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Condorcet’s jury theorem shows that when the members of a group have noisy but independent
information about what is best for the group as a whole, majority decisions tend to outperform
dictatorial ones. When voting is supplemented by communication, however, the resulting
interdependencies between decision makers can strengthen or undermine this effect: they can
facilitate information pooling, but also amplify errors. We consider an intriguing non-human case of
independent information pooling combined with communication: the case of nest-site choice by
honeybee (Apis mellifera) swarms. It is empirically well documented that when there are different nest
sites that vary in quality, the bees usually choose the best one. We develop a new agent-based model of
the bees’ decision process and show that its remarkable reliability stems from a particular interplay of
independence and interdependence between the bees.
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1. INTRODUCTION
Since the Marquis de Condorcet’s work in the eight-

eenth century it is known that, when the members of a

group have only noisy and partially reliable information

about what is best for the group as whole, democratic

decisions tend to outperform dictatorial ones. Con-

dorcet showed that, if each member of a jury has an

equal and independent chance better than random, but

worse than perfect, of making a correct judgement on

whether a defendant is guilty, the majority of jurors is

more likely to be correct than each individual juror.

Moreover, the probability of a correct majority judge-

ment approaches certainty as the jury size increases. This

result is a consequence of the law of large numbers: from

many independent but noisy signals, majority voting can

extract the information while filtering out the noise.

This insight, which has become known as ‘Condorcet’s

jury theorem’, has sparked a large body of social scientific

work on the reliability of various decision procedures in

juries, committees, legislatures, electorates and other

settings (e.g. Grofman et al. 1983; Borland 1989;

Austen-Smith & Banks 1996; List & Goodin 2001; List

2004). While the original theorem highlights the benefits

of pooling independent information held by multiple

individuals, a complexity arises in collective decisions

when voting is supplemented by communication, as

investigated by the theory of deliberative democracy

(e.g. Elster 1986; Miller 1992; Knight & Johnson 1994;

Dryzek & List 2003; Austen-Smith & Feddersen 2009).

Communication can create interdependencies between
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decision makers. On the one hand, these may facilitate
information pooling and filtering (e.g. Luskin et al. 2002;
Farrar et al. in press), but on the other hand, they may also
lead to the amplification of certain errors, such as in fads
and informational cascades, as briefly discussed at the end
of this paper (e.g. Bikhchandani et al. 1992; Zuber et al.
1992; Sunstein 2002, 2006).

In this paper, we consider an intriguing non-human
case of information pooling combined with communi-
cation: the case of nest-site choice by honeybee (Apis
mellifera) swarms. We present a new theoretical model
of the honeybees’ collective decision process and
investigate the role played by both information pooling
and communication in it.

It is a long-standing empirical fact that, in late spring
or early summer, a colonyof honeybees that has reached a
certain size tends to divide itself: the queen leaves with
roughly two-thirds of the worker bees, and a daughter
queen stays behind in the parental nest with the rest of the
worker bees. How does the swarm that has left the colony
find a new home? Empirical work by Lindauer (1955)
and Seeley et al. (2006) have revealed a mechanism
involving a ‘search committee’ of several hundred bees,
the scouts, who fly out to inspect potential nest sites and
then come back and perform waggle dances to advertise
any good sites they have discovered. Initially, the scouts
visit and inspect sites randomly, but once the dancing
activity has built-up, they are more likely to visit and
inspect sites advertised by others. Back at the swarm,
each bee dances for the site she has inspected, with the
duration of the dance depending on her perception of the
site’s quality: the better the site, the longer the dance.
Thus, high-quality sites receive more advertisement and
are visited by more scout bees, which in turn generate
This journal is q 2008 The Royal Society
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even more dance activity for these sites. The process
eventually leads to a ‘consensus’: the dancing and visiting
concentrates on one popular site, and the swarm moves
there. (The bees’ final decision to move appears to
involve ‘quorum sensing’, as discussed by Seeley &
Visscher 2003.) The striking empirical fact is that, when
different possible nest sites vary in quality, the bees
usually choose the best one (Seeley & Buhrman 2001).

