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Abstract

In this paper we survey results on sumsets with multiplicative prop-
erties and the question if a shifted copy of a multiplicatively defined
set can again be multiplicatively defined. The methods involved are
of analytic nature such as the large sieve, and of combinatorial nature
such as extremal graph theory.

1 Introduction

Let A and B denote sets of integers and let A + B = {a + b : a ∈ A, b ∈ B}
be the sumset and AB = {ab : a ∈ A, b ∈ B} be the product set.

We are interested in the additive and multiplicative structure of particular
sets of integers S. One way to study its additive structure, is to see how large
sets A and B exist with A+ B ⊂ S.

Perhaps one can even decompose the whole set so that there exist two
sets of integers A and B with |A| ≥ 2 and |B| ≥ 2 such that A+ B = S
holds? A measure theoretic argument due to Wirsing [44] shows that most
sets S cannot be decomposed in that way; (not even in the asymptotic sense
of Definition 2.2 below). But, for any particular set S it may be of interest
to show that the set can indeed not be decomposed.

The structure of sumsets and product sets is in the focus of current re-
search activity, see for example Tao and Vu [41].

Here we are particularly interested if multiplicatively defined sets can be
written as sumsets or if a shifted copy of a multiplicatively defined set can
also be a product set.

This survey consists of two parts: In the first part we review results which
show that if A + B or AB + 1 is a subset of a multiplicatively defined set,
then the counting functions on A(N) =

∑
a∈A,a≤N 1 and B(N) cannot be too
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large. In particular we give a proof that the set of primes P cannot be written
in the form AB + c, where |A|, |B| ≥ 2, even if finitely many exceptions are
allowed.

In the second part we use purely combinatorial counting arguments which
show that there do exist sets A and B of certain finite sizes, such that
A+ B ⊂ P , for example.

While the first part introduces sieve methods, the second part is based
on pigeonhole principle type arguments, or extremal graph theory.

2 Part I

2.1 Multiplicative decompositions of sumsets

In earlier work such as [10], [11], [13], the author studied the question if
multiplicatively defined sets can be additively decomposed. We say a set
S can be additively decomposed if there exist sets A,B with at least two
elements each such that A+ B = S.

Let us study two examples:

Example 2.1. Let aZ = {an : n ∈ Z}. Then aZ + bZ = gcd(a, b)Z. Note that
ZZ = Z, so that this sumset also has a trivial multiplicative decomposition:

aZ + bZ = (gcd(a, b)Z) Z.

If one allows positive integers only, i.e. if one studies aN + bN, then
all sufficiently large multiples of gcd(a, b) can be represented. So, while
aN + bN = gcd(a, b)N does not quite hold, it holds apart from finitely many
exemptions. This suggests the study of asymptotic additive decompositions.

Definition 2.2 (See [37], vol. 1, p. 5). Let S be a set of positive integers.
We say that S is asymptotically additively irreducible (or we say that no
asymptotic additive decomposition exists) if there do not exist two sets of
positive integers A and B, with at least two elements each, such that for a
sufficiently large N0:

(A+ B) ∩ [N0,∞] = S ∩ [N0,∞].

Another example of a set which has an additive and a multiplicative
structure is the following:

Example 2.3. Let A = {x2 : x ∈ Z}, B = {2y2 : y ∈ Z}. It is well known
that n can be written in the from n = x2 + 2y2 if and only if n is zero, or n
has a prime factorisation of the from

n = 2r
∏

pi prime with pi≡1,3 mod 8

psii
∏

qi prime with qi≡5,7 mod 8

q2ti
i ,
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where the r, si, ti are nonnegative integers. In other words with C = {n ∈
N : p | n ⇒ (p = 2 or p ≡ 1, 3 mod 8)} and D = {n2 : n ∈ Z} we find that
A+B = CD. Note that such a decomposition is not necessarily unique. Let
D′ = {n2 : p | n⇒ p ≡ 5, 7 mod 8}, then A+ B = CD′ also holds.

This example 2.3 comes from the theory of quadratic forms. Observe that
A and B occupy modulo primes p+1

2
of the residue classes. The sum of two

random sets with about half of the residue classes modulo a prime p would
usually cover all residue classes modulo p. In this example, modulo many
primes this is not the case: namely if p ≡ 5, 7 mod 8, and x, y 6≡ 0 mod p
then the corresponding sets A′ and B′ occupy p−1

2
of the residue classes, but

x2 + 2y2 6≡ 0 mod p. Moreover, the considered sets are very “large”. This
makes the example interesting.

