . . . , x (n−1) has an equidistant extension by an
additional point y. We have already shown that such an extension exists if and only if
(10) is solvable in F. This completes the proof of Theorem 1.

3. Proof of Theorem 2

Parts A and B(1) immediately follow from Theorem 1. Let n be odd and let (n + 1)/2
not be the square of an integer. From Theorem 1 part C(2) we conclude ω(Qn) = n, if
the equation

u2 + 2(n − 1)v2 = n

has a solution with u, v ∈ Q and ω(Qn) = n − 1, if this equation is unsolvable in Q.
We may set

u = z

x
, v = y

x
with integers x, y, z, x �= 0,

and so arrive at the diophantine equation of Chilakamarri [4]:

nx2 − 2(n − 1)y2 = z2.

If this equation has a solution in integers x, y, z with x �= 0, then ω(Qn) = n, otherwise
ω(Qn) = n − 1. So the proof of Theorem 2 will be accomplished, if the following
proposition is shown to be true.

Proposition 1. Let n be an integer �= 0 and let n = n1n2
2 be the factorization of n with

unique squarefree divisor n1. The diophantine equation

nx2 − 2(n − 1)y2 = z2 (11)
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has a solution in integers x, y, z, x �= 0, if and only if n1 has no prime divisor p ≡ ±3
modulo 8.

To prove Proposition 1 we take advantage of the following result from number theory.

Lemma 1. Let n be an integer �= 0 and let n = n1n2
2 be the factorization of n with

unique squarefree divisor n1. The diophantine equation

x2 − 2y2 = n

has a solution in integers x, y, z, x �= 0, if and only if n1 has no prime divisor p ≡ ±3
modulo 8.

The proof of Lemma 1 is analogous to the well-known classification of those integers
that can be written as the sum of two squares. A full proof of Lemma 1 can be found as
Theorem 35.3 in [2].

Proof of Proposition 1. Equation (11) can be transformed to

n(x2 − 2y2) = z2 − 2y2. (12)

Suppose x, y, z, x �= 0, are integers satisfying (11). As n �= 0, x �= 0 and as
√

2 is
irrational, the integers x2 − 2y2, z2 − 2y2 are nonzero and according to Lemma 1 have
prime divisors p ≡ ±3 modulo 8 only with even multiplicity≥ 0. Equation (12) implies
that the same must be true for n.

Now let n have prime divisors p ≡ ±3 modulo 8 only with even multiplicity ≥ 0.
By Lemma 1 we can find integers a, b with a2 − 2b2 = n. We may assume that a �= 1.
It is easily checked that

x = a − 1, y = b, z = a(a − 1)− 2b2

solves (11).

4. Problems and Remarks

The above investigation can no doubt be extended in various directions.

1. Find a complete evaluation of ω(Fn) for special fields such as finite fields or
Q[
√

p], p a prime number.
2. Try to extend Corollary 2 to finite extensions of Q.
3. If F is not a real field, then another distance function may be more appropriate.
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Appendix

To make this paper more self-contained we outline the result from linear algebra used
for the proof of the last case in Theorem 1.

Assume char(F) �= 2 and let the standard inner product of Fn be nonisotropic. An
isometry f of Fn is a length preserving endomorphism of Fn .

f (x)· f (x) = x ·x for every x ∈ Fn ⇐⇒ f (x)· f (y) = x ·y for all x, y ∈ Fn.

For ν ∈ Fn, ν �= 0 let H(ν) = {x ∈ Fn : ν · x = 0} be the hyperplane with normal
vector ν. Every x ∈ Fn can be uniquely written as

x = xH + λν, xH ∈ H(ν), λ ∈ F.
The reflection Sν at the hyperplane H(ν) is defined by Sν(x) = xH − λν. Clearly, Sν is
an isometry.

Proposition 2. Assume that the standard inner product of Fn is nonisotropic and
char(F) �= 2. Let a1, . . . , am, b1, . . . , bm be vectors in Fn satisfying

ai · aj = bi · bj for all i, j = 1, . . . ,m.

Then there is an isometry f of Fn with f (ai ) = bi for every i = 1, . . . ,m. Either f = id
or f is the product of at most m hyperplane reflections.

Proof. We may start the induction on m formally with m = 0 and f = id. For
the inductive step suppose that m ≥ 1 and that the assertion is true for m − 1. If
a1, . . . , am, b1, . . . , bm satisfy the conditions of the proposition, then there is an isometry
ϕ with ϕ(ai ) = bi for i = 1, . . . ,m − 1, where ϕ = id or ϕ is the product of at
most m − 1 hyperplane reflections. If ϕ(am) = bm , then we may take f = ϕ. Let
ν = ϕ(am)− bm �= 0, f = Sνϕ. For i < m we have

ν · ϕ(ai ) = ϕ(am) · ϕ(ai )− bm · ϕ(ai ) = am · ai − bm · bi = 0.

Therefore ϕ(ai ) ∈ H(ν) and

f (ai ) = Sν(ϕ(ai )) = ϕ(ai ) = bi for every i, 1 ≤ i < m.

Now (ϕ(am))
2 − b2

m = a2
m − b2

m = 0 implies (ϕ(am) − bm) · (ϕ(am) + bm) = 0. From
ν = ϕ(am)− bm and (ϕ(am)+ bm) ∈ H(ν) we conclude

Sν(ϕ(am)+ bm)= ϕ(am)+ bm

Sν(ϕ(am)− bm)=−ϕ(am)+ bm

}
�⇒ Sν(ϕ(am)) = f (am) = bm .
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