A combinatorial approach to sums of two
squares and related problems
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Abstract In this paper we study elementary approaches to classieat¢éms on
representations of primes of the fomw 4 by?, in particular the two squares the-
orem. While most approaches make use of quadratic residwestiudy a route
initiated by Liouville, and simplified by Heath-Brown anddler.
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1 Introduction

In this paper we study elementary approaches to classieatéims on representa-
tions of primes of the fornax? + by?, in particular the two squares theorem.

1.1 The sums of two sgquares theorem

Theorem 1. A positive integer n can be written as a sum of two integer sxpjaf
and only if the canonical prime factorizatior=ap}* - - - pff (where the pare distinct
primes) satisfies the condition: if g 3 mod 4 theny is even.
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In order to prove this theorem one proves the following teeoand several minor
lemmata.

Theorem 2. A prime p= 1 mod 4can be written as p= X2 +y?.

Wells [38] includes Theorem 2 in a list of the 10 most bealti@sults in mathe-
matics.

In his “Apology” Hardy [18] writes: “Another famous and bedul theorem is
Fermat's ‘two square’ theorem... All the primes of the firstss” [i.e. 1 mod 4] ...
“can be expressed as the sum of two integral squares... Jisrmat’s theorem,
which is ranked, very justly, as one of the finest of arithmdtinfortunately, there
is no proof within the comprehension of anybody but a faikgert mathematician.”

In this paper we discuss quite elementary proofs and it wbelihteresting to
know if Hardy would also have written this about the typesmfgs (and its simpli-
fications), discussed in sections 1.2, 1.3 and 1.6.2.

The history of the theorems above is described in detail ak&nn [8] (volume 2,
chapter VI), and also in Edwards [10]. Already Diophant dgsed representations
of integers as a sum of two squares, and, by slightly altetiegext, Jacobi inter-
preted Diophant’s writing in such a way that Diophant poygséissentially knew and
was able to prove: if a square-free numhes a sum of two squares, then neittmer
nor any factor oh is of the form & — 1, (see [8], page 236).

The first correct statement of the necessary and sufficigrdittons for writing
an integer as a sum of two integer squares, without a proafhintiave been by
Albert Girard. The theorem is also often attributed to Feyméio wrote he had a
proof. His proof is not known to us, even though in this cade kielieved he had
the right methods to prove the theorem indeed. Euler eviyntyeve the first proof
that has survived.

Sincep = 2 = 1?2+ 12, and since all squares are of the from 0 or 1 mod 4 so that
no numbemn = 3 mod 4 can be a sum of two squares. Theorem 2 implies

Corollary 1. A prime p can be written as £ x* +y? if and only if p=2or p=
1 mod 4

Lemma 1.1f m = x¢ +y2 and n= x5 +y3 can be written as sums of two integer
squares, then their product mn can also be written in thisifor

Proof of Lemma: This follows immediately from the identityn= (x;x — y1y2)?+
(X1y2 + %2y1)?, an identity which can be motivated by means of complex numbe

X1+ Y1) (X2 +Y2i)) (X1 — yai ) (X2 — Y2i))
XXz — Y12 +i(Xay2 + X2Y1)) (XaXz — Y1yz — i (X1y2 +X2Y1))

mn = ((x1+y1i) (X1 — y1i)) (X2 +y2i) (X2 — ¥2i))
= ((
= (
= (XX2 — Y1y2)2 + (X1y2 + X2y1)2. O

Lemma 2. If n is divisible by a prime p= 3 mod 4 and n= X2+ 2, then x= y =
0 modp.
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Proof of Lemma 2By Fermat’s little theorem: Lep be prime andk an integer, then

X1 mod p— 0 ifx=0modp
1 ifxz£0modp.

If p=3 mod 4, then
(OC+Y?)(xP3—xP 32 L xP Ty P8y = Py

Sincex? +y? = 0 modp, one also has?~1 +yP~1 =0 modp. As p > 2, we must

have, by Fermat's observation above, thaty = 0 modp. O
The above lemmata reduce the proof of Theorem 1 to a proof ebem 2.
There is a multitude of proofs of Theorem 2. Most of these usteegssentially

the fact that for a prime = 1 mod 4 there is a solution of = —1 mod p. This

follows for example fromx = p%l! or X = gpfl, whereg is a generating element of
the group(Z/pZ)* or gis a nonresidue modulp. However, checking the details in
this calculation from first principles is already half of theof.

The methods involved in these various proofs include e.ggraeence computa-
tions, Minkowski's theorem, the pigeon hole principle, pedies of Gaussian in-
tegers, continued fractions and the like. The book by Hardy/\A/right [19] gives
several different proofs. For other proofs see also [33]],[E6].

A very different second type of proof goes back to Liouvillea series of eigh-
teen papers Liouville describes a quite general methok@alase of which gives
Theorem 2. Liouville’s work is described in the books by Baeimn [3], Dickson
[8], Uspensky and Heaslet [34], Venkov [36], and Nathan&®j.[

This special case was considerably simplified by Heath-Br{20]. Zagier [41]
reformulated Heath-Brown'’s proof to write it in one sentenitowever leaving ele-
mentary calculations to the reader.

This proof has generated a considerable literature exptathe proof for teach-
ing purposes [35], [39], [12], [31], [5] or extending it tolaged results: [4], [13],
[14], [16], [21], [22], [23], [32]. The collection of beatditil proofs “Proofs from the
BOOK” by Aigner and Ziegler [1] explains in its first editioragier’s version of the
proof, but changed to Heath-Brown’s version for the 2ndiexit

A key ingredient is an ingenious choice of a set which alloysdition into or-
bits of length 1 or 2. In this way a simple parity check guagastthe decomposition
into two squares. The reader who is familiar with Liouvédlenethod will appreciate
the simplifications made by Heath-Brown and Zagier. Stil proof is quite mys-
terious. We make an attempt to demystify the proof, i.e.&xghow the details can
be motivated.