It may be conjectured that large sumsets that have a multiplicative prop-
erty must come from related examples based on algebraic polynomials. For
example, Croot and myself formulated the following conjecture:

Problem 2.4. Let A ⊂ [1, N ] with |A| > N0.4. Assume that |A mod p| ≤ 2
3
p,

for every prime p ≤ N . Must any such A be contained in the set of values
of a quadratic polynomial, apart from N1/3+ε exceptions?

The values of a quadratic polynomial f(x) = ax2 + bx + c are in about
one half the residue classes modulo primes.

The philosophy behind this conjecture is: if one removes from the interval
[1, N ] a positive proportion of the residue classes modulo a positive propor-
tion of the primes, and arrives at a set A with |A| > N δ, where δ > 0, then
there should be an algebraic reason for this, since for a random sieve process
one would expect that |A| is very much smaller.

One of the long standing open problems about additive decompositions
is Ostmann’s conjecture:

Conjecture 2.5 (Ostmann, [37] vol. 1, p. 13). The set of primes P is asymp-
totically additively irreducible.

As partial results in the direction of this conjecture the author proved
(see Elsholtz [10] and [13]):

Theorem 2.6. Suppose that there is an asymptotic additive decomposition
of the set of primes, i.e. P ∩ [N0,∞] = P ′ ∩ [N0,∞], for some large N0, and
A+ B = P ′, then

√
N(logN)−3 � A(N)�

√
N(logN)2.

The same bounds hold for B(N).
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Also A(N)B(N) � N is known, a result that was independently proved
by several authors. For a survey on this see [13].

As a consequence of a result such as Theorem 2.6, the author proved in
Elsholtz [10]:

Corollary 2.7. The set of primes is not asymptotically additively decompos-
able into three sets A,B, C containing at least two elements each.

For the additive decomposability of multiplicatively defined sets the fol-
lowing holds, (see [13]).

Theorem 2.8. Let T denote a set of primes with∣∣∣∣∣∣∣∣
∑
p≤x
p∈T

log p

p
− τ log x

∣∣∣∣∣∣∣∣ < C.

Here 0 < τ < 1 denotes a real constant. Let

Q(T ) = {n ∈ N : p|n⇒ p ∈ T }.

Let A+B ⊆ Q′(T ), where Q(T )∩ [N0,∞] = Q′(T )∩ [N0,∞], for sufficiently
large N0. Then

A(N)B(N)�τ,C N(logN)2τ .

Corollary 2.9. Let T consist of p = 2 and all primes p ≡ 1, 3 mod 8. Then
in the above Theorem τ = 1

2
is admissible. Let A and B be as above. Then

A(N)B(N)� N(logN).

This upper bound is quite close to the following constructive example:

Example 2.10. Let A = {n2 : n ∈ N} and B = {2n2 : n ∈ N and (p | n ⇒
p ≡ 1, 3 mod 8)}. No element ai + bj ∈ A + B contains any prime factor
q ≡ 5, 7 mod 8 since for such q one would have:

m2 + 2n2 ≡ 0 mod q, i.e.
m2

n2
≡ −2 mod q.

Since −2 is a quadratic non-residue modulo primes p ≡ 5, 7 mod 8, this
implies that both m ≡ 0 mod q and n ≡ 0 mod q must hold, which is not
the case by construction. Hence A + B ⊂ Q(T ), where T = {p ∈ P : p =
2 or p ≡ 1, 3 mod 8}, and τ = 1

2
.

Note thatA(N) ∼ N1/2 and B(N) ∼ c N1/2

(logN)1/2
, for some positive constant

c. Therefore the general upper bound N logN on A(N)B(N) and the actual
value c N

(logN)1/2
in this example is only off by a small logarithmic factor.
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2.2 Multiplicative decompositions of shifted sets

In [14] the author studied the multiplicative analogues.

Definition 2.11. Let S be a set of positive integers. We say that S is
asymptotically multiplicatively translation-irreducible if there is no decom-
position of the following type: S ′ = AB + c, where A,B are sets of positive
integers with at least two elements each, c 6= 0 an integer, and where S ′ is
asymptotically equal to S.

Theorem 2.12. The set of primes is asymptotically multiplicatively translation-
irreducible.

The following Theorem proves the corresponding result for sets of integers
composed of certain prime factors only.

Theorem 2.13. Let T ⊂ P be a set of primes with the property that∑
p≤N, p∈T

1 = τ
N

logN
+O

(
N

(logN)2

)
,

for some constant 0 < τ < 1. Let

Q(T ) = {1} ∪ {n ∈ N : p | n⇒ p ∈ T }.