While the empirical details of this process are well
understood, the mechanisms underlying its striking
reliability still lack a full explanation. Our model of the
bees’ decision making is innovative in combining two
features: first, it is agent based, in the sense that we
explicitly model the individual behaviour of each scout
as a simple stochastic process, and second and more
importantly, it integrates insights from Condorcet’s
jury theorem with those from the theory of deliberative
democracy. Using computer simulations based on this
model, we are able to predict that, under a wide range
of parameter conditions, a consensus among the bees
emerges for the best nest site with a high probability,
even when the quality differences between sites are
relatively small. Furthermore, we show that the remark-
able reliability of the bees’ decision process stems from
a particular interplay of independence and interdependence
between the bees, as defined formally below.

Other mathematical models of nest-site choice by
honeybees are a differential equation model by Britton
et al. (2002), a matrix model by Myerscough (2003),
another agent-based model by Passino & Seeley (2006),
and a density-dependent Markov process model by
Perdriau & Myerscough (2007). While shedding light
on several important aspects of the bees’decision process,
noneof these models exhibits bothmaincharacteristics of
ours, i.e. being agent based and explicitly modelling the
interplay between independence and interdependence.
Moreover, our model is particularly parsimonious and
makes very robust predictions. Since our computational
results appear to be consistent with existing empirical
findings about the bees, we suggest that our model
adequately captures some key elements of the bees’
decision-making process.

The paper is structured as follows. After a formal
exposition of our model, we state our two main
hypotheses about the bees’ decision process. The first
is, roughly, that this process is robustly reliable for a large
class of parameter conditions; and the second that the
presence of both independence and interdependence
between individual bees is necessary and sufficient for the
overall reliability. Methodologically, both hypotheses are
formulated as hypotheses about our model of the bees
rather than as hypotheses about the real world bees
themselves; but to the extent that the model behaviour
is consistent with the empirically observed behaviour of
the bees, our hypotheses can be considered empirically
adequate as well. To provide a computational test of our
hypotheses, we finally report our computer simulations,
followed by a brief concluding discussion.
2. MODEL
(a) Basic ingredients of the model

There are n scout bees, labelled 1, 2, ., n, who
participate in the decision-making process, and there
Phil. Trans. R. Soc. B (2009)
are k potential nest sites, labelled 1, 2, ., k, where each
nest site j has an objective quality qjR0. We assume
discrete time periods, labelled 1, 2, 3, ., and explicitly
model the behaviour of all n individual scout bees in
each period.

At each time, a scout bee can be in one of two states:
either she dances for one of the k potential nest sites or
she does not dance for any site, which can mean that
she has not yet found a site, she has flown out to search
for sites, she is observing other bees, or she is resting.
Formally, the state of bee i at time t is represented by a
two-component vector xi,tZ(si,t ,di,t), where

— si,t2{0, 1, 2, ., k} is the site for which bee i dances
at time t, with si,tZ0 meaning that she does not
dance at time t, and

— di,tR0 is the remaining duration of bee i’s dance at
time t.

We initialize the model by assuming there is no
dancing activity at time 1, i.e. for all i, xi,1Z(0,0).

(b) How each bee changes her state from one time

period to the next

As in any agent-based model, the state of bee i at time
tC1 depends on her own state at time t and the state of
other bees at time t. We need to distinguish between
two cases: either bee i does not dance for any site at
time t, in which case she may or may not fly out and find
a site to dance for at time tC1. Or she already dances
for one of the sites at time t, in which case she continues
her dance at time tC1 unless its duration is over.
We now discuss each case in turn.

Case 2.1. Bee i does not dance for any site at time t
(i.e. si,tZ0).

In this case, she has a certain probability of flying to
one of thek sites and inspecting it. For each site j, we write
pj,tC1 to denote the probability that the bee finds site j and
dances for it at time tC1. Further, p0,tC1 denotes the
probability that the bee remains at rest or finds no site, so
that she does not dance at time tC1. Thus, the first
component of the bee’s state at time tC1, namely si,tC1,
takes the values 1, 2, ., k (one of the sites) or 0 (no site)
with probabilities p1,tC1, p2,tC1, ., pk,tC1 and p0,tC1,
respectively. Bydefinition, these probabilities add up to1.

