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Abstract: Let Q(T) denote the set of integers which are composed of prime factors from a
given set of primes T only. Suppose that A+B⊆Q

′(T) , where Q(T) and Q
′(T) differ at fi-

nitely many elements only. Also assume that
∑

p6x,p∈T

log p

p
= τ log x+O(1) . We prove that

A(N)B(N)=O(N(log N)2τ ) holds. In the case τ>
1
2

we give an example where both A(N)

and B(N) are of order of magnitude N
1
2

(logN)
1
4

, which shows that this is close to best possible.
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1. Introduction

In his two-volume monograph [21] on additive number theory, Ostmann, Eduard
Wirsing’s PhD advisor, studied the structure of sumsets. A sumset is defined by

A+B = {a+ b : a ∈ A, b ∈ B}.

Other monographs on this topic are those by Mann [18], Frĕıman [10], Nathanson
[20] and a forthcoming one by Tao and Vu [25].

Inverse questions, e.g. whether a given set can be additively decomposed,
lead to difficult problems.

Definition 1.1. (See Ostmann [21], vol. 1, p. 1) Let S1 and S2 denote sets of
positive integers. We say that S1 and S2 are asymptotically equal, if there exists
an integer N0 such that S1 ∩ [N0,∞] = S2 ∩ [N0,∞] .
Definition 1.2. (See [21], vol. 1, p. 5) Let S be a set of positive integers. We say
that S is additively irreducible1 if there are no two sets of positive integers A, B ,
with at least two elements each, such that A+B = S .

2000 Mathematics Subject Classification: Primary 11P32, 11N36; Secondary 11E25
1 “primitiv” in the German original



62 Christian Elsholtz

Definition 1.3. (See [21], vol. 1, p. 5, and Wirsing [27]) Let S be a set of positive
integers. We say that S is asymptotically additively irreducible 2 (or we say that
no asymptotic additive decomposition exists) if there are no two sets of positive
integers A, B , with at least two elements each, such that A+B is asymptotically
equal to S .

In his first publication Wirsing [27] proved that “almost all” sets of posi-
tive integers are asymptotically additively irreducible. (For a precise definition of
“almost all” we refer to Wirsing’s paper.)

The set of all primes is additively irreducible. The essential reason is that the
set of primes starts with {2, 3, . . .} . The existence of an additive decomposition
implied that a pattern n, n+1 of two consecutive primes occurred again, which is
of course impossible. Ostmann derived a number of generalizations. Moreover he
stated the following

Conjecture 1.4. (Ostmann, [21] vol. 1, p. 13) The set of primes P is asymptoti-

cally additively irreducible.

This problem has attracted considerable attention, and several authors have
proved that in a conceivable asymptotic decomposition of P both summands A

and B would need to be infinite, (see Hornfeck [15], Mann [18], Laffer and Mann
[16]). It has repeatedly been mentioned in problem collections such as Erdős [6],
[7], Oberwolfach 1998 [31], and Wolke’s survey [32]. The problem itself has resisted
a solution so far. For partial results (in addition to those discussed below) see for
example Hofmann and Wolke [14], Puchta [23] or the present author [3], [4], and
[5]. In analogy to Goldbach’s problem, it seems that a combination of additive
and multiplicative properties leads to very difficult problems. The problem of the
asymptotic additive decomposition of the primes has also been called the “inverse
Goldbach problem”, e.g. in Wirsing’s Oberwolfach lecture of 1972 [30] and his
problem at the 1998 Oberwolfach conference [31].

Also, several authors independently proved the following.

Theorem 1.5. If A+B ⊂ P , then the following bound on the counting functions

holds:

A(N)B(N)� N.

Here f(N)� g(N) is the Vinogradov notation, meaning f(N) = O(g(N)).
When taking extra care of finitely many elements, this implies:

Corollary 1.6. If an asymptotic additive decomposition of the set of primes exists,

say P
′ = A+B , then the following bound on the counting functions holds:

A(N)B(N)� N.

Indeed, the first author to prove Theorem 1.5 was Eduard Wirsing. He pre-
sented his result at the 1972 Oberwolfach meeting [30], but it was never published.

2 totalprimitiv in the German original
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Independently, similar results were proved by Pomerance, Sárközy, and Stewart
[22], by Hofmann and Wolke [14], and by Bshouty and Bshouty [1].