Then Q(T ) is asymptotically multiplicatively translation-irreducible.

In this survey we will give a proof of Theorem 2.12. The proof of Theorem
2.13 uses the same methods.

As a motivation for this type of results we observe that famous open
problems are closely related. It is not known if there are infinitely Sophie
Germain primes, or infinitely Carmichael numbers with a given number of
prime factors. A Sophie Germain prime is a prime p where 2p + 1 is also
prime. Let A = {1, 2} and AB − 1 ⊂ P . If p is a Sophie Germain prime,
then p + 1 ∈ B. So, the question if an infinite set of shifted primes P ′ + 1
can be multiplicatively decomposed into AB, where A = {1, 2} is equivalent
to the question whether there are infinitely Sophie Germain primes or not.

A Carmichael number n is a composite number such that an ≡ a mod n.
Thus a Carmichael number is a pseudo prime to all bases a. By Korselt’s
criterion a squarefree number n is a Carmichael number if for all prime factors
p | n: p− 1 | n− 1.

Let A = {6, 10, 12, 40} and AB+ 1 ⊂ P . If it is possible to find infinitely
many b such that 6b + 1, 10b + 1, 12b + 1 and 40b + 1 are simultaneously
prime, then the product n = (180b+ 7)(300b+ 11)(360b+ 13)(1200b+ 41) is
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a Carmichael number. This follows since n− 1 is divisible by 120(30b+ 1) so
that it is divisible by 180b+ 6, 300b+ 10, 360b+ 12, 1200b+ 40. The smallest
example of this type is n = 7 · 11 · 13 · 41 = 41041. For further details on
Carmichael numbers see [21].

2.3 Some background from sieve methods

The two main ingredients of the proof are the large sieve inequality, in a form
due to Montgomery, and Gallagher’s larger sieve.

Lemma 2.14 (Montgomery [35]). Let P denote the set of primes. Let p be
a prime. Let A denote a set of integers which avoids ωA(p) residue classes
modulo p. Here ωA : P → N with 0 ≤ ωA(p) ≤ p − 1. Let A(N) denote the
counting function A(N) =

∑
a≤N,a∈A 1. Let µ denote the Möbius function.

Then the following upper bound on the counting function holds:

A(N) ≤ N +Q2

L
, where L =

∑
q≤Q

µ2(q)
∏
p|q

ωA(p)

p− ωA(p)
.

One typically chooses Q = N1/2. There are many excellent expositions of
a proof of this statement (or variants of it), including those by Montgomery
[35], Brüdern [2], Davenport [8], Gallagher [18], Tenenbaum [42].

Vaughan has found a suitable lower bound of L if
∑

p≤y
ω(p)

p
is known.

Lemma 2.15 (Vaughan [43]). For sufficiently large Q

L ≥
∞∑
m=1

exp

m log

 1

m

∑
p≤Q1/m

ω(p)

p

 .

The sum
∑∞

m=1 is in fact a finite sum only. The parameter m denotes the

number of prime factors of q in the definition of L. Hence 1 ≤ m ≤ logQ

log 2
. As

there are at most O(logN) summands, a lower bound on L can be found by
choosing a suitable value of m, and replacing the sum by this one summand.
The loss of a factor of size at most O(logN) is small in typical large sieve
applications.

Lemma 2.16 (Gallagher’s larger sieve, [19]). Let S denote a set of primes
such that A lies modulo p (for p ∈ S) in at most νA(p) residue classes. Then
the following bound holds, provided the denominator is positive:

A(N) ≤
− logN +

∑
p∈S log p

− logN +
∑

p∈S
log p

νA(p)

.
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This sieve has a very elementary proof:

Proof. Let A = {a1, a2, . . . , a|A|} ⊂ [1, N ], where a1 < a2 < . . .. We study
upper and lower bounds of

∏
1≤i<j≤|A|(aj − ai). The following upper bound

is trivial, since aj − ai < aj ≤ N .∏
1≤i<j≤|A|

(aj − ai) ≤ N
1
2
|A|(|A|−1).

To provide a lower bound we observe that the product is divisible by many
small primes to a high power. Let ps(p) ‖

∏
1≤i<j≤|A|(aj − ai). A fac-

tor of p arises whenever ai and aj are in the same residue class modulo
p. (Some additional factors of p arise modulo prime powers, leading to a
slightly sharper sieve inequality, but for simplicity we ignore this here). Let
tk = |{ai : ai ≡ k mod p}|, so that

∑
k tk = |A|. Then s(p) ≥

∑
k

1
2
tk(tk− 1).