How are the probabilities determined? The prob-
ability that a bee finds a given site depends on two
factors: first, an a priori probability of how likely she is
to find that site without any advertisement by other
bees (this may depend on the site’s location, distance
from the swarm, etc.) and second, the proportion of
bees dancing for it. Formally, for each j (including the
case jZ0 of no site), we define

pj;tC1 Z ð1KlÞpj Clfj;t ;

where pj is the a priori probability of the jth site; fj,t is the
proportion of bees dancing for site j at time t; and l is the
relevant weight, ranging between 0 and 1. The weight l
captures the amount of interdependence between the bees.
If lZ0, each bee’s probabilities of finding the various
sites remain the a priori probabilities, regardless of how
many bees dance for them: this is the limiting case in
which the bees do not influence each other at all through
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communication. If lZ1, by contrast, each bee’s
probabilities of finding the various sites are perfectly
proportional to the numbers of bees dancing for them:
this is the opposite limiting case in which the bees’
dancing completely determines all bees’ decisions to
inspect the various sites.

It remains to define the second component of bee i’s
state at time tC1, her dance duration di,tC1 if she has
begun a dance for one of the k sites, say site j. (If she
has found no site, di,tC1 is set to zero.) Initially, we
assume that di,tC1 is always stochastically determined
by the bee’s independent assessment of site j ’s true
quality qj. Later, we allow that there is a probability mR0
that di,tC1 is unrelated to qj, so as to capture the possibility
that the bee’s dance is prompted by mimicking other bees
rather than by an inspection of site j. A value of mZ0
represents the original case in which bees always
independently assess a site’s quality before dancing for
it, while a value of mZ1 represents the opposite case in
which bees join dances solely based on the probability
distribution (p1,tC1,p2,tC1, ., pk,tC1) over thek sites and
thus—given a sufficiently large value of l—based on
mimicking the dances of others, without paying attention
to any site’s quality. Generally,

di;tC1 Z

qj expðTsÞ with probability 1Km

ð‘independent assessment’Þ

K expðTsÞ with probability m ð‘mimicking’Þ;

8><
>:

where Ts is a normally distributed random variable with
mean 0 and standard deviation sR0, and K (relevant
only in the case of mimicking) is some strictly positive
constant. The parameter s specifies the bee’s reliability; a
small value of s corresponds to a high reliability, a large
value to a low one. Under our definition, the bee’s dance
duration for any given site fluctuates around the
numerical value of the site’s true quality (setting aside
the case of mimicking, where the dance duration
fluctuates around the quality-independent constant K ).
The bee’s error is multiplicative, i.e. an overestimation of
the site’s quality by a factor of cO0, i.e. the bee
erroneously takes the site’s quality to be c times its true
quality—is as likely as an underestimation by the same
factor, i.e. she takes the site’s quality to be 1/c times its
true quality. Our results are robust to changes in the
functional form of the error, e.g. we obtain similar results
when the error takes an additive rather than multi-
plicative form.

Case 2.2. Bee i dances for one of the sites, say site j, at
time t (i.e. si,tO0).

In this case, she continues to dance for the same site at
time tC1 with the remaining dance time reduced by one
period, unless that dance time is over; in the latter case,
her state is reset to the state of no dancing. Formally,

xi;tC1 Z
ðsi;t ; di;t K1Þ if di;tO1

ð0;0Þ otherwise:

(

(c) When is a consensus reached?

So far we have only modelled the behaviour of
individual scout bees and have not yet explained what
it means for a consensus to emerge among them. From
Phil. Trans. R. Soc. B (2009)
the states of the n bees at each time, we can determine
the total number of bees dancing for each site at that
time. Specifically, for each j (including the case jZ0 of
no site), the number of bees dancing for site j at time t is

nj;t Z jfi : si;t Z jgj:

Now different criteria of consensus are conceivable.
Generally, a consensus criterion can be understood as a
mapping from the individual-level pattern of dance
activity to a chosen nest site. According to the one such
criterion, a consensus for a site j at a given time t would
require that all the bees engaged in dance activity at
time t support site j, i.e. nj,tO0 while nh,tZ0 for all hsj
with hs0. However, as shown by Seeley & Visscher
(2003), a consensus in this unanimitarian sense is not
necessary, nor even generally sufficient, for the bees’
selection of a nest site. Instead, the bees appear to make
decisions by ‘quorum’, requiring merely ‘sufficient’
support for a site to be chosen.