The result of Bshouty and Bshouty is stated in a somewhat different way.
A slightly simplified version is as follows:

Theorem 1.7. Let A = {a1, . . . , an},B = {b1, . . . , bn} and A + B ⊂ P , then

n4 � (an − a1)(bn − b1) . Therefore, if A,B ⊂ [1, N ] , then n2 � N .
Note that this theorem only covers the case |A| = |B| = n . The implied

methods would be weaker when applied to the case of different sizes of |A| and |B| .
As quite a few different ideas go into these proofs of different authors and

as Wirsing’s original account is unpublished we decided to discuss these methods
when proving the new results below.

Theorem 1.8. Let T denote a set of primes with
∣

∣

∣

∣

∣

∣

∣

∣

∑

p6x

p∈T

log p

p
− τ logx

∣

∣

∣

∣

∣

∣

∣

∣

< C.

Here 0 < τ < 1 denotes a real constant and C denotes a possitive real constant.
Let

Q(T) = {n ∈ N : p|n⇒ p ∈ T}.
Let A+B ⊆ Q

′(T) , where Q(T) ∩ [N0,∞] = Q
′(T) ∩ [N0,∞] , for sufficiently large

N0 . Then
A(N)B(N)�τ,C N(logN)2τ .

The upper bound is (at least sometimes) close to best possible, as discussed
below.

We will give two proofs, one following Wirsing’s method to prove The-
orem 1.5. This is based on the analytic version of the large sieve method. The
second follows the method of Pomerance, Sárközy, and Stewart [22], and Hofmann
and Wolke [14], which are very similar. It is based on the arithmetic version of the
large sieve method.

We then discuss very simple proofs of Theorem 1.7. The first proof by Bsho-
uty and Bshouty [1] makes use of a divisibility property of the Vandermonde
determinant. We then eliminate the Vandermonde argument and replace it by a
count of prime factors which resembles a proof of Gallagher’s larger sieve, and
eventually we show that Gallagher’s larger sieve can be directly applied to prove
Theorem 1.7.

We then prove the following new bounds in the original problem of Ostmann.

Theorem 1.9. Suppose that there is an asymptotic additive decomposition of the

set of primes, A+B = P
′
, then

√
N(logN)−3 � A(N)�

√
N(logN)2.

The same bounds hold for B(N) .
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This improves upon the earlier bounds√
N(logN)−5 � A(N)�

√
N(logN)4

in Elsholtz [4]. Let us recall that bounds of this type imply that there is no ternary
asymptotic additive decomposition of the primes P

′ = A+B+C , where A, B and
C have at least two elements each.

2. Examples

Example 2.1. Assuming the prime k -tuple conjecture, for any admissible set
A = {a1, . . . , ak} (i.e. that for no prime p the image A mod p occupies all p
residue classes) there exists an infinite set B with counting function B(N) ∼
ca1,...,ak

N
(logN)k

such that A + B ⊂ P . Unconditionally, for each finite large N

and each k there exists a set A = {a1, . . . , ak} ⊂ [1, N ] such that there exists
a corresponding set B ⊂ [1, N ] with |B| � N

k(logN)k
and A + B ⊂ P (see [22]).

Similarly, let A+B ⊂ Q(T), where Q(T) is as in Theorem 1.8. Using the method
of [22] (see also [8]) one can show that there exists a set B ⊂ [1, N ] with B(N)�k

N
(logN)(1−τ)k

. Moreover, for each finite N , one can find sets A and B with A(N) >

B(N) > 1+o(1)
1−τ

logN
log logN .

This shows that for small fixed k the upper bound

A(N)B(N) = Oτ,C(N(logN)
2τ )

of Theorem 1.5 is off by a logarithmic factor only. As k increases one would expect
much better upper bounds. In the problem A+B ⊂ P , if A(N) > (logN)r where

r → ∞ one can prove (using the methods of [5]) that B(N) � N 1
2+or(1) . But if

A(N) grows as fast as
√
N the best upper bound on B(N) that one can currently

prove is O(
√
N) only. One might expect much stronger upper bounds if A(N)

and B(N) are of about the same size. If A(N) 6 B(N) and A+B ⊂ P one might
expect that for example A(N) = O(N ε) for arbitrary positive ε .

On the other hand, Theorem 1.8 is close to best possible if A(N) ≈
√
N and

τ >
1
2 , as shown by the following example.

