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Abstract In this paper we study elementary approaches to classical theorems on
representations of primes of the formax2 + by2, in particular the two squares the-
orem. While most approaches make use of quadratic residues, we study a route
initiated by Liouville, and simplified by Heath-Brown and Zagier.
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1 Introduction

In this paper we study elementary approaches to classical theorems on representa-
tions of primes of the formax2 +by2, in particular the two squares theorem.

1.1 The sums of two squares theorem

Theorem 1.A positive integer n can be written as a sum of two integer squares, if
and only if the canonical prime factorization n= pγ1

1 · · · pγr
r (where the pi are distinct

primes) satisfies the condition: if pi ≡ 3 mod 4, thenγi is even.
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In order to prove this theorem one proves the following theorem and several minor
lemmata.

Theorem 2.A prime p≡ 1 mod 4can be written as p= x2 +y2.

Wells [38] includes Theorem 2 in a list of the 10 most beautiful results in mathe-
matics.

In his “Apology” Hardy [18] writes: “Another famous and beautiful theorem is
Fermat’s ‘two square’ theorem... All the primes of the first class” [i.e. 1 mod 4] ...
“can be expressed as the sum of two integral squares... This is Fermat’s theorem,
which is ranked, very justly, as one of the finest of arithmetic. Unfortunately, there
is no proof within the comprehension of anybody but a fairly expert mathematician.”

In this paper we discuss quite elementary proofs and it wouldbe interesting to
know if Hardy would also have written this about the types of proof (and its simpli-
fications), discussed in sections 1.2, 1.3 and 1.6.2.

The history of the theorems above is described in detail in Dickson [8] (volume 2,
chapter VI), and also in Edwards [10]. Already Diophant discussed representations
of integers as a sum of two squares, and, by slightly alteringthe text, Jacobi inter-
preted Diophant’s writing in such a way that Diophant possibly essentially knew and
was able to prove: if a square-free numbern is a sum of two squares, then neithern
nor any factor ofn is of the form 4k−1, (see [8], page 236).

The first correct statement of the necessary and sufficient conditions for writing
an integer as a sum of two integer squares, without a proof, might have been by
Albert Girard. The theorem is also often attributed to Fermat, who wrote he had a
proof. His proof is not known to us, even though in this case itis believed he had
the right methods to prove the theorem indeed. Euler eventually gave the first proof
that has survived.

Sincep = 2 = 12 +12, and since all squares are of the from 0 or 1 mod 4 so that
no numbern≡ 3 mod 4 can be a sum of two squares. Theorem 2 implies

Corollary 1. A prime p can be written as p= x2 + y2 if and only if p= 2 or p ≡
1 mod 4.

Lemma 1. If m = x2
1 + y2

1 and n= x2
2 + y2

2 can be written as sums of two integer
squares, then their product mn can also be written in this form.

Proof of Lemma: This follows immediately from the identitymn= (x1x2−y1y2)
2+

(x1y2 +x2y1)
2, an identity which can be motivated by means of complex numbers:

mn= ((x1 +y1i)(x1−y1i))((x2 +y2i)(x2−y2i))

= ((x1 +y1i)(x2 +y2i))((x1−y1i)(x2−y2i))

= (x1x2−y1y2 + i(x1y2 +x2y1))((x1x2−y1y2− i(x1y2 +x2y1))

= (x1x2−y1y2)
2 +(x1y2 +x2y1)

2. �

Lemma 2. If n is divisible by a prime p≡ 3 mod 4, and n= x2 + y2, then x≡ y≡
0 modp.
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Proof of Lemma 2:By Fermat’s little theorem: Letp be prime andx an integer, then

xp−1 mod p =

{

0 if x≡ 0 modp

1 if x 6≡ 0 modp.

If p≡ 3 mod 4, then

(x2 +y2)(xp−3−xp−5y2 +xp−7y4∓·· ·+yp−3) = xp−1 +yp−1.

Sincex2 +y2 ≡ 0 modp, one also hasxp−1 +yp−1 ≡ 0 modp. As p > 2, we must
have, by Fermat’s observation above, thatx≡ y≡ 0 modp. �

The above lemmata reduce the proof of Theorem 1 to a proof of Theorem 2.
There is a multitude of proofs of Theorem 2. Most of these use quite essentially

the fact that for a primep ≡ 1 mod 4 there is a solution ofx2 ≡ −1 modp. This

follows for example fromx = p−1
2 ! or x = g

p−1
4 , whereg is a generating element of

the group(Z/pZ)× or g is a nonresidue modulop. However, checking the details in
this calculation from first principles is already half of theproof.