This can be modelled in a number of different ways.
For the present purposes, we focus on two illustrative
criteria. According to the first and less demanding
criterion—which is arguably too weak to capture the
quorum requirement fully—site j is the winner at time t
if it receives more support than any other site at t, i.e.
nj,tOnh,t for any hsj with hs0. According to the
second and more demanding criterion, site j is the
winner at time t if it meets a two-part condition: (i) it
receives more than twice the amount of support
received by the second most popular site (i.e. nj,tO
2nh,t for any hsj with hs0) and (ii) more than 20 per
cent of the scout bees are engaged in dance activity at t
(i.e. n0,t!0.8n).

Our model would also allow the use of other
consensus criteria, but these would yield broadly
similar results about the bees’ overall reliability.
Differences between such criteria would become more
significant in relation to speed-accuracy trade-offs,
which are not the focus of this paper.
3. HYPOTHESES
Since our model is designed to represent the bees’
empirically observed decision-making behaviour, the
model should predict the reliability of the bees’ decision
process under empirically realistic assumptions. What
do we mean by ‘realistic’? It is reasonable to assume,
first, that individual bees are neither very reliable nor
completely unreliable, and second, that the bees’
waggle dances have a significant but not exclusive
influence on other bees’ decisions to investigate
potential nest sites. The first assumption corresponds
to a non-extremal value of the bees’ reliability
parameter s, and the second to a non-extremal value
of the interdependence parameter l. Initially, we
assume no mimicking between the bees (i.e. mZ0).
We expect the following:

Hypothesis 3.1. Under a wide range of non-extremal
parameter values of s and l (and mZ0), the bees
choose the best nest site.

Assuming this hypothesis turns out to be true—which
is consistent with Seeley’s empirical observations—we
are also interested in explaining why this is the case. As
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already indicated in the introduction, we suggest that two
characteristics of the bees’ decision process stand out.
First, the bees are independent in that they individually
inspect potential nest sites and dance to advertise them as
a function of their individual quality assessments of these
sites; they do not blindly join a dance for a nest site
without having inspected the site themselves (i.e. m is 0 or
low). We can express this in the language of probability
theory by saying that, conditional on having identified a
particular site, each bee’s dance duration for that site is
independent of other bees’ dance durations for it.
Second, the bees are interdependent in that they are
more likely to inspectnest-sites advertisedbyothers (i.e.l
is high). Expressed in probability-theoretic terms, the
identification of a particular site by one bee is correlated
with the identification of that site by others. We hypo-
thesize that the reliability of the bees’ decision process
is driven by the interplay of these two characteristics:

Hypothesis 3.2. The bees’ independence in assessing the
various sites’ quality and their interdependence
through communication are both necessary and
sufficient for the reliability of the bees’ decision process.

Both hypotheses are deliberately stated informally
here, but their operationalization will become clearer in
the context of our computer simulations.
4. COMPUTER SIMULATIONS
(a) Basic description

Implementing the model above as a MATHEMATICA

program, we ran a number of computer simulations of
the bees’ nest-site choice under various parameter
conditions. To ensure comparability across simul-
ations, we fixed the number of scout bees at nZ200
and the number of potential nest sites at kZ5. These
assumptions are empirically motivated: there are
usually several hundred scouts in a swarm, and there
were typically five candidate nest sites in the experi-
ments conducted by Seeley and others on Appledore
Island, off the coast of Maine.

We also fixed the objective quality levels q1, ., q5 of
the five nest sites at 3, 5, 7, 9, 10, respectively, thus
making it intuitively difficult for the bees to distinguish
the two or three best nest sites. (Even when individual
reliability is high, e.g. sZ0.2, the intervals in which
individual quality assessments of the two best sites are
likely to fall, namely [9 exp(K0.2), 9 exp(0.2)]Z[7.37,
10.99] and [10 exp(K0.2), 10 exp(0.2)]Z[8.19,
12.21], overlap significantly. When individual reliability
is lower, e.g. sZ1, the overlap between these intervals,
now [3.31, 24.46] and [3.68, 27.18], grows further.)

We further assumed that when a bee flies out
randomly without following any other bees’ advertise-
ment for a site, she has a 25 per cent probability of
finding some site, where the probability is equally
distributed over the five sites (i.e. p1Z.Zp5Z5% and
p0Z75%). In all simulations, we calculated the bees’
behaviour for 300 time periods, though a consensus,
under both criteria introduced above, often emerged in
less time. We verified that our findings are robust to
changes in the choice of these fixed parameters.