Example 2.2. Let A = {n2 : n ∈ N} and B = {n2 : n ∈ N and (p | n ⇒ p ≡
1 mod 4)} . Note that A(N) ∼ N 1

2 and B(N) ∼ c N
1
2

(logN)
1
2
, since by Lemma 2.3 or

Lemma 2.4 the number of n 6
√
N composed of prime factors p ≡ 1 mod 4 only

is asymptotically c′ N
1
2

(log
√
N)

1
2
. No element a2i + b

2
j ∈ A + B contains any prime

factor q ≡ 3 mod 4 since for such q one would have:
a2i + b

2
j ≡ 0 mod q

implies that both ai ≡ 0 mod q and bj ≡ 0 mod q , which is not the case by
construction. Hence A + B ⊂ Q(T), where T = {p ∈ P : p = 2 or p ≡ 1 mod 4} ,
and τ = 12 .
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In this example we have A(N)B(N) ∼ c N

(logN)
1
2
, which is quite close to

the general upper bound O(N logN) given by Theorem 1.8. If τ > 1
2 the same

example shows that the constructive lower bound differs from the upper bound by
a logarithmic factor only (just allow further primes in T). We do not expect that
such examples exist if τ < 12 , and for these cases I expect that if A(N) ≈ B(N),

then the size of these sets is considerably smaller than
√
N .

Since often constructions of large sets with certain properties are more diffi-
cult in the case of A = B , let us note that with B and T as above we even have
B + B ⊂ Q(T). Moreover, some of the combinatorial constructions only work for
finite sets, whereas the sets considered here are infinite.

Variations of the example above are: partition P4,3 = {p ∈ P : p ≡ 3 mod
4} = T1∪̇T2 . Let

∑

p∈Ti,p6x
1
p
= τi log logx+Ci+o(1), for i = 1, 2. Here τ1+τ2 =

1
2 . Thus an explicit example with τ1 = τ2 =

1
4 is T1 = P8,3 = {p ∈ P : p ≡

3 mod 8} and T2 = P8,7 = {p ∈ P : p ≡ 7 mod 8} . Let A be the set of all squares
composed of primes of P4,1 ∪ T1 and let B be the set of squares composed of
primes of P4,1 ∪ T2 . Then A(N) ∼ c1 N

(logN)
1
2
−τ1
and B(N) ∼ c2 N

(logN)
1
2
−τ2
, so

that again A(N)B(N) ∼ c1c2 N

(logN)
1
2
. And again by construction: for all primes

q ≡ 3 mod 4:
a2i + b

2
j 6≡ 0 mod q.

For the determination of the counting function we made use of the following
lemmas.

Lemma 2.3. (Wirsing, [28]) Let T denote a set of primes and 0 < τ 6 1 . If

∑

p6x

p∈T

1

p
= τ log logx+ C + o(1),

then

|{n 6 N, p | n⇒ p ∈ T}| ∼ CT

N

(logN)1−τ
.

In view of the prime number theorem for arithmetic progressions, Wirsing’s
result contains a well known result by Landau as a special case.

Lemma 2.4. (Landau [17]) Let a1, . . . , ar be r distinct reduced residues modulo
m . Then

|{n 6 N, p | n⇒ p ≡ a1, a2, . . . , ar mod m}| ∼ Cm,a1,a2,...,ar
N

(logN)1−
r

ϕ(m)

.
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3. Proof of Theorem 1.8

3.1. A proof using the analytic large sieve, based on Wirsing’s approach.

We need the following lemma:

Lemma 3.1. Let T denote a set of primes, let 0 < τ < 1 be a real constant and
let C be a positive real constant. If

∣

∣

∣

∣

∣

∣

∣

∣

∑

p6x

p∈T

log p

p
− τ logx

∣

∣

∣

∣

∣

∣

∣

∣

< C,

then
∑

n6N

p|n⇒p∈T

µ2(n) > Cτ,C
N

(logN)1−τ
,

for some positive constant Cτ,C .

In order to prove this we make use of another result of Wirsing [29] which
we adapt from Schwarz and Spilker [24], page 76.

Lemma 3.2. (Wirsing) Let f be a real non-negative multiplicative arithmetical
function satisfying f(p) 6 G for all primes p and

∑

p6x

f(p) log p

p
∼ τ logx,

with some constants G > 0, τ > 0 and

∑

p

∑

k>2

f(pk)

pk
<∞.