In addition to the study of this second type of proof we apply idea of orbits
of length 1 or 2 to a proof based on lattice points, which iserinrthe spirit of the
first type of proof. After reviewing the history of these,.idéscuss contributions by
Lucas, Grace and others we present in section 1.6 a quitewssion of the proof,
which admittedly also requires some routine checking, #sigase with the proofs
by Zagier and Heath-Brown.
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1.2 Zagier’s proof

Here is the famous one-sentence-proof for prippes4k + 1, quoting from Zagier
[41].

“The involution on the finite se&8= {(x,y,z) € N®: x? - 4yz= p} defined by

2y—Xy,x—y+2z) ify—z<x<2y

(x+2z,zzy—x—12) ifx<y—z
(Xy.2) —
(X—zy,X—y+Z,y) If X> 2y

has exactly one fixed point, S is odd and the involution defined by
(%,¥,2) — (x,z,y) also has a fixed poinfl”

Quite a few routine checks are necessary to verify all thegicit claims. For
the reader’s ease we would like to add that the first mafsay), defines a partition
S=S5USSUSWithS ={(X,y,2 € S:x<y—2z},S={(X,y,2 €S:y—z< X<
2y}, S ={(x,Y,2) € S: x> 2y}. There are no solutions wifh- z= x orx= 2y, since
otherwisex? 4 4yzis not a prime. Solutions witk < y — z are mapped to solutions
with x > 2y, and vice versa. Solutions with— z < x < 2y are mapped to solutions
with the very same property. ThatdgS;) = 5,0 (Ss) =S, 0(S) = . Thus fixed
points ofa must lie inS; and therefore satisfyx,y,z) = (2y — X,y,x—y+2), i.e.

X =Y. Sincepis prime, the only fixed pointi§l, 1, (p—1)/4).

Writing out all details, which we do not do here, makes the pemually quite

a bit longer.

1.3 Heath-Brown'’s proof

Heath-Brown reformulated Liouville’s work in 1971. His w&wn [20] appeared in
1984 in a student magazine, issued by the undergraduatematical society at
Oxford University. Meanwhile a retyped version is avaitgldee the bibliography.
Since Heath-Brown'’s proof was slightly different, we ddserhis proof briefly.

Let us define

010 010 1-11
X1=(10 0], X=[100], X=|{01 0 |.
00-1 001 02 -1

Define the sets

S={(xY,2 €Z’: p=4xy+7Z, xy>0},
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T={(xy,2€S:2>0}, U={(Xy,2) €S:x+z>V}.

One can check that? = X2 = X2 = |. Moreover,X; mapsSto itself, X, mapsT to
itself, andX3 mapsU to itself. One also verifies that | = |[X.T| and|U | = |[X;U .
SinceSis the disjoint union oflf andX;T it follows that|S = |T|+ [X.T| = 2|T|
and similarly|S| = 2|U|. This implies|T| = |U|. Since the mafX; acting onU has
exactly one orbit of length 1 (foy = z= 1), and since all other orbits have length
two, we find thatU| must be odd. SAT | is also odd, and the action ¥ onT must
have an orbit of length 1, i.e. there is a fixed point witk y, giving p = 4x* 4 2.

This is an impressive example that the right choice of a setygaction and orbit
counting can simplify existing proofs. Another examplelo$tprinciple is McKay’s
proof [28] of a Theorem of Cauchy in group theory.

1.4 Grace' lattice point proof

In this section we describe a proof based on lattice points,td Grace [17]. It is
one of the proofs in Hardy and Wright's book [19].

The proof starts with the fact tha = —1 modp has a solution. Take those
lattice points inZ x Z with ax=y mod p. Note that if(x,y) and(xX,y’) belongs to
the set, then alséx+ X,y +Y') belong to it, so that the set of these points define
a discrete lattice. Le®y = (x,y) be one of the points with minimal distance to the
origin Py = (0,0). Since—ay = x mod p, the pointP, = (—y,x) also belongs to
the lattice. These points together with = (x — y,x+y) define the fundamental
domain. Observe that there are no further lattice pointsis@fundamental domain,
since otherwise the distance frg® 0) to (x,y) was not minimal. Also observe that
in this situation the fundamental domain is not only a patafjram, but even a
square.

In a very large circle about the origin, the proportion ofrgeibelonging to the
lattice is% so that the area of the fundamental domaip.islence the side lengths

of the square satisfy by Pythagoras’ theoref-y2 = p.

The lattices can also be understood as coming from the probfeaegular so-
lutions of placingp non-taking queens on@x p chessboard, with reduction mod-
ulo p, i.e. a chessboard on a torus. This approach has been studRalya [30],
Kraitchik [24] and Larson [25]. These proofs also make useoointing the lengths
of orbits and are similar in spirit to those discussed below.

1.5 Lucas work on regular Satins

In 1867Edouard Lucas [26] had similar ideas on regular “Satin” sesiavhich were
thought of in connection with patterns of fabrics. As Ddoail7] writes, in France
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at that time there was a group of mathematicians writing asssible as possible
for a wide audience.

Withoutassuming that there is a solutionadf= —1 modp, he considered those
integer lattices with slopes 3,..., p%l. He paired off those lattices with slopgs
ands; wheress; = £1. For a givers there is a uniqus; in this set. He interpreted
this in terms of the geometric pattern. Starting with an oddhher of lattices, one
lattice remains. This remaining lattice is associatedselfit and has a square unit.