Our first set of simulations was run to test hypothesis
3.1 by investigating the reliability of the bees’ decision
Phil. Trans. R. Soc. B (2009)
process under a range of empirically motivated, non-
extremal assumptions about individual bees’ reliability
(s) and their interdependence through signalling (l), in
each case assuming no mimicking (mZ0). As reported
below, our simulations broadly confirm hypothesis 3.1.

Our second set of simulations was designed to test
hypothesis 3.2, focusing on the mechanisms underlying
the reliability of the bees’ decision process. To isolate
the effects of independent assessments of the various
sites’ quality by the bees and communicative inter-
dependence between them, we varied the parameters m
and s such that one of these two characteristics
was completely or partially absent from the bees’
decision making.

To model the full or partial absence of indepen-
dence, we considered non-zero values of m, thereby
allowing that a bee may join a dance for a site not on the
basis of her independent assessment of its quality but
merely as a result of mimicking other bees dancing for it
(we set the relevant constant K equal to the maximal
nest-site quality, but other values of K would yield
similar results). Recall that our original case mZ0
meant that bees always independently assess a site’s
quality before dancing for it. By contrast, the higher the
value of m, the less likely it is that a bee independently
assesses a site’s quality before dancing for it. In the
limiting case mZ1, bees join dances randomly, based
on only the probability distribution over sites, without
paying attention to any site’s quality (i.e. the dance
duration is determined by the site-quality-independent
random variable K exp(Ts), as defined above). Our
simulation results reported below are consistent with
hypothesis 3.2, showing that high values of m under-
mine the reliability of the bees’ decision process, while
low values support it.

To model the full or partial absence of interdepen-
dence between the bees, we varied the parameter l. As
already noted, a value of zero implies that each bee’s
probabilities of finding the various nest sites remain the
a priori probabilities, regardless of other bees’ dancing
activity; a value of one implies that each bee’s
probabilities of finding those sites are perfectly
proportional to the numbers of bees dancing for
them; no other factor leads a bee to inspect any site.
Here, too, our simulation results are consistent with
hypothesis 3.2; low values of l undermine the reliability
of the bees’ decision process while high values reinforce
it. An exception arises for the limiting case lZ1, where
the bees’ probabilities of finding the different sites are
given by the existing dance proportions for those sites.
Here, there is not enough noise in the system for bees to
discover any new sites not advertised by others. Small
noisy deviations from perfect proportionality (i.e. l!1)
are necessary to permit the discovery of new sites.

(b) Results on hypothesis 3.1

Our first simulations capture what may be described as
a best-case scenario: the reliability of bees in assessing
sites is good (sZ0.2), and their interdependence
through communication is high (lZ0.8). Figure 1
shows an illustrative simulation for these parameter
values. The figure shows the number of bees engaged in
dance activity for each of the five nest sites at each of
the 300 time periods calculated. It is easy to see that
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Figure 1. Illustrative simulations to test hypothesis 3.1. High
reliability, high interdependence.
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Figure 3. Illustrative simulations to test hypothesis 3.1. High
reliability, low interdependence.
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Figure 4. Illustrative simulations to test hypothesis 3.1. Low
reliability, high interdependence.
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Figure 2. Illustrative simulations to test hypothesis 3.1. High
reliability, medium interdependence.
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after some initial amount of dance activity for other
sites, the dance activity concentrates on the best site
(site 5). To confirm that this pattern is not accidental,
we repeated the simulation with the same parameter
values 250 times. In each case, we determined the
consensus winner using the two illustrative criteria
introduced above, applied to the last time period of the
simulation. Recall that according to the first and
weaker criterion, a site wins if it receives more support
than any other site; according to the second and
stronger criterion, a site wins if it receives more than
twice the amount of support received by the second
most popular site and at least 20 per cent of the scout
bees are engaged in dance activity. For the present
parameter values (lZ0.8 and sZ0.2), the best nest-site
emerged as the winner in nearly all cases, regardless of
which criterion for a consensus was employed: Under
the first criterion, the best site was chosen every time;
under the second, it was chosen 246 times, while no site
met the winner criterion in the remaining four cases.

In our next simulations, the interdependence
between bees is reduced to a lower level (lZ0.5),
while the other parameter values remain as before.
Figure 2 shows a representative simulation. While the
best site (site 5) continues to receive the most support,
there is also considerable dance activity for other sites,
particularly the second best (site 4), throughout all time
Phil. Trans. R. Soc. B (2009)
periods. The consensus is less strong here. Again we
repeated the simulation for the same parameter values250
times. Under the less demanding criterion of consensus,
the best nest-site emerged as the winner 226 times and
the second best 22 times, with no winner in the remaining
two cases; under the more demanding criterion, the
best site won 104 times, with no winner in all other cases.