If 0 < τ 6 1 , then, in addition, the condition

∑

p

∑

k>2,pk6x

f(pk) = O(
x

log x
)

is assumed to hold. Then

∑

n6x

f(n) = (1 + o(1))
x

logx

e−γτ

Γ(τ)

∏

p6x

(

1 +
f(p)

p
+
f(p2)

p2
+ . . .

)

.

Here γ is the Euler-Mascheroni constant.

Proof of Lemma 3.1. Now with f(p) =

{

1 if p ∈ T

0 otherwise,
and f(pk) = 0, if

k > 2, all hypotheses of the lemma are satisfied and we are left with analysing
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the product:

∏

p6x

(

1 +
f(p)

p
+
f(p2)

p2
+ . . .

)

= exp





∑

p6x,p∈T

log(1 +
1

p
)





> exp





∑

p6x,p∈T

1

p
− 1
2p2





= exp(τ log logx+OC(1))

�τ,C (logx)τ .

Here we used that from
∣

∣

∣

∑

p6x,p∈T

log p
p
− τ logx

∣

∣

∣ < C it follows by partial sum-

mation that
∑

p6x,p∈T
1
p
= τ log log x+OC(1).

For the remainder of this section we adapt Wirsing’s proof of Theorem 1.5
to the current problem.

Let us state the analytic large sieve inequality, see equation (20) of Montgo-
mery [19].

Lemma 3.3. Let A ⊂ [1, N ], e(x) = exp(2πix) and

SA :=
∑

a∈A

e(ax).

Then
Q
∑

q=1

∑

r mod q
(r,q)=1

∣

∣

∣

∣

SA

(

r

q

)∣

∣

∣

∣

2

6 (N +Q2)|A|.

Let S = P\T and Q(S) = {n 6 Q : p | n⇒ p ∈ S} . Note that by Lemma 3.1
|Q(S)| �τ,C Q

(logQ)τ holds, and that for sufficiently large elements a+ b ∈ A + B

and q ∈ Q(S) are coprime.
We shall give an upper bound and a lower bound of

∑

q∈Q(S)

∣

∣

∣

∣

∣

∣

∣

∣

∑

r mod q
(r,q)=1

SA

(

r

q

)

SB

(

r

q

)

∣

∣

∣

∣

∣

∣

∣

∣

,

combining these will prove the theorem.

Lemma 3.4.

∑

q∈Q(S)

∣

∣

∣

∣

∣

∣

∣

∣

∑

r mod q
(r,q)=1

SA

(

r

q

)

SB

(

r

q

)

∣

∣

∣

∣

∣

∣

∣

∣

6 (N +Q2)|A| 12 |B| 12 ,
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Proof. Using the Cauchy-Schwarz inequality and the large sieve inequality above
we find:

∑

q∈Q(S)

∣

∣

∣

∣

∣

∣

∣

∣

∑

r mod q
(r,q)=1

SA

(

r

q

)

SB

(

r

q

)

∣

∣

∣

∣

∣

∣

∣

∣

6
∑

q∈Q(S)

∑

r mod q
(r,q)=1

∣

∣

∣

∣

SA

(

r

q

)

SB

(

r

q

)∣

∣

∣

∣

6









∑

q∈Q(S)

∑

r mod q
(r,q)=1

∣

∣

∣

∣

SA

(

r

q

)∣

∣

∣

∣

2









1
2








∑

q∈Q(S)

∑

r mod q
(r,q)=1

∣

∣

∣

∣

SB

(

r

q

)∣

∣

∣

∣

2









1
2

6 (N +Q2)|A| 12 |B| 12 .

Lemma 3.5. (See (16.6.4) of Hardy and Wright [13])

∑

r mod q
(r,q)=1

e

(

r

q

)

= µ(q).

This is a well known Ramanujan sum.

Lemma 3.6. If a+ b ∈ Q(T) and a+ b > Q , then

∑

q∈Q(S)

∣

∣

∣

∣

∣

∣

∣

∣

∑

r mod q
(r,q)=1

SA

(

r

q

)

SB

(

r

q

)

∣

∣

∣

∣

∣

∣

∣

∣

> |A||B|C ′τ,C
Q

(logQ)τ
.

Proof. Consider the identity:

∑

r mod q
(r,q)=1

SA

(

r

q

)

SB

(

r

q

)

=
∑

a∈A

∑

b∈B

∑

r mod q
(r,q)=1

e

(

(a+ b)r

q

)

.