In this paper, Lucas did not actually conclude the two scuidreorem, namely
that a primep = 1 mod 4 is a sum of two squares, but rather the opposite.

The reason for this apparently comes from the historicakgparind. The ques-
tion, for which moduli regular lattices exist, was askedEh;ouard Gand, also in
1867, in connection with fabric patterns, and Gand’s qoastias answered by Lu-
cas.

However, there is some indirect evidence that Lucas lateiallg proved Theo-
rem 2 using this method. Dickson [8] (Volume 2, page 245) g{2¥] (which does
not contain that proof) and Aubry [2] as references. Dealf] mentions a com-
ment by Aubry in Fermat’s collected works [15] (note 27 of #ik volume). Here
Aubry writes that the two squares theorem is “perhaps the beutiful of all of
Fermat's theorems”, and Aubry refers to a graphical proof bgas.

Decaillot [7] constructed a proof that possibly was the owergby Lucas. It is
very similar to the proof by Grace discussed above.

1.6 A short proof

In this section we aim to modify the two approaches above serable a proof
which can be formulated in one sentence. However, as is the with Zagier's
proof, several additional words of explanations are apjaitgy and several routine
calculations required. The author believes that memagittirs proof may be easier
than memorizing Zagier’s proof.

1.6.1 The long version
e Let p=1mod 4 be a prime and I§= {2,3,...,"%1}. Forz e Slet us define

the lattices
L, = {(xmodp, zxmodp) : 0 < x < p}

as subsets df, x Zp (which can be thought of as a torus). To see that these are

lattices take any two poin{x mod p, xzmod p) and(y mod p, yzmod p). The
sum(x-+y mod p, (x+Yy)z mod p) is again inS, and the same follows for integer
multiples(Ax mod p,Axzmod p).

For p=1 mod 4, the numbégfs| = p%l —1 of lattices is odd. For a better under-
standing we draw these f@r= 17.
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In the pictures we include the parallelograms which defimel&imental domains
of the lattices. A fundamental domain is a parallelogranansigd by a point
and two of its 4 closest neighbours in two linear independéetctions. In this
sense, each point uniquely corresponds to a fundamentadidpso that there
are p fundamental domain, and for a given lattice all of these lfograms are
congruent, understood modybo

e But the fundamental domains for different lattices are inegal not congruent
to each other. In the above example wjth= 17 the shape of the fundamental
domain is the same fdr, andLg, for Lz andLg, for Ls andL7. The latticel4
(which turns out to deliver the solutioff = —1 mod 17 and finally the decom-
position of 17= 12 + 4?) does not have a corresponding partner. Generally this
can be described by means of the following map: 8et {2 <a < p%l}. Let
f:S— Swith
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0] @tmodpif2<(a? mod p) < 21,
—a 1 modp otherwise.

Observe that forp = 17 one has thaf(2) = 8,f(8) = 2,f(3) = 6,f(6) =
3,f(5) =7,f(7) =5, f(4) = 4. Here the representatives of the residue classes
modulo p are assumed to be in the intervak < p. It can be easily checked
that f is an involution. We have to show that for ale S f(f(a)) = a. If

the first alternative holds for the inner argument, then alsthe second time
so thatf(f(a)) = f(a ) = (a!)~t = a and similarly f(f(a)) = f(-a™!) =
—(—a1)~1 = a Since|9 is odd, there must be an odd number (i.e. at least
one) of elements wita = f(a). Since—1,1¢ S, it follows that(a+1)(a—1) =

0 mod p has no solution iBwhich implies thata = a~* mod p has no solution.
But then there must be an element watis —a~! mod p. It is this element which
satisfiesa® = —1 mod p, but we better leave it as= —a~* mod p. In this form

we see that the slope@sand—a* of the sides of the parallelogram are orthogo-
nal. The lattice is invariant under the mépvhich means it is invariant under a
rotation by 90. This proves why for prime = 1 mod 4 there must be a lattice
amongst the latticels,, of which the fundamental domain is a square.

I

Fig. 8 L, with Z2 = —1 mod
p being a fixed point, here
p=13z=5.

e Since the fundamental domains are defined by a point ancisst neighbours,
the fundamental domains do not contain any lattice poinh@irtinterior. Thus
the fundamental domains cover thex p board without overlap. Since for each

of the p points there is exactly one fundamental domain, its ar : is p, SO
that the length of a side ig’p. An alternative argument here could be the one by
Grace [17].

e Finally, an application of Pythagoras’ theorem to the gedamposition of the
base side of the square shows that (,/p)? = a®+b? holds.

It seems particularly pleasant that we did not explicithedi¢he solution ob? =
—1 modp, but could rather directly conclude froa= —a~! mod p that the paral-
lelogram is a square.
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1.6.2 A short version of the proof

Having said all this, the reader can see that the following sentence version of
the proof, written in the spirit of Zagier's proof [41], caits essentially all the
necessary information and is perhaps easier to work witmemorize, than other
proofs of this theorem. The amount of hidden routine chegkiay be comparable
with that in Heath-Brown’s or Zagier's version.

The involution on the finite s&§= {2 < a < 2,1} defined by

atmodp if2 < (atmodp) < 21,
a'_> 1 .
—a ~ mod p otherwise,

has at least one fixed pointso the fundamental domain of the lattice defined

by
L= {(Xa zxmod p)70§ X< p}

is a square with arep, so that the two squares theorem follows by an appli-
cation of Pythagoras’ theorernl

2 How Zagier’s involution can be motivated

We will give two explanations, how Zagier's map can be mdéda One was found
by the present author, and was described in [12, 13, 14]. Weshow that this
approach gives a method to search systematically for pafafdated theorems on
quadratic forms.

An alternative motivation can be found in lecture notes B/ EDijkstra.