A further reduction in the interdependence between
bees (to lZ0.2) weakens the emergence of a consensus
even more significantly, as shown in figure 3. In 250
repetitions, this effect is particularly evident when we
employ the more demanding one of our two criteria for
consensus. While under the weaker criterion the best
site (site 5) still won 176 times (and the second best 63
times, the third best once and no winner 10 times),
under the stronger criterion the best site won only 11
times and the second best once, with no consensus in
the other 238 cases.

Having focused so far on the case in which bees are
highly reliable in assessing nest sites, let us now introduce
more noise into the bees’ individual assessment of sites
(setting sZ1). Strikingly, if interdependence between
bees is high (i.e. lZ0.8), the overall pattern remains
broadly the same as in the best-case scenario reported
earlier. Figure 4 shows a sample calculation. In 250
repetitionsof the simulation, the best site (site 5) emerged
as the consensus choice, even under the stronger
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reliability, medium interdependence.

0

25
50
75

100
125
150
175

1
none
site

 danced
 fo

r

no
. o

f 
be

es

2
3

4
5

100
200time (t) 300

Figure 6. Illustrative simulations to test hypothesis 3.1. Low
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criterion, 199 times and the second best site five times
(site 4), with no consensus in the remaining 46 cases.
Under the weaker criterion, the best site won 237 times,
the second best 12 times, with no winner once.

Figures 5 and 6 show similar calculations for
medium and low levels of interdependence (i.e.
lZ0.5 and lZ0.2, respectively) and essentially
confirm the earlier results for higher individual
reliability. In 250 repetitions of the simulations for a
medium level of interdependence, the best site emerged
as the winner under the strong criterion 94 times and
the second best once, with no consensus in all other
cases. (Under the weaker criterion, the effect is less
pronounced: the best site won 220 times and the
second best 28 times, with no winner twice.) When the
level of interdependence was low, the best site won only
seven times under the strong criterion, with no
consensus in the other 243 cases. (Under the weaker
criterion, the best site won 190 times, the second
best 58 times and in the remaining two cases, no
consensus emerged.)

Table 1 summarizes the frequencies of various
consensus choices in 250 repetitions of the simulations.
(c) Results on hypothesis 3.2

As indicated, we isolated the effects of independence
and interdependence by running simulations for the
special cases in which one or the other of these two
characteristics was absent. Figure 7 shows the case in
which bees independently assess sites and they are also
relatively reliable (sZ0.2), but there is no longer any
interdependence between bees through communication
(lZ0). No clear consensus winner emerges. Figure 8
shows an illustrative case in which interdependence
between bees is high (lZ0.8), but they are no longer
independent (mZ1); they all mimic the dances of other
bees without independently verifying the sites’ quality.
In this example, after relatively little initial dance
activity, a sudden cascade of support for site 2 emerges
(the second worst site), which is reinforced by the bees’
mimicking of others’ dances. Equally, a cascade of
support for another site could have randomly emerged.

More generally, we ran a large number of
simulations with the level of interdependence ranging
Phil. Trans. R. Soc. B (2009)
from low (lZ0) to high (lZ1), keeping a high
individual reliability and independence of bees
(sZ0.2 and mZ0). Figure 9 shows the proportion of
wins for each of the five sites (in 250 simulations for
each set of parameter values), for different levels of
interdependence, where the winner is calculated using
the more demanding criterion. The results are
qualitatively similar under the less demanding
criterion. The best site (site 5) consistently emerges
as the winner only when the level of interdependence is
above a certain threshold. (Recall our earlier remarks,
in the basic description of the computer simulations,
about the exceptional limiting case lZ1.)