Since a+ b ∈ Q(T) with a+ b > Q and q ∈ Q(S) are coprime by construction, the
values (a+ b)r are just a rearrangement of the coprime residue classes modulo q
so that

∑

r mod q
(r,q)=1

e

(

(a+ b)r

q

)

=
∑

r mod q
(r,q)=1

e

(

r

q

)

= µ(q).
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Therefore, by Lemma 3.1,

∑

q∈Q(S)

∣

∣

∣

∣

∣

∣

∣

∣

∑

r mod q
(r,q)=1

SA

(

r

q

)

SB

(

r

q

)

∣

∣

∣

∣

∣

∣

∣

∣

= |A||B|
∑

q∈Q(S)

µ2(q)

> |A||B|C ′τ,C
Q

(logQ)τ
.

Proof of Theorem 1.8. Let A ⊂ [1, N ],A0 := A ∩ [0,
√
N ],A1 := A ∩ [

√
N,N ] ,

and similarly for B . Instead of studying the four products |Ai||Bj | , with i, j ∈
{0, 1} , it is sufficient to prove the upper bound |A||B| = Oτ,C(N(logN)2τ ) without
loss of generality for A ⊂ [

√
N,N ],B ⊂ [1, N ] . To see this observe that |A0||B0| =

O(N) and that one can assume that |A0||B1| 6 |A1||B0| . Also note that a+ b >√
N > N0 so that one can assume that a+ b ∈ Q(T).
Combining the upper and lower bounds in Lemma 3.4 and 3.6 gives, with

Q =
√
N :

|A||B| �τ,C N(logN)2τ .
Remark. Since we do not sum over all q 6 Q but over Q(S) only, one might hope
for a stronger version of the large sieve inequality replacing N +Q2 by something
smaller. This would improve Lemma 3.4. There is some discussion on this issue on
page 564 of [19].

3.2. The proof using the arithmetic large sieve, following Pomerance,

Sárközy and Stewart, and Hofmann and Wolke. The proofs according to
Pomerance, Sárközy, and Stewart [22] and Hofmann and Wolke [14] are very simi-
lar. We use the arithmetic version of the large sieve in a version due to Montgomery
[19]:

Lemma 3.7. Let C denote a set of integers which avoids ω(p) residue classes
modulo p . Here ω : P → N with 0 6 ω(p) 6 p − 1 . Then the following upper
bound on the counting function holds:

C(N) 6
N +Q2

L
, where L =

∑

q6Q

µ2(q)
∏

p|q

ω(p)

p− ω(p) .

Lemma 3.8. If A,B ⊂ Z/pZ , then

|A+B| > min(p, |A|+ |B| − 1).

Assume that A + B ⊆ Q
′(T), where Q

′(T) ∩ [N0,∞] = Q(T) ∩ [N0,∞] .
Let νA(p) = |A mod p| and νB(p) = |B mod p| denote the number of residue
classes modulo p that do occur in A and B , and let ωA(p) = p − νA(p) and
ωB(p) = p − νB(p) denote the number of residue classes modulo p that do not
occur in A and B , respectively.
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As above, without loss of generality, we consider A ⊂ [
√
N,N ] and B ⊂

[1, N ] . Every a + b ∈ A + B is larger than
√
N and does not contain any prime

factor p ∈ S = P\T , so that νA+B(p) 6 p− 1 holds for these primes.
The Cauchy-Davenport inequality further implies

νA+B(p) > νA(p) + νB(p)− 1,

so that

νA(p) + νB(p) 6 p.

By definition

ωA(p) + νA(p) = p, ωB(p) + νB(p) = p,

and therefore

ωA(p) + ωB(p) > p, for p ∈ S.

Lemma 3.9. Let p ∈ S ∩ [1,
√
N ] , then

ωA(p)

p− ωA(p)

ωB(p)

p− ωB(p)
> 1.

Proof. This follows from

ωA(p)

p− ωA(p)

ωB(p)

p− ωB(p)
>
ωA(p)

ωB(p)

ωB(p)

ωA(p)
= 1.

