
The number Γ(k) in Waring’s problem

Christian Elsholtz

December 17, 2007

Abstract

Let Γ(k) denote the least integer so that for all prime powers pr

and for all classes a mod pr there is a local solution of xk
1+· · ·+xk

Γ(k) ≡
a mod pr. Hardy and Littlewood expressed their expectation that
Γ(k) → ∞. We prove that this follows from a standard conjecture
in prime number theory. We give a conditional proof that Γ(k) ≥
(1 + o(1)) log k

log log k holds. We also extend computations of Hardy and
Littlewood, and of Sekigawa and Koyama. We prove that for all
19 ≤ k ≤ 5× 108 one has that Γ(k) > 4.

1 Introduction

One of the fundamental problems in additive number theory is Waring’s

problem. Waring asserted (1770), and Hilbert [9] proved the following the-

orem.

Theorem. For every positive integer k there exists a finite integer g(k) such

that all positive integers can be written as a sum of g(k) nonnegative k-th

powers:

n = xk
1 + · · ·+ xk

g(k). (1)

For a recent survey of this problem with many of its variants and with

vast bibliography we refer to Vaughan and Wooley [13]. The question about

the least integer G(k) so that all sufficiently large integers n can be written

as

n = xk
1 + · · ·+ xk

G(k) (2)

is a major open question. It is known that k + 1 ≤ G(k) � k log k. This

upper bound was first proved by I.M. Vinogradov [14], for later improve-

ments see e.g. Wooley [15]. It is readily seen that G(k) ≥ k + 1 since the

number of x1, . . . , xk with xk
1 + · · · + xk

k ≤ N is at most O(N
k!

), since there

are at most
(

N1/k

k

)
� N

k!
numbers with distinct xi and at most O(N1− 1

k )

integers with two or more of the variables equal.
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Another lower bound can be derived from local solubility conditions.

Let Γ(k) denote the least integer such that for all prime powers pr and all

residue classes 0 ≤ a ≤ pr − 1 there is a solution of

xk
1 + · · ·+ xk

Γ(k) ≡ a mod pr.

This local solubility is necessary for the solubility of (2) so that

max(Γ(k), k + 1) ≤ G(k).

Hardy and Littlewood [6] (see also [4] [5]) conjectured that Γ(k) tends

with k to infinity.1 They computed Γ(k) for k ≤ 36 and verified Γ(k) > 4 for

all 3 ≤ k ≤ 3000 with the following exceptions: Γ(3) = Γ(7) = Γ(19) = 4,

and for k = 1163, 1637, 1861, 1997, 2053 the issue remained undecided. They

also studied when Γ(k) > k holds, and showed for example that Γ(k) = 4k

holds, if and only if k > 2 is a power of 2. Since G(k) ≥ Γ(k) this implies

that for infinitely many exponents k: G(k) ≥ 4k. In most cases Γ(k) is

much smaller. It seems conceivable that indeed G(k) = max(Γ(k), k + 1)

holds, i.e. G(k) = k + 1, unless there is a congruence obstruction.

Sekigawa and Koyama [12] calculated Γ(k) for k ≤ 200 (thereby correct-

ing some minor mistakes of Hardy and Littlewood) and settled Γ(k) > 4 for

all 19 ≤ k ≤ 3000, i.e. they also checked the five cases k = 1163, 1637, 1861, 1997, 2053,

that were left open by Hardy and Littlewood.

Dodson and Tietäväinen have a series of related results, see for example

[1].

The purpose of this paper is twofold. On the one hand side we relate

Γ(k) to a standard problem in prime number theory. Here we prove that

Γ(k) → ∞ as k → ∞, follows from a widely believed conjecture. On

the other side, we extend the range for which Γ(k) > 4 is known up to

19 ≤ k ≤ 5× 108 and give possible candidates k with Γ(k) = 5.

The estimates on Γ(k) below will follow from the following elementary

proposition:

Proposition. Let k denote an odd prime. Let p denote a prime of the form

p ≡ 1 mod k. Let i = p−1
k

.

i) If
(

i+s
s

)
< p, then Γ(k) > s.

ii) Let s ≥ 4 and k ≥ 4s. If is < p, then Γ(k) > s.