The smallest that this latter sum can be is if the ai are as equidistributed
among the ν(p) residue classes as possible, i.e. if ti ≈ |A|

ν(p)
. This is a conse-

quence of Cauchy’s inequality:

ν(p)
∑
k

t2k =
∑
k:tk>0

12
∑
k:tk>0

t2k ≥

( ∑
k:tk>0

1 · tk

)2

= |A|2.

This implies that

p−1∑
k=0

tk(tk − 1) ≥ |A|
(
|A|
ν(p)

− 1

)
.

Hence s(p) ≥ |A|
2

(
|A|
ν(p)
− 1
)

.

Combining the upper and lower bounds gives:∏
p∈S

p
|A|
2

(
|A|
ν(p)
−1) ≤ N

|A|
2

(|A|−1).

Simplifying and taking logarithms gives

|A|
∑
p∈S

log p

ν(p)
−
∑
p∈S

log p ≤ (|A| − 1) logN.

|A|

(∑
p∈S

log p

ν(p)
− logN

)
≤ − logN +

∑
p∈S

log p

which proves the larger sieve inequality, provided
∑

p∈S
log p
ν(p)

> logN holds.
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2.4 Proof of Theorem 2.12

Proposition 2.17. Let A,B be sets of positive integers with at least two
elements each. Suppose that P ′ = AB+c, where P ′∩ [N0,∞) = P∩ [N0,∞).
For sufficiently large N the following holds:

A(N)� N
1
2
+ 1

7 .

The same holds for B(N).

Proof. Suppose that P ′ = AB + c, where P ′ ∩ [N0,∞) = P ∩ [N0,∞).
Let b1 < b2 be the least two elements of B. Without loss of generality we
may assume that N0 > max(b2, c); otherwise, we just increase N0. Let N
be a sufficiently large integer. We begin by showing that for any prime
q ∈ [N0, N

1/2] the set A1 = A ∩ [N1/2, N ] avoids at least two residue classes
modulo q. If a ∈ A1, then ab1+c = p is a prime with b1 < N0 < q < N1/2 < p.
Now b1 6≡ 0 mod q, so b−1

1 mod q exists and a 6≡ −b−1
1 c mod q. Similarly

a 6≡ −b−1
2 c mod q. It follows that a ∈ A1 avoids the two residue classes

−b−1
1 c and −b−1

2 c modulo q. These are distinct since 0 < b1 < b2 < q and
0 < c < q.

Lemma 2.14 applied with ω(q) = 2 gives the upper bound:

A1(N) ≤ 2N∑
q≤N1/2 µ2(q)

∏
p|q

2
p−2

≤ 2N∑
q≤N1/2 µ2(q)

∏
p|q

2
p

=
2N∑

q≤N1/2 µ2(q)d(q)
q

� N

(logN)2
,

where d(q) denotes the number of divisors of q. So A(N) ≤
√
N +A1(N)�

N
(logN)2

. In view of P(N)� N
logN

we must have B(N)� logN . This trivially

implies that B(N)→∞, as N →∞.
Let b1 < b2 < . . . < bk be the first k = 8 elements of B. We adapt the

argument above with the change that N0 > b8. A sieve with ω(q) = 8, for

q ∈ [N0, N
1
2 ] implies that A(N) � N

(logN)8
and therefore B(N) ≥ c′(logN)7,

for some positive constant c′.
To iterate this further we need a lower bound on ω(q) on average. Since a

residue class b mod q forbids a class a mod q for A we actually count those
classes modulo primes that occur in B.
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Let νB(p) = |B mod p|; i.e., νB(p) is the number of residue classes modulo
p that contain at least one element of B.

Let
y = c′(logN)8 (1)

and S = {p : N0 < p ≤ y}. Assume that
∑

p∈S
log p
νB(p)

> 3 logN . This means

that νB(p) is small, say of size at most p7/8 modulo many small primes p ≤
y. We therefore apply Gallagher’s larger sieve. Using (1) and Chebyshev’s
bound

∑
p≤y log p < 2y we obtain a contradiction:

c′(logN)7 ≤ B(N) ≤
− logN +

∑
p∈S log p

− logN +
∑

p∈S
log p
νB(p)

<
2y

− logN +
∑

p∈S
log p
νB(p)

< c′(logN)7.

Consequently ∑
p∈S

log p

νB(p)
≤ 3 logN.