Proof of Theorem 1.8. Using Montgomery’s large sieve, the Cauchy-Schwarz
inequality, Lemma 3.1, and putting Q =

√
N , it follows that

A(N)B(N) 6
N +Q2

∑

q6Q µ
2(q)

∏

p|q
ω
A
(p)

p−ω
A
(p)

N +Q2

∑

q6Q µ
2(q)

∏

p|q
ω
B
(p)

p−ω
B
(p)

6
4N2

(

∑

q6Q

q∈Q(S)

µ2(q)
∏

p|q

(

ω
A
(p)

p−ω
A
(p)

ω
B
(p)

p−ω
B
(p)

)
1
2

)2

.

6
4N2

(

∑

q6Q

q∈Q(S)

µ2(q)

)2 �τ,C
N2

( √
N

(log
√
N)τ

)2

�τ,C N(logN)2τ .
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4. The proof of Theorem 1.7

4.1. The proof of Bshouty and Bshouty. This is a very simple proof. Let us
first do some preparation.

Lemma 4.1. Let S = S(a1, . . . , an) =









1 a1 a
2
1 · · · an−11

1 a2 a
2
2 · · · an−12

...
...
... · · ·

...

1 an a
2
n · · · an−1n









, where the ai

are integers. Then
∏n−1
i=1 i! divides detS .

Proof. Note that
∏n−1
i=1 i

n−i = 1n−12n−2 · · · (n − 1)1 =
∏n−1
i=1 i! . Also recall that

detS =
∏

16i<j6n(aj − ai) is the well known Vandermonde determinant; the
lemma states a less well known divisibility property of it. (Compare problem 270
of [9]). It can be proved as follows:

detM =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
(

a1
1

) (

a1
2

)

· · ·
(

a1
n−1
)

1
(

a2
1

) (

a2
2

)

· · ·
(

a2
n−1
)

...
...

...
...

...
1
(

an
1

) (

an
2

)

· · ·
(

an
n−1
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

1!2!3! · · · (n− 1)!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a1 a1(a1 − 1) · · · a1(a1 − 1) · · · (a1 − n+ 2)
1 a2 a2(a2 − 1) · · · a2(a2 − 1) · · · (a2 − n+ 2)
...
...

...
...

...
1 an an(an − 1) · · · an(an − 1) · · · (an − n+ 2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Expanding the products and adding suitable linear combinations of the pre-
ceding columns shows that

detM =
1

1!2!3! · · · (n− 1)!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a1 · · · an−11
1 a2 · · · an−12
...
...
...

...
1 an · · · an−1n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Since detM is an integer it follows that detS is divisible by 1!2!3! · · · (n − 1)! .
This proves the Lemma.

Now assume A = {a1, . . . , an} ⊂ [1, N ] , B = {b1, . . . , bn} ⊂ [1, N ] and
A+B ⊂ P .

T :=
∏2n−1
i=1 i! divides

detS(a1, . . . , an,−b1, . . . ,−bn) =
∏

16i<j6n

(aj −ai)
∏

16i<j6n

(bj − bi)
∏

16i6n
16j6n

(ai+ bj).
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We will get the required relation between n and N by finding upper and
lower bounds on T . Since T consists of prime factors p < 2n only, T also divides

S′ :=
∏

16i<j6n

(aj − ai)
∏

16i<j6n

(bj − bi)
∏

ai+bj<2n

(ai + bj),

which implies that T 6 S′ . It is important to note that S ′ is considerably smaller

than detS(a1, . . . , an,−b1, . . . ,−bn). Let us note that all but at most O
(

n2

(logn)2

)

terms of the form (ai + bj) are primes p > 2n . This can be seen as follows: for
fixed ai , all ai + b1, . . . , ai + bn are distinct primes. By Chebychev’s inequality,

π(n) � n
logn so that only O

(

n
log n

)

of the above ai + bj can be primes less

than 2n . Similarly, the size of the index i is bounded by i = O
(

n
logn

)

, giving

O
(

n2

(logn)2

)

possibilities with ai + bj < 2n .

Estimating now T from above and below (using Stirling’s formula) shows
that

(
n

e
)2n

2

6 T 6 S′ 6 Nn
2

(2n)
cn2

(log n)2 .

Taking the n2 -th root, this implies that n2 � N .

4.2. A variation, reminiscent of Gallagher’s sieve. The proof in this sec-
tion is inspired by Bshouty and Bshouty’s proof but may be more natural. While
studying the product

∏

(aj − ai) seems natural, studying the determinant of
S(a1, . . . , an,−b1, . . . ,−bn) appears to be a trick. Here we study how often the
prime factors p < n occur in the product

∏

16i<j6n(aj − ai)(bj − bi). The proof
below is selfcontained and does not make direct use of any sieve method. But in a
similar spirit it is possible to prove Gallagher’s larger sieve.