1To be precise, Hardy and Littlewood defined Γ(k) differently, by means of the con-
vergence of a singular series. However for k 6= 4 both definitions are equivalent.
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The question reduces to the question of finding a small prime in the

progression 1 modulo k. Let p(q, a) denote the least prime p ≡ a mod q

and let p(q) denote the largest of these values over all primitive residue

classes a mod q. It is known by Heath-Brown’s work [8] on Linnik’s constant

that p(q) < cq5.5 with some computable constant c. It is also known that

the Generalized Riemann Hypothesis allows to replace the exponent 5.5 by

2 + ε. However a much stronger result is expected to hold: Heath-Brown

put forward the following conjecture, (see [7] and [11]).

Conjecture 1 (Heath-Brown). The following upper bound holds: p(q) �
q(log q)2.

According to Granville [3], McCurley even suggested that limq→∞
p(q)

ϕ(q)(log q)2
=

2 might hold. See Granville and Pomerance [2] for further conjectures on

p(q).

Theorem 1. If for all ε > 0 there is a kε such that for k ≥ kε: p(k, 1) ≤
k1+ε, then Γ(k) →∞ as k →∞ holds.

The two theorems below are a more quantitative version of the last

theorem.

Theorem 2. Suppose that Conjecture 1 holds, at least in the weak form

p(k, 1) �r k(log k)r for some real constant r > 1. Then the following

estimate holds:

Γ(k) ≥ (
1

r − 1
− o(1))

log k

log log k
.

So, with r = 2 this gives Γ(k) ≥ (1− o(1)) log k
log log k

. Even if the conjecture

above should fail (for example in view of oscillations in the primes discovered

by Maier, Friedlander, Granville and Hildebrand) other bounds on Γ(k) can

be calculated along the same lines from bounds on the primes p(k, 1). One

can prove the following:

Γ(k) >
−2 + log p(k, 1)

log p(k, 1)− log k − log Γ(k)
.

Note that Γ(k) also appears on the right hand side. Still this means: if the

least prime p ≡ 1 mod k is known, then an explicit bound on Γ(k) can be

worked out.

In another direction we prove:

Theorem 3. If k ≥ 4B and Γ(k) ≤ B holds, then also p(k, 1) ≥ 1
4
k1+ 1

B−1 .

In particular, if lim inf Γ(k) ≤ B, then one has infinitely often: p(k, 1) ≥
1
4
k1+ 1

B−1 .

Theorem 4. If 19 < k ≤ 5× 108, then Γ(k) > 4 holds.
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2 The details

Proof of the Proposition. We start with the following well known result (see

for example Theorem 1.3 of [10]):

Lemma 1. The cardinality of the s-fold sumset satisfies |A + · · · + A| ≤(|A|+s−1
s

)
.

This upper bound also holds for sumsets modulo p. Let p ≡ 1 mod k.

Applying this with A = {xk mod p, 0 ≤ x ≤ p − 1}, so that |A| = i + 1 =
p−1
k

+ 1 proves part i) of the Proposition. For part ii) observe for s ≥ 4

and k ≥ 4s: If i ≤ s, then
(

i+s
s

)
≤

(
2s
s

)
≤ 4s ≤ k < p. If i > s, then(

i+s
s

)
≤

(
2i
s

)
≤ 2sis

s!
≤ is. So the second part directly follows from the first

part.

In fact, Hardy and Littlewood used a similar result that is slightly

stronger. They make use of the fact that one of the classes is the zero

class which allows for a small saving. Since their condition is more involved

but not much stronger, we only use this simple condition.

Let us first prove Theorems 2 and 3.

Proof of Theorem 2. For the application of the proposition we can assume

in this situation that s = o(log k). So we find with suitable positive con-

stants ci that (
c1(log k)r + s

s

)
≤ cs

2(log k)rs

s!
≤ cs

2e
s(log k)rs

ss
.

If
cs
2e

s(log k)rs

ss
< p, (3)

then Γ(k) > s. (3) is equivalent to

s(r log log k − log s + 1 + log c2) < log p.

Since k � p = p(k, 1) �r k(log k)r it follows that log p(k, 1) ≤ log k +

r log log k + O(1) and log log p(k, 1) = log log k + o(1). This shows that for

fixed r there is a function o(1) tending to 0, as k tends to infinity, so that

s = ( 1
r−1

− o(1)) log p
log log p

= ( 1
r−1

− o(1)) log k
log log k

is admissible.

The same kind of argument could be followed for other bounds on p(k, 1).