2.1 First motivaton

It is possible toconstructthe “complicated” involution by means of some fairly
easy assumptions, (see also [12]). These assumptionseedhatithe final mapping
would be as simple as possible.

If we look for a mapping that

abc
I) can be described by a matiik= | d e f |, with integer entries which are inde-
ghi
pendent ok, (linearity),
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I) maps the solutions (in positive integers) pf= 4k + 1 = x2 + 4yz onto such
solutions, (invariance),
Ill) has the easiest solution, namély, 1, k) as its only fixed point, (simplicity),

-120
then we are uniquelyled®=| 0 1 0].
1-11

This can be seen as follows: Property (Ill) gives

G-

In particulara+b-+ck= 1. But since the coefficients are supposed to be independent
of k, we have that
a+b+ck=1=c=0,at+b=1
d+e+fk=1=f=0,d+e=1
g+h+ik=k=1i=1 g+h=0.

Property (Il) gives

(X)2+4yZ = (ax-+by+c2)2 + 4(dx+ ey+ 2)(gx-+ hy-+iz) = X2+ dyz
Hence, a comparison of the coefficients shows that

X2 a’44dg=1
Xy 2ab+4(dh+eg =0

yzwithc=f=0,i=1:ei=1=e=1=d=0.

Now a? + 4dg = 1 is simplified toa® = 1. Suppose tha = 1. Thenb = 0 and
from 2ab+ 4(dh+ eg) = 0 we getg = 0 and finallyh = 0. Then, the matrix would
be the identity matrix. This is not what we want, since the map shall have only one
fixed point.

Thus,a= -1, and scb = 2,g =1, and finallyh= —1. So, we have found the
matrix B.

Surprisingly, we did not even need that our map shall be asliion but we can
readily check thaB? = 1.

This only works for—x+ 2y > 0 andx—y+z > 0. For the other cases one
apparently needs a different matrix. Let us see how we carnpuilate B to yield
a corresponding row conditior— 2y > 0. We look for a matrixX which turns

010

2
1] and
-1

-100
the row conditions oB into (1,—2,0) and (1,—-1,1). Let X = ( 00 1). The

1
0

matricesA = BX andC = XB cover all cases. LeA = BX = (
-1

= OO
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1-20

C=XB=[1-11]. We see that the row conditions perfectly fit to each other
010

and induce a partition of all solutions.

Alternatively, one can find these matricAsandC by choosing small primes
(p=13,17,29) and observing that here the sets of solutions witt+ 2y < 0 or
X—Y+2z< 0 only have one or two elements. Ao 13, we find that1, 3, 1) must be
mapped td3,1,1) and vice versa. Fgo = 17, we find that1, 4, 1) must be mapped
to (3,1,2) and vice versa. Fqu= 29 there are two possibilities. One excludes by the
partially known mapping thatl, 7,1) is mapped td5,1,1) and finds that1,7,1)
is mapped td3,1,5), from whichA andC uniquely follow.

Even though we did not know about the partition®into three sets we have
found the mamx : S— Swith

o1 decribed by matrix A, if—-x+y—z>0
o =4 oy described by matrix B, if-x+2y > 0andx—y+z>0
a3 decribed by matrix C, ik—2y > 0 andx—y+z> 0.

This is precisely the mapping given by Zagier. Of courgeas a whole is not a
linear map, so that property (1) is not strictly satisfied. Wgain in this way the
easiest involutiona, with the required property, namely that we know the set of
fixed points.

Let us remark that the intersection into three subsets wasedasince we work
with positivex,y,z. In Heath-Brown'’s version negative values are allowed, smd
he did not need this division into three cases.

Zagier's second mapping, (say), withB : S— Sand(x,y,z) — (X,zy) corre-

sponds to the matrix
100
Y=|001]).
010

2.2 Making the proof constructive

In his paper, Zagier mentioned the proof only shows the encs of the solution.
Combining the two involutionsr and 3, we can give a constructive proof. Starting
with the only fixed point of, and iterating3, a... we must arrive at a period.
B a B B a B
(1717k) - (17k71) - (37lak_2) T (3717k_2> - (lak7l) - (1317k)
Since the maps are bijective, there is no pre-period. Soyesateally come back

to (1,1,k) with 3. The number of elements in the period is even. By symmetry,
there must be another fixed point in the middle of the cyclec&there is only one
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fixed point of a, this iteration constructs a fixed point 8f that is a solution of
p=x2+4y°.

Applying this algorithm to a composite non-square integer 4k + 1 the very
same argument shows that any cycle contairiihd, k) must also contain another
fixed point. Sincen is no longer prime we may well come to another fixed point
of a which corresponds to a factorization mf To see that this can happen, let us
concentrate on products of two distinct prinres: p;p2 with p; = p2 = 3 mod 4.
Here B does not have a fixed point, sincecannot be written as a sum of two
squares. Hence, in this case the iterafion, 3 ... must eventually come to another
fixed point ofa which corresponds te=y, i.e. a factorization oh.

This algorithm for finding the decomposition into 2 squarevery slow. For
some details see Bagchi [4]. Shiu [32] describes how one ceglerate this algo-
rithm. It turns out to have an interpretation in the theorycoftinued fractions. A
fast algorithm is described by Wagon [37].