This means that νB(p) is modulo many small primes p ≤ y not as small as
originally assumed. Using Montgomery’s large sieve, this knowledge will give
a good upper bound on A, since any class that occurs in B forbids one in
S. But in order to use Montgomery’s sieve we first need to transform the
information from a measure on

∑
p∈S

log p
νB(p)

to a measure on
∑

N0<p≤y
νB(p)
p

.
From the Cauchy-Schwarz inequality and by partial summation from

Chebyshev’s bound on the number of primes π(y)� y
log y

we find that:( ∑
N0<p≤y

log p

νB(p)

)( ∑
N0<p≤y

νB(p)

p

)
≥

( ∑
N0≤p≤y

(
log p

p

)1/2
)2

� y

log y
.

We combine these two inequalities to obtain∑
p∈S

νB(p)

p
� y

(log y)(3 logN)
� (logN)7

log logN
.

It then follows by Montgomery’s large sieve and by Vaughan’s Lemma
2.15 that A1(N) ≤ 2N

L
, where

L =
∑

q≤N1/2

µ2(q)
∏
p|q

ωA(p)

p− ωA(p)

≥ max
m∈N

exp

m log

 1

m

∑
p≤N1/(2m)

ωA(p)

p

 .
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We choose the integer m such that N1/(2m) is close to y. Hence

m =
1

16

logN

log logN
+O(1).

We may choose

ωA(p) =

{
νB(p) for p ∈ S
0 otherwise.

Therefore we find that for all ε′ > 0:

logL ≥
(

logN

16 log logN
+O(1)

)
log

(
16 log logN

logN

c′′(logN)7

log logN

)
≥

(
1

2
− 1

8
− ε′

)
logN.

A(N) ≤ A1(N) +N
1
2 ≤ 2N

L
+N

1
2 �ε′ N

1
2
+ 1

8
+ε′ �ε N

1
2
+ 1

7 = N
9
14 .

The same upper bound holds for B(N), by symmetry. So, the proposition
follows.

Proof of Theorem 2.12. If ab + c = p ≤ N , then at least one of a �
√
N or

b �
√
N must hold. Since all π(N) + O(1) � N

logN
primes in [N0, N ] have

at least one presentation as ab+ c, we not only have A(N)B(N)� N
logN

but
also

A(N)B(
√
N) +A(

√
N)B(N)� N

logN
.

Since our proposition holds for all sufficiently large N , we can apply it in-
dependently several times. Applying it once with N1 =

√
N , a second

time with N2 = N gives A(N) � N9/14,B(N) � N9/14 and A(
√
N) �

N9/28,B(
√
N)� N9/28, whence

N

logN
� A(N)B(

√
N) +A(

√
N)B(N)� N

9
14

+ 9
28 � N

27
28 .

This contradiction proves the theorem.

3 Part II

3.1 Sumsets

If one works in finite sets [1, N ] one can show that there exist two sets A,B
with at least logN

log logN
many elements each, with A+ B ⊂ P . (If one chooses
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one of the sets smaller, then the other set can be taken considerably larger!)
Below we will study some combinatorial counting methods like the pigeon-
hole principle to prove this lower bound. For results of this type we make
essentially use of the counting function P(N) � N

logN
of the set of primes

only. So, the same type of results would hold for other sets with such a
counting function. But in order to strengthen the constants in the results
slightly we take a stronger result on the prime counting function. Recall
that by the prime number theorem π(N) = li(N) + O( N

(log N)k
) holds for all k.

Here li(N) =
∫ N

2
dt

log t
. In particular (see for example Landau [33], page 47),

π(N) = N
logN

+ N
(logN)2

+ 2 N
(logN)3

+O( N
(logN)4

).
On the other hand, using the large sieve method one can show that two

sets A,B ⊂ [1, N ] of the same size |A| = |B| with A+ B ⊂ P can at most
be of size |A| = O(N1/2) (compare [13]). There is a huge gap between the
lower bound and upper bound, and I conjecture that the upper bound should
be Oε(N

ε), for all ε > 0. Observe that examples 2.3 and 2.10 show, that
there are square-like sequences, where the sumset essentially avoids half of all
prime factors as divisors. The conjecture says that if the sums are required
to be primes, then no such square-like sequences exist.

3.2 Counting methods

The following result is due to Erdős, Stewart and Tijdeman [16] and is a very
useful counting tool:

Lemma 3.1. Let N be a positive integer and let S ⊂ [1, N ] be a nonempty
set. Let k be an integer with 1 ≤ k ≤ |S|. Then there exists a set A ⊂ S and
a set of non-negative integers B ⊂ [0, N − 1] such that

A+ B ⊂ S, |A| ≥
(|S|
k

)(
N−1
k−1

) , |B| = k.