Lemma 4.2. (Compare [5], page 425) If p ∈ S be an odd prime, such that no

a+ b is divisible by p , then

1

νA(p)
+
1

νB(p)
>
4

p
.

With νA(p) + νB(p) 6 p (see section 3.2 above) we find that

1

νA(p)
+
1

νB(p)
>
1

νA(p)
+

1

p− νA(p)
,

which takes (for p 6= 2) its minimum at νA(p) = p±12 .

Lemma 4.3. Let r1, . . . , rk be nonnegative integer parameters with
∑k
i=1 ri = C ,

for a positive constant C . Then f(r1, . . . , rk) =
∑k

i=1

(

ri
2

)

is minimised if the ri
are as equal as possible, i.e. ri ∈ (Ck − 1, Ck + 1) .
Sketch proof. We consider the ri to be continuous variables and use Lagrange’s
multiplier method. Here the minimum is attained for ri =

C
k
. For the discrete



Additive decomposability of multiplicatively defined sets 73

analogue any deviation from the mean value which is larger than necessary in-
creases the value of f : assume r1 =

C
k
+ 1 + δ1 , where δ1 > 0. There must be

some r2 =
C
k
− δ2 , where δ2 > 0. Such a pair (r1, r2) cannot be part of the

minimal solution since it can be reduced to r′1 =
C
k
+ δ1 and r

′
2 =

C
k
+ 1 − δ2 ,

since
(

r1
2

)

+
(

r2
2

)

−
(

r′1
2

)

−
(

r′2
2

)

= 2(δ1+ δ2) > 0. Similarly, assuming that a minimal

solution would contain r1 =
C
k
− 1− δ1, r2 = Ck + δ2 with δ1 > 0, δ2 > 0 leads to

a contradiction, which proves the Lemma.

The prime factor p occurs in the product
∏

16i<j6n(aj −ai), whenever two
ai ’s are in the same residue class modulo p . Let p

w ‖ ∏16i<j6n(aj − ai), then
w >

|A|
2 (

|A|
νA(p)

−1), as can be seen as follows: put ri(p) = |{a ∈ A : a ≡ i mod p}| .
Only νA(p) of the ri(p) are positive. Further

∑p−1
i=0 ri(p) = n is constant and

w >
∑p−1
i=0

(

ri(p)
2

)

. By the lemma above, the right hand side takes its minimum
if the distribution of A in the νA(p) residue classes is as equal as possible, i.e.:

w >
|A|
2νA(p)

( |A|
νA(p)

− 1)νA(p).
This implies:

∏

p6n

p
|A|2

2ν
A
(p)
− |A|2 +

|B|2

2ν
B
(p)
− |B|2 6

∏

16i<j6n

(aj − ai)
∏

16i<j6n

(bj − bi)

6 N
|A|2

2 −
|A|
2 +

|B|2

2 −
|B|
2 .

With |A| = |B| = n and Lemma 4.2 it follows that
∏

p6n

p
2n2

p
−n

6 Nn
2−n.

Writing
∏

p6n p
2n2

p = exp
(

2n2
∑

p6n
log p
p

)

= exp
(

2n2(logn+O(1))
)

, and ta-

king the n2 -th root it follows that n2 � N .

4.3. A proof based on Gallagher’s larger sieve. Here we show that a direct
application of Gallagher’s larger sieve also proves Theorem 1.7. Gallagher’s larger
sieve is essentially already incorporated into the ad hoc argument of the last sec-
tion. For convenience we use a variant of Gallagher’s larger sieve, introduced by
Croot and the author in [2].

Lemma 4.4. (Variant 1 of [2]) Let S ⊂ [2, Q] denote a set of primes or powers of
primes such that A ⊂ [1, N ] lies in at most νA(q) residue classes modulo q , for
each q ∈ S . Then,

|A| 6 max



Q,
23N exp

(

∑

q∈S

Λ(q)
q

)

exp
(

∑

q∈S

Λ(q)
νA(q)

)



 .