2.3 A motivation due to Dijkstra

A different, and very elegant derivation of Zagier's map a0 given by Dijkstra
[9]. His notes are written in the language of a computer siseand are extraordi-
nary detailed. | will try keeping the flavour of his expositjdut will have to shorten
his account. After some general remarks on involutions $bigk concludes that to
write p as a sum of two integer squares it is enough to look at

(Xy) :+ay%=p. (%)

In order to establish the desired correspondence betwéatinss of this equation
and the fixed points of an involution “we do something with gfhevery computer
scientist is very familiar: replacing in a target relatio) “something by a fresh
variable”. Dijkstra refers to “Leibniz’ principle” (infanally: substituting equals for
equals) to rewrite) as

(X,Y,2) : X2 +4yz= pandy = z

Let S= {(x,y,2) : x,y,z€ N : X2 + 4yz= p}. Exploiting the symmetry iry andz,
Dijkstra chooses a first involutianvg by S— S: (x,y,2) — (X, z,y). The fixed points
of invg satisfyy = z. Hence it is enough to show thiat/g has at least one fixed point.
In order to do this one intends to construct a second invatitiv, on S, which has
exactly one fixed point.

Next, Dijkstra gathers some elementary facts:
x>0,y >0,z> 0,x# £(y—2), sincepis odd and not a square.

Next, “can we think of operators dfx,y, z) for which x? +4yz= p is an invari-
ant”, i.e. an operator which maps solutionsSainto such solutions?

Dijkstra then studies operators of the type
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(X,¥,2) — (X+Ax,y+Ay,z+ Az).
Here Dijkstra implicitly assumes that is an operator, for which
Af(x) = f(x+Ax) — f(X)

so that for examplé (x%) = (x+ AX)? — x? = 2xAx+ (Ax)?.

SinceAx = 0 would too easily lead back iavy, he assumedx # 0. Since for
all elements of, xis odd,Ax is even, so thafix = 2b, say.

The invariance assumptiah: S— S, i.e. (X)2+4y'Z = p means that

A(X* +4y2) = 0.

So,
A(XP+4y2) =0
A(X?) = —4A(y2)
2X(AxX) + (AX)? = ~4((y+4Ay)(z+42) —y2)
b(x+b) = —yAz—zAy— AyAz

In order to simplify this expression Dijkstra chooglg= 0 and arrives at
b(x+b) = —-yAz

He remarks that this choice does not restrict the genersiitge one could arrive at
any “move” withAy # 0,Az# 0 by means of two single moves.
Now, the last equation suggests the following 4 possiesiti

1. b= -y, x+b=Az giving (X,,2) — (X—2y,y,Zz+X—Y)
2. b=y, x+b=—Az giving (X,y,2) — (X+2y,y,Z—X—Y)
3. b=Azx+b=—y, giving (X,y,2) — (—X—2y,y,Zz— X—Y)
4. b=-Azx+b=y, giving (X,y,2) — (2y—X,y,Z+X—Y)

In order to satisfy the invariance ®f> 0,y > 0,z > 0, one sees that the third case
above withx' = —x— 2y can be discarded from consideration.

So far, we have not yet used the faot; is supposed to have exactly one fixed
point. Now, for a fixed poinfx,y,z) = (X,y,Z). Herex = X andy > 0 mean that
the only remaining case is the 4th case above. Met2y — x shows that a fixed
point can only occur ik =y so thatp = X% + 4yz= x(x+ 4z) implies thatz = p%l,
giving the unique fixed poinfl, 1, p%l).

Dijkstra then completes the construction of the involuiion for those solutions
for whichy > z+4 x or x > 2y, respectively.

2.4 Comparison

Comparing both constructions in sections 2.1 and 2.3, ittmobserved that the
principle to keep the construction as simple as possiblealso as general as nec-
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essary is quite successful. While in my motivation in secfidhthe choice of the
fixed point(1,1,k) quickly led to the entries = f = 0,i = 1 of the matrixB, and
then the invariance of the quadratic form delivered the tamithl entries. Dijkstra’s
choice ofAy = 0, in the language of section 2.1 quickly ledde- f =0,e=1, and
then the invariance of the form and consideration of the fixeitit completed the
entries ofB.

Let us finally ask: is there any application (other than the sguares theorem
itself) of the fact discovered by this combinatorial prdwditthe number of solutions
(x,y,2) of a given type (say fop = x? + 4yzwith x < y — 2) equals the number of
solutions of another type (say hete- 2y)? If so, that could be of interest also for
the generalizations considered below.

3 Generalization of the method

One can ask for similar involutions for related question op = sX +tyz, where
s andt are fixed constants. For example it is well known that for anprp the
following holds

p= 1,3 mod 8= p=x?+2y? in positive integers

It would be nice to have an easy proof of this theorem by tha wfethe Heath-
Brown—Zagier proof.

Such generalizations were found by the current author %188 [13], and also
by Jackson [21, 22, 23] and Generalov [16].

Here we shall derive the following results:

Theorem 3.Let p denote a prime.
a) For p= 8k+ 3there is a solution of p= X2+ 2y? in positive integers.

b) For p= 8k+ 7 there is a solution of p= x> — 2y? in positive integers.
c) For p=8k+5there is a representation as=px% +y2. (A new proof!)

Theorem 4.Let p denote a prime.

a) For p= 12k + 7 there is a solution of p= 3x? + 4y? in positive integers.
b) For p= 12k + 11there is a solution of p= 3x?> — 4y? in positive integers.

Generalizing the approach of section 2.1 one can provehkahatrix
-1 20 0
B=( 0 1 0| maps solutions op = s¥ +tyz to such solutions and
4sm _4sn? q
tn tn2
has the fixed pointm,n,k’). Herem,n, s, andt are fixed non-negative integers. So

—sn? _ .
K = P . We note that agai? = |. Unfortunately, in the general case the

tn
boundaries induced by the rows, namely+ 2% > 0 and %“x—4fzfy+z> 0, do

not induce such a balanced three-partition of the set ofisols.
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However, it is possible to construct mappings ffioe X2 + 2y2 and p = 3x2 4 4y?
consisting of even more matrices. As before, these matai@generated b and
X.