Proof. There are
(|S|
k

)
subsets of S containing k elements. To each of these

subsets {s1, . . . , sk} with s1 < . . . < sk we associate the (k − 1)-element
difference-subset

{s2 − s1, . . . , sk − s1} ⊂ [1, N − 1].

By the pigeonhole principle there exists a k − 1 element set {h1, . . . , hk−1}
which is the difference subset of at least

t =

(|S|
k

)(
N−1
k−1

)
11



distinct k-element subsets of S. The least elements of these t sets are denoted
by a1, a2, . . . , at. (Note that all ai are distinct since otherwise two k-element
sets would be the same.) Thus the lemma follows with A = {a1, . . . , at} and
B = {0, h1, . . . , hk−1}.

3.3 A result from extremal graph theory

We shall make use of results from extremal graph theory. The applicability
of results from graph theory to number theory has been promoted by Erdős.
For an early example see Erdős [15].

More recently it was stated in a paper by Györy, Stewart and Tijdeman
[28] that M. Simonovits observed the possibility to apply the Kővari-Sós-
Turán-theorem to number theory. That theorem was for example applied in
Gyarmati [26] to square-free sumsets and by the author in [11] to triples of
primes in arithmetic progression.

Let us state the Kővari-Sós-Turán theorem, [31]. (Compare Theorem
IV.10 (page 113) of Bollobás [1].)

Theorem 3.2. Let G(m,n) denote a bipartite graph with m vertices in the
first class and n in the second. Let z(m,n; s, t) denote the maximal number
of edges of G such that G does not contain a complete bipartite graph Ks,t

with s vertices in the first class and t in the second. Then, for all natural
numbers m,n, s and t we have

z(m,n; s, t) ≤ s
1
tnm1− 1

t + (t− 1)m.

Proof. Let us consider a bipartite graph G(V1∪V2, E) with |V1| = m, |V2| = n
that does not contain a complete bipartite subgraph Ks,t, with s elements in
the first vertex set and t elements in the second. (For convenience, we say
a graph Ku,v is oriented if the u vertices are in V1 and the v vertices are in
V2.) Let us count the number of oriented K1,t subgraphs. On the one side,
this number is

∑m
i=1

(
di
t

)
, where di denotes the degree of the i-th vertex in

V1. On the other side there are
(
n
t

)
choices of t out of n elements and each

of these choices of t elements is counted at most s − 1 times, since there is
no oriented Ks,t subgraph. This implies that

m∑
i=1

(
di
t

)
≤ (s− 1)

(
n

t

)
.

Since f(z) =
(
z
t

)
is a convex function, and since

∑
i di = |E|, it follows by

12



Jensen’s inequality (see below) that

m∑
i=1

(
di
t

)
≥ m

( |E|
m

t

)
.

With |E| ≥ m(t− 1) (for a graph without Ks,t but with a maximal number
of edges) this implies that

(s− 1)nt ≥ m(
|E|
m
− t+ 1)t

so that we have

z(m,n; s, t) ≤ (s− 1)
1
tnm1− 1

t + (t− 1)m.

Let us recall Jensen’s inequality for convex functions:

Lemma 3.3. If f is a convex function on the interval [a, b], then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi),

where (for all 1 ≤ i ≤ n) 0 ≤ λi ≤ 1,
∑n

i=1 λi = 1 and xi ∈ [a, b].
An important special case is with λi = 1

n
.

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi),

that is, the value of the function at the mean of the xi is less than or equal
to the mean of the values of the function at each xi.

3.4 The case of primes

3.4.1 The difference counting approach

Pomerance, Sárközy and Stewart [38] proved the following results.

Theorem 3.4 (Pomerance, Sárközy and Stewart). Let N, k be positive inte-
gers with k < logN . There is an effectively computable constant c1 such that
if N > c1, then there exist A,B ⊂ [1, N ] with |B| = k

|A| > N

k(logN)k
and A+ B ⊂ P ∩ [1, N ].

13



Proof. Recall that π(N) ≥ N
logN

+ N
(logN)2

, for sufficiently large N .

By Theorem 3.1 there exists A ⊂ P and B with A+ B ⊂ P ∩ [1, N ] and
|B| = k.

|A| ≥
(
π(N)
k

)(
N−1
k−1

) ≥ (π(N)−k)k
k!

Nk−1

(k−1)!

≥

(
N

logN

)k
kNk−1

=
N

k(logN)k
.