Proof of Theorem 3. Suppose that Γ(k) ≤ B for some absolute integer B >

1. Suppose, for a contradiction, that
( p−1

k
+B

B

)
< p for some small prime
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p(k, 1) = p. Then Γ(k) > B by the Proposition. Since this is not the case,

we must have
( p−1

k
+B

B

)
≥ p. If B ≤ p−1

k
, then

p ≤
(

2p−1
k

B

)
≤ 2BpB

kB
,

which implies that p > (k
2
)1+ 1

B−1 ≥ 1
4
k1+ 1

B−1 . If B > p−1
k

, then

p ≤
(

2B

B

)
≤ 4B,

which is a contradiction for p > k ≥ 4B.

Proof of Theorem 1. The proof is a calculation similar to the one in Theo-

rem 2.

Let us assume that s ≥ 4 and k ≥ 4s. By the Proposition, if is < p,

then Γ(k) > s. Choose s = 1
ε
. So, for k ≥ 4

1
ε

is < (
p

k
)

1
ε ≤ (

k1+ε

k
)

1
ε = k < p.

Now, since ε is arbitrarily small, Γ(k) > s = 1
ε

is arbitrarily large.

Proof of Theorem 4. We now describe our computations. In view of Γ(k1k2) ≥
Γ(k1) we can mainly concentrate on prime values of k. We only need to

study a few composite integers k.

For prime k > 2 we searched for the least prime p(k, 1) = p ≡ 1 mod k

and checked the condition
(

i+4
4

)
< p. For most primes k this condition is

satisfied and readily shows that Γ(k) > 4. The set of odd primes which did

not satisfy this condition was very small:

k = 3, 5, 7, 13, 17, 19, 31, 59, 167, 197, 227, 317, 389, 457, 521,

1163, 1637, 1861, 1997, 2053, 3833, 5227, 5641, 6637, 7213, 19891.

For these few values we explicitly determined the number γ4(k, p) of

residue classes modulo p = p(k, 1) that are representable as a sum of four

k-th powers. If γ4(k, p) < p, then there is a residue class modulo p which is

not the sum of four k-th powers so that Γ(k) > 4 holds.
In all but one of the cases the least prime p(k, 1) was sufficient to prove

Γ(k) > 4. For k = 31 we used the second smallest prime, 373, of the
form 1 mod k. For an exact determination of Γ(k) one would not only
have to consider the least prime, but this was not our object here. There
are no serious time constraints to extend this calculation. The most time
consuming part, namely the determination of large sumsets will probably
never occur again so that for large k it suffices to check whether p(k, 1)
is sufficiently small. The following table shows the exponent k, the least

prime p(k, 1), (the 2nd least prime for k = 31) i = p(k,1)−1
k

and γ4(k, p),
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the number of residue classes that can be represented as a sum of four k-th
powers. For k 6∈ {3, 7, 19} the table shows that p(k, 1) > γ4(k, p) holds,
which implies Γ(k) > 4.

k p(k, 1) i γ4(k, p) k p(k, 1) i γ4(k, p) k p(k, 1) i γ4(k, p)
3 7 2 7 5 11 2 9 7 29 4 29
13 53 4 41 17 103 6 61 19 191 10 191
31 373 12 361 59 709 12 541 167 2339 14 1779
197 3547 18 2629 227 5449 24 5353 317 8243 26 8009
389 9337 24 1464 457 13711 30 12361 521 16673 32 16139
1163 37217 32 16865 1637 62207 38 30971 1861 74441 40 63801
1997 87869 44 77617 2053 94439 46 85607 3833 229981 60 203281
5227 397253 76 384409 5641 327179 58 270803 6637 424769 64 358017
7213 432781 60 288241 19891 1551499 78 941071

Observe that for the “bad example”k = 19891:

Γ(19891) > 4 and log(19891)
log log 19891

≈ 4.31 support the conditional lower bound in

Theorem 2.

The computation above is a proof for prime values of k. For composite

k it suffices to check that Γ(k) > 4 for k ∈ {2 · 3, 2 · 7, 2 · 19, 3 · 3, 3 · 7, 3 ·
19, 7 ·7, 7 ·19, 19 ·19}. This was easily checked by the same programme.

We also give a list of primes k that are candidates for Γ(k) = 5. We

checked all primes k ≤ 28 600. (The bound was due to memory constraints).

For most primes k we found Γ(k) > 5. For the following k none of the first

three primes p ≡ 1 mod k suffices to prove Γ(k) ≥ 6.

{5, 31, 59, 167, 197, 227, 317, 389, 457, 521, 1861, 1997, 2053, 3833, 5227,

5641, 6637, 7213, 18637, 19891}. Of course it is conceivable that there are

some further k beyond our search bound. For k ≤ 200 the values satisfy

indeed Γ(k) = 5, by the results of [6] and [12], for the other values the

question remains open.
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