Note, even though the occurring matrices will be more cocapdid, the idea of
the proof is still the same. The justification of the propestof the mapmr can -in
principle- be left to an automatic system since it requiresnentary calculations
only.

-100

As before, we try, ifA = BX can be useful. As aboveweuXe=| 0 01].

010

At this point, we do not worry about the boundaries or a gartiof the set of all
solutions.

Geometrically, we can expect thgdetA| = 1, since we should not map bijec-
tively a large region to a small one and vice versa.

Consider the eigenvalues of

-1 20 ~100
A=BX=| 0 1 0|| o001
45m gt 1)\ 0 10

tn2

1 020 10 a
[ o0 1 |-({o001),say
,4%?1*4% —c1-d

Noting thatac = 2d we find

0=(1-2A)(0—=A)(=d=A)—(1—A)—(—c)(0—A)a
= A+ A%+ (d—2)A +1).

We find thatA; = —1 andAz 3 = —d%z + (d%z)2 -1

Forintegersl > 5 ord < —1, the values oA, 3 are real but irrational numbers. So
the order ofA is infinite, and there is little hope of finding a suitable mapsisting
of finitely many parts. Sa = 0,1,2,3,4 and in these caseéa;| = |A2| = |A3| = 1.
This justifies our expectation that det 1.

4snt . . .
Recall thatd = TR Since we want to represent primes wjik= s +tyz=

snt +tnzwe may assume that g@ntn) = 1. We shall systematically consider all
cases.

31 d=0

Ford = 0 we havesm= 0, so thatp = tnz This case is of no interest.
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32d=1

4snt
Hered = TR 1, and(s,t) = (s,n) = (t,m) = (m,n) = 1. Hence there are two
possibilities:
e s=m=n=1t=4. This is precisely the case of Heath-Brown’s and Zagier’s
proof.
e S=m=t=1n=2.
In p = x?+yzthe solution withp = x? +y? = y? + x? is counted twice. In order
to make the original argument work we need to break the symynigtis can be
done by assumingandzto be even.
The involutiona is generated by

-110
B=|(0 10],
2 —11
A=BX, andC=A"1.

This gives the following variant of the proof of the two sgesitheorem:
The involution on the finite s&= {(x,y,z) € N x 2N x 2N : x> +-yz= p} defined

by

(—=X+V,y,2x—y+2) if x<y<2x+z

(X+2z,z,-2x+y—2) if2x+z<y
(X.,2)
(X—y,2x—y+zy) ify<x

has exactly one fixed point, $8 is odd and the involution defined By, y,z) —
(x,zy) also has a fixed point.

33 d=2

3.3.1 The casep = X2+ 2yz

_ 4sn? : iy
Here we consider the cage= S—z — 2. By the coprime conditiofsn?,tn?) = 1

we necessarily have thea=m=n=1t=2.
Empirically one observes that the number of fixed pointsegawith the residue
classes modulo 8:
a) primesp = 3 mod 8 induce 1 fixed point,
b) primesp = 7 mod 8 induce 2 fixed points,
¢) primesp = 5 mod 8 induce 2 fixed points, and
d) primesp =1 mod 8 induce 3 fixed points.

Case a) was also proved by Jackson [21] and Generalov [16Y.dlo observed
d), but did not prove it by elementary methods. We shall payé) and ¢) which
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corresponds to our Theorem 3 a,b,c). Unfortunately we dseeteither a conve-
nient way to prove d) without appealing to the theory of qaidiforms.

Let S= {(x,y,2) € N®: x? + 2yz= p}. The one sentence proof is as before with
the following mapa : S— S

102
A=BX = 001]|if —2x+y—2z>0
-21-2
-3 2 -2 if —3x+2y—2z>0
E=—-XA =1-22 -1 and X—y+2z>0
2 -1 2 (then—2x+2y—z> 0 is implied.)
3 -22 if 3Xx—2y+2z>0
a={D=—-A? =12 -12 and—2x+2y—z>0
-2 2 -1 (then X—y+2z> 0isimplied.)
-120
B=XA3 =10 10| if-x+2y>0andX—2y+z>0
2 -21
C=Al-A=XB = ;—2(1) Ifx=2y>0, .
010 (2x—2y+z> 0 follows trivially.)

Note that this map makes use of all matrices of the forr) I *2Al (j = 1,2,3),
and(—1)I*IXA (j =2, j = 3). Note that alsa\* = |. The matrixXAis of no use,
since this contains an impossible row conditier— 2z > 0.

The map above is equivalent to that given by Jackson and @emehere in
Jackson’s notation [21]:

(X—2y,z+2x—2y,y) if y<3

(2y —X,Y,2X— 2y +2) if 3 <y<x+3
(X,Y,2) = { (3x—2y+2z,2x—y+2z—-2x+2y—2) ifx+% <y< 3x+z

(=3x+2y—2z,—2x+2y—2,2X—y+22) if 3x+z <y< 2x+2z

(X4 22,2z, —-2x+y— 22) if 2x+2z <.

Let us call the subsets @& that correspond to the matricés B,C,D,E by
o B, €,9,8. For a complete proof we have to show that

1. a:S— S i.e.a maps(x,y,z) with p=x2+2yzto (X,y,Z) with p= X% +2y7,
2. a’=id,

3. the boundariex(- 2y = 0,2x— 2y 4z = 0 etc.) are never attained,

4. the setsv, #,%¢,2,& induce a partition of the set of all solutions,

5. there is only one fixed point.
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3.3.2 Proof of theorem 3

1. Since all parts of the mappirgare generated byl , X andB, it suffices to prove
the first property for-1, X andB. It is obvious for—1 andX. ForB we have:

(X)?+2y7 = (—x+2y)* + 2(y)(2x— 2y +2) = X’ + 2yz= p.