Here Λ is the von Mangoldt function.
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Applying this to |A| = |B| = n with Q =
√
N gives: if Q is the maximum of

any of the upper bounds on |A| or |B| , then n 6 Q and so |A||B| = n2 6 Q2 = N .
Otherwise, combining Lemma 4.2 and Lemma 4.4 with S = P ∩ [1, Q] , gives:

|A||B| �
N exp

(

∑

p∈S

Λ(p)
p

)

exp
(

∑

p∈S

Λ(p)
νA(p)

)

N exp
(

∑

p∈S

Λ(p)
p

)

exp
(

∑

p∈S

Λ(p)
νB(p)

)

�
N2 exp

(

2
∑

p6Q
log p
p

)

exp
(

∑

p6Q
log p
νA(p)

+ log p
νB(p)

)

� N2

exp
(

∑

p6Q
2 log p
p

) � N.

5. Proof of Theorem 1.9

Assume that there exists an asymptotic additive decomposition of the set of pri-
mes: A + B = P

′ . Here we prove sharper sieve bounds than were previously
proved in [4]. The main idea of the proof in [4] was that an inverse application of
Gallagher’s larger sieve applied to the smaller sequence A (say) shows that this
sequence occupies many residue classes modulo many primes p 6 y . This informa-
tion can successfully be injected into Montgomery’s sieve to give an upper bound
of B(N)�

√
N(logN)4 . One of the obstacles to get a still better bound was that

the sieve level up to which we used the distribution modulo primes needed to be
the same y = N

1
2m = N

1
4 for both parts of the sieve.

Even though we count in finite intervals, the original problem is of course
about infinite sets. So, it is possible to do both sieve parts independently. It was
already shown in [4], that A(N) �ε N

1
2−ε . Since this holds for all N , we can

show, up to any level Q , by an inverse application of Gallagher’s larger sieve that
for a positive proportion of the primes p 6 Q the number νA(p) of occupied
classes modulo p is large. Let us partition the set S = [N0, Q]∩ P into two parts:
S1 = {p ∈ S : νA(p) 6

Q
20 logQ} , and S2 = {p ∈ S : νA(p) >

Q
20 logQ} . By the

prime number theorem π(Q) = Q
logQ +

Q
(logQ)2 + O

(

Q
(logQ)3

)

, which implies for

sufficiently large Q , |S| > Q
logQ . Hence at least one of |S1| >

Q
2 logQ or |S2| >

Q
2 logQ

holds. We show that the first condition cannot hold, whence the second condition
holds.

We use again variant 1 of Gallagher’s larger sieve, see Lemma 4.4. Let Q =
N
1
4 . Assume that |S1| > Q

2 logQ , which implies
Q
3 6

∑

q∈S1
Λ(q) 6 Q .
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A(N)� max



Q,
N exp

(

∑

q∈S1

Λ(q)
q

)

exp
(

∑

q∈S1

Λ(q)
νA

)





� max



Q,
NQ

exp
(

20 logQ
Q

∑

q∈S1
Λ(q)

)





� max



Q,
NQ

exp
(

20 logQ
Q

Q
3

)



 = Q,

which contradicts A(N)�ε N
1
2−ε .

For the problem of infinite sets A,B and therefore A(N) �ε N
1
2−ε for all

large N , this implies that |S2| > Q
2 logQ holds for all large Q .

Since a+ b >
√
N is a prime, we know that a+ b 6≡ 0 mod p , for primes p 6√

N . This implies that ωB(p) > νA(p). We put Q = N
1
2 and use Montgomery’s

large sieve in the special case, where the q in the denominator are primes in S2 :

B(N) 6
N +Q2

∑

p∈S2

ωB(p)
p

� N
Q

20 logQ
Q

2 logQ
1
Q

� N 1
2 (logN)2.

Since A(N)B(N) � N
(logN) this implies that A(N) � N

1
2

(logN)3 . By symme-

try, the same upper and lower bounds hold on A and B .
It should be noted that the parameter N in both parts of the sieve appli-

cation is not necessarily the same. The information about the distribution of the
used classes modulo primes up to Q in the first sieve argument possibly makes
use of elements a + b which are outside the interval [1, N ] that is used for the
second sieve application. This trick obviously cannot work for the finite version of
the problem.

I would like to thank Eduard Wirsing for discussions on the problem, for
giving me access to his unpublished manuscript [30], and for comments on an
earlier version of this paper. I am also grateful to Nigel Watt for a discussion on
section 3 of this paper, and to Ernie Croot for many discussions on sieve methods.
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