So far we have A ⊂ [2, N ],B ⊂ [0, N − 2]. Shifting the set A down by 1, and
shifting B up by 1, proves the theorem.

Remark 3.5. An application of the purely combinatorial Theorem 3.1 allows
to have that one of the sets A or B is itself a subset of the primes (or a shifted
copy thereof). In fact, the second set can also have a prime restriction. In
order to see this recall that Chudakov [4], van der Corput [5], Estermann [17]
and Chowla [3] proved that almost all even integers are the sum of two primes
with about the expected number of representations. The exceptional set has

a counting function of at most Ok

(
N

(logN)k

)
, for all k. In particular almost

all integers of the form 2p are of the form 2p = p1 + p2, about the expected
number of times. This means that there are infinitely many triples of primes
in arithmetic progression, see Chowla [3]. More precisely, the number of
solutions of this equation with primes p, p1, p2 ≤ N is of order of magnitude
N2

(logN)3
. For a closely related problem we refer to Theorem 3.8 in section 3.5.

3.4.2 The graph theoretic approach

Theorem 3.4 is certainly a good approximation to the prime k-tuple prob-
lem. We observe that the lower bound can be refined as follows: Let y =
1
2

logN . Let P =
∏

p≤y p. Define a bipartite graph G(V1 ∪ V2, E), where

V1 = {P, 2P, . . . , bN
P
cP} and V2 = {n ≤ N : (n, P ) = 1}. The set of edges

is defined by (v1, v2) ∈ E ⇔ v1 + v2 ∈ P . By this construction v1 + v2 is
not divisible by any prime p ≤ y. This pre-sieving increases the edge density
slightly; for each p by a factor of 1

1− 1
p

, and for all p ≤ y together by a factor

of
∏

p≤y
1

1− 1
p

∼ log y. For any given v1 ∈ V1, the number of v2 ∈ V2 such that

v1 + v2 is prime is N
logN

log y, so that the the total number of edges is, with
a positive constant c1:

|E| ≥ (c1 + o(1))|V1| |V2|
log logN

logN
.

A sumset A + B ⊂ B corresponds to a complete bipartite graph Ks,t with
|A| = s and |B| = t. Let us assume the graph G does not contain any Ks,t.

14



This gives bounds on the parameters s and t. By Theorem 3.2

(c1 + o(1))|V1| |V2|
log logN

logN
≤ |E| ≤ z(m,n, s, t) ≤ s

1
t |V1||V2|1−

1
t + t|V2|.

This implies that

s ≥ |V2|ct2
(log logN)t

(logN)t
.

With |V2| ∼ N
∏

p≤y

(
1− 1

p

)
≥ 1

2
N

(log logN)
it follows that

s ≥ ct3N(log logN)t−1

(logN)t
.

Now, let us assume that s is smaller than this bound. By Theorem 3.2 there
exists a graph Ks,t and hence subsets of the required size.

Corollary 3.6. There exist sets A,B with A+ B ⊂ P and with cardinality
|A|, |B| ≥ logN

log logN−log log logN+O(1)
≥ logN

log logN
, for large N .

This slightly improves upon the bound (1−ε) logN
log logN

proved by Pomerance

et. al. [38].

The lower bound above, s ≥ ct3N(log logN)t−1

(logN)t
, may look somewhat sur-

prising: for the prime k tuple problem one thinks of the upper bound as
Ck

N
(logN)k

, whereas here the lower bound has additional log logN factors.
This is however no contradiction: since V1 and V2 depend on P , and so on N
the k-tuples considered above are not “constant”, but vary, as N increases.
This example shows that upper bounds of the general prime k-tuple problem,
where n+ bi, prime, bi ∈ [0, N ], i ∈ {1, . . . , k − 1}, i.e. where the coefficients
can vary with N , must also include (log logN)-factors.

3.5 Chains of primes in arithmetic progressions

If one studies chains of primes in arithmetic progressions a, a+ d, a+ 2d, a+
(k−1)d ≤ N , then an upper bound sieve shows there are at most Ok(

N2

(logN)k
)

of these. Until recently, a corresponding lower bound was only known in the
case k = 3, (see the above mentioned work by Chudakov, van der Corput,
Estermann and Chowla). For a very precise result see Grosswald [24].

Recently, Green and Tao [22] proved:

Theorem 3.7. Let

Gk(N) := |{(p1 < p2 < . . . < pk) : pk ≤ N, pi ∈ P and pi = p1 + (i− 1)d}| .
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Then the following lower bound holds, for some constant Ck > 0.