2. Note thatA maps the regiony to the regior#’. Because of = A~ the regior’
is mapped to the regiaw’. The first assertion follows from — 2y’ = (x+2z) —
2z>0and X —2y +7 = 2(x+22) — 22+ (—2x+Yy—2z) =y > 0. For the second
assertion we need that2x' +y —2Z > 0withxX =x—2y,y=2x—2y+2z7Z =y
and so—2x +y — 27 = z> 0. Note thatB?> = D?> = E? = |. So the matrixB
maps the se®d onto 4. The same holdsfdd : ¥ — Z andE : & — &.

3. Suppose the boundaries are attained. This will lead tovexaxdiction.

a. For the boundaries in the first row, namely 2y = 0, —x+ 2y = 0,3x — 2y +
2z =0,—-3x+ 2y — 2z =0, it would follow thatx is even. This contradicts
p = X%+ 2yz sincep is odd.

b, —2x+y—2z=0: p= X2+ 2yz=x?+2(2x+22)z= (x+22)2. This contradicts
the primality ofp.

C. X—2y+z=0: p=x2+2yz= x>+ 2y(2y — 2x) = (x— 2y)?, contradicting
the primality ofp.

d. X—y-+2z=0: See (b).

e. —2x+2y—z=0: See (c).

4. It follows easily from the boundaries in Jackson’s natatigiven above) thadr
induces a partition o$.

5. We now look for the fixed points af. Here we distinguish between the various
cases depending on the residue class modulo 8. We sek dénaC cannot have
fixed points, since the set is mapped ont&” and the other way around.
Suppose thalx,y, z) is a fixed point ofB, then

() () )

Hencex = y. Because op = x? + 2yzthis is only possible fork = y = 1. Hence
B has precisely one fixed point.
For the matrixD we find that

X X—2y+2z\ = (X
Dly|=| 2x-y+2z | =|Y].
z —2X+2y—z z

Hencey = x+z, and thereforep = X% + 2yz=x? + 2(x+ 2)z= (x+2)° + 2.
Similarly,
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X —3X+2y—2z A
Ely|=| 2x+2y—z | =|Yy].
z 2X—y+2z z

Hencey = 2x+z which implies thap = x2 + 2yz= x? + 2(2x+2)z= (x+22)? —
27

If p=3 mod 8, there is no fixed point coming frahandE. To see this recall
that squares modulo 8 only take the valugk 8. So, the only fixed pointis i,
and so|S is odd. As before, the involutiof must have an odd number of fixed
points. Hence there is at least one fixed point with z, leading to the solution
of p=8k+3=x>42y°

The same consideration of the values of squares modulo 8sshow

If p=7 mod 8, we have again the trivial fixed point®fThere cannot be a fixed
point from D. Since there cannot be a representation x2 + 2y?, we see that
there must be a fixed point coming frofn So, p = 7 mod 8 can be written as
p = x% — 2y°. This proves theorem 3b).

If p=5 mod 8, there cannot be a fixed point@fSincep = x? + 2y? is impos-
sible, there must be a fixed point Bf hencep has a representation of the form
x? +y?. This gives a new proof for one half of the two squares theoieene
Theorem 3c).

If p=1 mod 8, we have a fixed point & and (by the two squares theorem) of
D. In order to prove the existence of the representapienx? + 2y it is enough
to prove that there is (precisely) one fixed poinEofWe do not see how to prove
this with the methods of this paper. For this reason we dictaiée a theorem for
the casep = 1 mod 8.

34 d=3

3.4.1 The casep = 3x% +4y?

4snt

BTk 3. We have again two sub-cases.

Here we deal with the cagk=

e s=3m=n=1t=4
e s=3 m=t=1n= 2, with eveny andz

As above in the casd = 1, both of these sub-cases are equivalent. We will thus
concentrate on the first case.

The formp = 3x? + 4yzrepresents only primgs= 3 mod 4, hence we consider
p=12k+ 7 andp=12k+ 11. We will proceed as in the cade= 2.

The general form of our matrii® is now

-120 102
B=[0 10|,A=BXx=[001].
3 -31 -31-3
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In view of A8 = | we consider the 9 matrices
(—1)J*2Al (j=1,...,5) and(—1)I*IXAl (j=2,...,5).

(As before, the matriX Ais of no use, in view of the row conditionx — 2z > 0.)

5 -2 4 7 -4 4 5 -4 2
A°=3-13]|.A=|6 -34]|,-A*=(6-423],
-6 3 —4 -6 4 -3 -3 3 -1

1-20 -5 2 -4
A=A1=XB=(3-31|,D=-XA=|-6 3 4],

010 3 -13
-7 4 -4 -5 4 -2
E=XA=|-6 4 -3| ,F=-XA*'=|-3 3 —-1]|,B=XA%.
6 -3 4 6 -4 3
The corresponding boundaries are induced by the matriessstblves: for ex-
-5 4 -2
ample the matriq —3 3 —1) corresponds te-5x+4y—2z> 0, —3x+3y—z>
6 -4 3

0,6x—4y+3z> 0.
Hence the map is:

(X—2y,3x—3y+2Y) if y<3
(—X+2y,y,3x—3y+2) if 5 <Yy<Xx+3
(5x—4dy+2z,6x—4y+3z,—3x+3y—2) ifx+3 <y< §x+§
(—Bx+4y—2z —3x+3y—2z6x—4y+32) if 2x+2 <y< SX+ 32
(X,¥,2) — { (7x—4y+4z,6x—3y+4z,—6x+4y—3z) |if %x+§z <y< Zx+z
(—7x+4y—4z, —6x+4y—3z,6x—3y+4z) if ;x+z <y< 2x+‘§‘z
(5x—2y+42,3x—y+3z,—6x+3y—42)  if2x+32 <y< 3x+2z
(=5X+2y—4z,—6x+3y—4z,3x—y+32) if 3x+2z <y< 3x+3z
(X+22,2,—3x+Yy—32) if 3x+3z <.