Similarly, we ran a large number of simulations with
the level of independence ranging from low (mZ1) to
high (mZ0), keeping a high interdependence of bees
and a high reliability in the event they do verify a site’s
quality (lZ0.8 and sZ0.2). Figure 10 shows the
proportion of wins for each site (again in 250
simulations for each set of parameter values), for
different levels of independence (displayed as 1Km).
Again, we use the more demanding criterion of
consensus; the results are qualitatively similar under
the less demanding criterion. The best site (site 5)
consistently emerges as the winner only when the level
of independence is not too low.
5. DISCUSSION
We have developed an agent-based model of nest-site
choice among honeybees. The model not only explicitly
represents the behaviour of each individual bee as a
simple stochastic process, but it also allows us to
simulate the bees’ decision-making behaviour under a
wide variety of empirically motivated as well as
hypothetical assumptions. The model predicts that,
consistently with empirical observations by Seeley &
Buhrman (2001), the bees manage to reach a consensus
on the best nest site for a large range of parameter
conditions, under both more and less demanding criteria
of consensus. Moreover, the model shows that the
remarkable reliability of the bees’decision-making process
stems from the particular interplay of independence and
interdependence between them. The bees are indepen-
dent in assessing the quality of different nest sites on their



Table 1. Frequencies of various consensus choices in 250 replications of the simulations.

high individual reliability (sZ0.2) low individual reliability (sZ1)

strong consensus
criterion

weak consensus
criterion

strong consensus
criterion

weak consensus
criterion

high interdependence
(lZ0.8)

1st best site 246 (98.4%) 250 (100%) 199 (79.6%) 237 (94.8%)
2nd best site 0 (0%) 0 (0%) 5 (2%) 12 (4.8%)
3rd best site 0 (0%) 0 (0%) 0 (0%) 0 (0%)
none 4 (1.6%) 0 (0%) 46 (18.4%) 1 (0.4%)

medium interdependence
(lZ0.5)

1st best site 104 (41.6%) 226 (90.4%) 94 (37.6%) 220 (88%)
2nd best site 0 (0%) 22 (8.8%) 1 (0.4%) 28 (11.2%)
3rd best site 0 (0%) 0 (0%) 0 (0%) 0 (0%)
none 146 (58.4%) 2 (0.8%) 155 (62%) 2 (0.8%)

low interdependence
(lZ0.2)

1st best site 11 (4.4%) 176 (70.4%) 7 (2.8%) 190 (76%)
2nd best site 1 (0.4%) 63 (25.2%) 0 (0%) 58 (23.2%)
3rd best site 0 (0%) 1 (0.4%) 0 (0%) 0 (0%)
none 238 (95.2%) 10 (4%) 243 (97.2%) 2 (0.8%)
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own, but interdependent in giving more attention to nest

sites that are more strongly advertised by others.

Without interdependence, the rapid convergence of

the bees’ dances to a consensus would be undermined;

there would not be a ‘snowballing’ of attention on the

best nest site. Without independence, a consensus
Phil. Trans. R. Soc. B (2009)
would still emerge, but it would no longer robustly be
on the best nest site; instead, many bees would end up
dancing for nest sites that accidentally receive some
initial support through random fluctuations. It is only
when independence and interdependence are com-
bined in the right way that the bees achieve their
remarkable collective reliability.
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To illustrate the importance of both independence
and interdependence in collective decision making
more generally, consider the human example of
restaurant choice. If we walk into a street with many
restaurants, knowing nothing about their quality, we
may well pick whichever restaurant has the most diners,
assuming that these people have chosen it for its
quality. But if their reasoning was the same, we may all
end up in the worst restaurant; if we do not, this is
entirely accidental. This phenomenon is called an
informational cascade (Bikhchandani et al. 1992). It is
only if enough people choose a restaurant based on
independently gathered information that such cascades
can be avoided. Interdependence without indepen-
dence can lead everyone to a bad decision. (Of course,
in the restaurant case, additional complexities arise
because differences in individual choices are due to not
only different information but also different prefer-
ences; in the case of the bees, we have made the
simplifying assumption that differences in individual
choices are solely due to informational differences,
presupposing that there is an objective quality standard
for nest sites.)

Likewise, independence without interdependence
can be suboptimal too. Imagine a world without any
restaurant reviews or recommendations, where people
only ever gather information about restaurants by
wandering around the streets alone and checking out
the restaurants they see. It can easily happen, then, that
an outstanding but badly located restaurant may fail to
get many customers because too few people stumble
across it.

The bees’ ingenuity lies in their avoidance of both of
these problems. Nature has given them the right mix of
independence and interdependence.

This paper is based on an unpublished manuscript of January
2005. We are grateful to Larissa Conradt, Kai Spiekermann
and two anonymous referees for their helpful comments.
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