Gk(N) ≥ (Ck + o(1))
N2

(logN)k
.

An asymptotic was known before for k = 3, and Green and Tao [23] more
recently established one for k = 4.

In this section we combine the Green-Tao result with the graph theoretic
counting above and show the following results.

Theorem 3.8. Let

Gk(N) := |{(p1 < p2 < . . . < pk) : pk ≤ N, pi ∈ P and pi = p1 + (i− 1)d}| .

Let Gk(N) ≥ (Ck + o(1)) N2

(logN)k
and C ′k = lnCk

k−2
.

Let N be sufficiently large. For t ≥ 2, ε > 0 and s ≥ (Ck +o(1))t N
(logN)t+1 .

there exist disjoint sets of primes A,B ⊆ P∩ [1, N ] with |A| = s, |B| = t such
that for all ai ∈ A, bj ∈ B and all λr ∈ {0, 1

k
, . . . , k−1

k
, 1}: all λrai+(1−λr)bj

are also prime.

Remark 3.9. Let us remark that Green and Tao actually proved a stronger
theorem. Let S be a set of primes with positive upper density, i.e. lim sup |S∩[1,N ]|

π(N)
>

0, then S contains such progressions. Our corollary works in the density sit-
uation as well.

Corollary 3.10. The same theorem holds for any finite set L = {λ1, . . . , λl} ⊂
[0, 1] of rational numbers.

Proof. Let z denote the last common multiple of the denominators λr. Then
L ⊂ {0, 1

z
, 2
z
, . . . , z−1

z
, 1}, and Corollary 1.3.10 follows by an application of

Theorem 1.3.8. with k = z.

For some other consequences of the Green-Tao theorem see also Granville
[20].

For sets A,B of equal size |A| = |B| the theorem implies:

Theorem 3.11. For large N there exist disjoint sets of primes A,B ⊆ P ∩
[1, N ] as above with |A|, |B| ≥ logN

(k−2) log logN
− (C ′k + ε) logN

(log logN)2
.

For the proof of Theorem 3.8 we use the Green-Tao theorem combined
with the counting argument that we already used in the last section. This
shows that this counting method is versatile and can be easily adapted to
similar situations.
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Proof of Theorem 3.8. We define the bipartite graph G(V1∪V2, E) as follows:
The sets of vertices are V1 = V2 = P ∩ [1, N ], the set of edges is

Ek = {(v1, v2) ∈ V1×V2 | v1 6= v2 and λv1+(1−λ)v2 ∈ P , λ ∈ {0,
1

k
, . . . ,

k − 1

k
, 1}}.

Here v1 corresponds to p1 and v2 to pk. An edge between v1 and v2 corre-
sponds to a (k+1)-tuple of primes in progression. Note that p1 = p2 = . . . =
pk is not allowed. A complete bipartite graph Ks,t corresponds to disjoint
sets of primes A and B of sizes s and t such that all λai + (1 − λ)bj are
also prime. By the Green-Tao theorem this graph G contains Gk+1(N) ≥
(Ck+1 + o(1)) N2

(logN)k+1 edges. The Kővari-Sós-Turán theorem (Theorem 3.2)
guarantees that a bipartite graph with many edges must have a large Ks,t as
a subgraph.

Suppose that G does not contain a complete bipartite graph Ks,t for which
the first class of Ks,t lies in the first class V1 of G and the second class in V2.
We then find by Theorem 3.2 and Theorem 3.7 that for sufficiently large N

(Ck+1 + o(1))
N2

(logN)k+1
≤ |E| ≤ s

1
t π(N)2− 1

t + tπ(N).

For large N we have the estimate π(N) ≥ N
logN

. This implies for t = O(N ε)
that

Ck + o(1)

(logN)k−2
≤ s

1
t
(logN)1/t

N1/t
+ t

logN

N

≤ s
1
t
(logN)1/t

N1/t

(
1 +

1

N1/3

)
and therefore

s ≥ (Ck + o(1))t
N

(logN)(k−2)t+1
.

Note that, since we can assume w.l.o.g. that s ≥ t, the choice t ≤ O(N ε)
is not restrictive.

Hence for s smaller than the above bound the graphG contains a complete
bipartite graph Ks,t which proves Theorem 3.8.

For Theorem 3.11 we want that both sets are of the same size, i.e. s = t.
An easy computation shows that

t =

⌊
logN

(k − 2) log logN
−
(

lnCk
k − 2

+ ε

)
logN

(log logN)2

⌋
is an admissible value, for sufficiently large N .
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