In order to prove theorem 4, we shall show: For prinpes 7 mod 12 there is
one fixed point ofr. For primesp =11 mod 12 there are two fixed points @f

3.4.2 Proof of theorem 4

Suppose that the boundaries are attained. This will leadttmtradiction. Note that
for odd primesp = 3x? 4 4yz the value ofx is odd. This excludes the boundaries
—X+2y=0, X-2y+4z=0, X—4y+2z=0and k—4y+4z= 0. Sincep =
3x% +4yzis prime (p > 3), we can deduce thgtandz are not divisible by 3. This
excludes the boundariex3 3y+z=0, X—y+3z=0, 6x—4y+3z=0, and
6x—3y+4z=0.
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Now let us look at the fixed points: The mappings-A?, —A* A> cannot have
any fixed points, (sinc& maps the regior onto the regiorA® etc.). The matrices
B,A3,D,E,F are involutions. So we have to check their fixed points.

e As beforeB has precisely one fixed poirl, 1,k' = p%S)-

X X
e ForA® the fixed point conditio® | y < y | simplifies to: X—2y+2z=0.
z z

This is a contradiction sinceis odd.

e Similarly, for D, we need to look atX3—y+ 2z = 0. Consider the equatiop=
3x? 4 4yz= 3x? + 12xz+ 87% = 3(x+ 22)? — 4z modulo 3. WithZZ = 0,1 mod 3
and forp= 7 mod 12, we find that & 222 mod 3, a contradiction.

e ForE, the fixed point condition is®2—y+ z= 0. We look atp = 3x? + 4yz=
3x? 4 8xz+ 472 = 4(x+2)? — X% = (3x+ 22)(x+2z), contradicting the primality
of p.

e Finally, for F we have to look at8— 2y+z= 0, and plug this into our ternary
form p = 3x? 4 dyz= 3x? — 12xy+ 8y? = 3(x — 2y)? — 4y°. Again, we consider
this modulo 3: Fop = 12k+ 7 and with 3% = 1 mod 3 we see that there cannot
be a fixed point.

We find that forp = 12k + 7 there is only the trivial fixed point dB, namely
(1,1, (p— 3)/4). By the standard argumeptcan be written ap = 3x? + 4y°.

Sincep = 12k+ 11 cannot be written gs= 3x%+4y?, there must be a fixed point
of D or F. Any such fixed point induces a representation of the fype3x? — 4y?,
(see the analysis of these cases above).

This proves theorem 4.

35 d=4
4sn? .
d= tS? = 4. Here necessarilg=t = m=n =1, and therefore

-120
B=( 0 1 0].
4 41
This matrix generates an infinite partition. Since in theecast = 1 we do not
expect anything new, we do not pursue this case further.

4 On infinite but incomplete mappings

One can also consider corresponding mappings induc&Hog X for other values
of d. We cannot expect that the number of required matrices tefini
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Considerp = 3x? + 2yz= 24k + 5. Generate the matrices with

-120
B=10 10
6 61

Take
A=BXandC=A1=XB.

A=BX,—A%, A3, —A* A etc.
C=XB,—C?,C3 —C* etc.
B, —BC, BC?, —BC3,BC* etc.

—XAZXAS, XA etc.

(Note:—X andX Aare again omitted.) The matrxdoes not have a finite order. This
can easily be seen by looking at the eigenvalues, afamely—1, -2 — /3, -2+
V3.

Taking infinitely many of these matrices, we see: The “regimiheach matrix
becomes smaller and smaller.
For the powers of A the row conditions come arbitrarily close to:

(B3+V3)x—y+(2+V3)z>0

and
—(3+V3)x+y—(2+V3)z>0.

There are similar row conditions for the other series of ma$. The series
C = XB,—C?C3,—C* etc.

corresponds to
B, —BC,BC?,—BC3 BC" etc.

in that respect that the row conditions of the first and thind are the same and the
condition of the first row is reversed. Similarly, the twoissr

A=BX,—A2, A3, —A* A etc.

and
XA XAS, XA etc.

have associated boundaries. This latter series tends o eomdition of
(34+V3)x— (24+V3)y+2z>0

and
—(B+V3)x+(2+V3)y—z>0.

Unfortunately the two boundaries
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(3+V3)x—y+(2+V3)z>0

and
(3+V3)x— (24+V3)y+2z>0

do not correspond. Hence there is a gap in between the regfithese series.

One would need further matrices to close this gap in orderdoged.

Looking at the conditiongx— by+ cz> 0 andax— cy+ bz > 0, we see how
incidental the above described finite mappings are.

In the case studied by Zagier we have: b = c. So there are no problems at all.
In the casep = x° + 2yzwe had X—y+ 2z Herea = ¢ so we still do not clearly
see, what the condition in the general case is.

In the casep = 3x? + 4yzwe had & — 3y + 4zand &— 4y + 3z. Here, we see the
importance of the matrices® = BXBXBXandX A> = X BX BXBXwith both rows,
6,—3,4 and—6,4, —3. These matrices are the “turning point”, reversing\ttaad
zcoordinate. We have a complete cydle3,1,-3) = (3,-1,3) = (—6,3,—4) =
(6,—3,4) = (—6,4,-3) = (6,—-4,3) = (—3,3,-1) = (3,-3,1). These matrices
can be discovered by a sub-matrix (omit the first row and caluof the form

a —b

—b a )’
In the incomplete mapping above there are no such “turnimgtgo
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