The methods involved in these various proofs include e.g. congruence computa-
tions, Minkowski’s theorem, the pigeon hole principle, properties of Gaussian in-
tegers, continued fractions and the like. The book by Hardy and Wright [19] gives
several different proofs. For other proofs see also [33], [40], [6].

A very different second type of proof goes back to Liouville.In a series of eigh-
teen papers Liouville describes a quite general method, a special case of which gives
Theorem 2. Liouville’s work is described in the books by Bachmann [3], Dickson
[8], Uspensky and Heaslet [34], Venkov [36], and Nathanson [29].

This special case was considerably simplified by Heath-Brown [20]. Zagier [41]
reformulated Heath-Brown’s proof to write it in one sentence, however leaving ele-
mentary calculations to the reader.

This proof has generated a considerable literature explaining the proof for teach-
ing purposes [35], [39], [12], [31], [5] or extending it to related results: [4], [13],
[14], [16], [21], [22], [23], [32]. The collection of beautiful proofs “Proofs from the
BOOK” by Aigner and Ziegler [1] explains in its first edition Zagier’s version of the
proof, but changed to Heath-Brown’s version for the 2nd edition.

A key ingredient is an ingenious choice of a set which allows apartition into or-
bits of length 1 or 2. In this way a simple parity check guarantees the decomposition
into two squares. The reader who is familiar with Liouville’s method will appreciate
the simplifications made by Heath-Brown and Zagier. Still, the proof is quite mys-
terious. We make an attempt to demystify the proof, i.e. explain how the details can
be motivated.

In addition to the study of this second type of proof we apply the idea of orbits
of length 1 or 2 to a proof based on lattice points, which is more in the spirit of the
first type of proof. After reviewing the history of these, i.e. discuss contributions by
Lucas, Grace and others we present in section 1.6 a quite short version of the proof,
which admittedly also requires some routine checking, as isthe case with the proofs
by Zagier and Heath-Brown.
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1.2 Zagier’s proof

Here is the famous one-sentence-proof for primesp = 4k+1, quoting from Zagier
[41].

“The involution on the finite setS= {(x,y,z) ∈ N
3 : x2 +4yz= p} defined by

(x,y,z) 7→







(x+2z,z,y−x−z) if x < y−z
(2y−x,y,x−y+z) if y−z< x < 2y
(x−2y,x−y+z,y) if x > 2y

has exactly one fixed point, so|S| is odd and the involution defined by
(x,y,z) → (x,z,y) also has a fixed point.�”

Quite a few routine checks are necessary to verify all these implicit claims. For
the reader’s ease we would like to add that the first map,α (say), defines a partition
S= S1∪S2∪S3 with S1 = {(x,y,z) ∈ S: x < y−z},S2 = {(x,y,z) ∈ S: y−z< x <
2y},S3 = {(x,y,z)∈S: x> 2y}. There are no solutions withy−z= x or x= 2y, since
otherwisex2 +4yz is not a prime. Solutions withx < y−z are mapped to solutions
with x > 2y, and vice versa. Solutions withy−z< x < 2y are mapped to solutions
with the very same property. That isα(S1) = S3,α(S3) = S1,α(S2) = S2. Thus fixed
points ofα must lie inS2 and therefore satisfy(x,y,z) = (2y− x,y,x− y+ z), i.e.
x = y. Sincep is prime, the only fixed point is(1,1,(p−1)/4).

Writing out all details, which we do not do here, makes the proof actually quite
a bit longer.

1.3 Heath-Brown’s proof

Heath-Brown reformulated Liouville’s work in 1971. His version [20] appeared in
1984 in a student magazine, issued by the undergraduate mathematical society at
Oxford University. Meanwhile a retyped version is available, see the bibliography.
Since Heath-Brown’s proof was slightly different, we describe his proof briefly.

Let us define

X1 =





0 1 0
1 0 0
0 0−1



 , X2 =





0 1 0
1 0 0
0 0 1



 , X3 =





1 −1 1
0 1 0
0 2 −1



 .

Define the sets

S= {(x,y,z) ∈ Z
3 : p = 4xy+z2, x,y > 0},
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T = {(x,y,z) ∈ S: z> 0}, U = {(x,y,z) ∈ S: x+z> y}.
One can check thatX2

1 = X2
2 = X2

3 = I . Moreover,X1 mapsS to itself,X2 mapsT to
itself, andX3 mapsU to itself. One also verifies that|T| = |X1T| and|U | = |X1U |.
SinceS is the disjoint union ofT andX1T it follows that |S| = |T|+ |X1T| = 2|T|
and similarly|S| = 2|U |. This implies|T| = |U |. Since the mapX3 acting onU has
exactly one orbit of length 1 (fory = z= 1), and since all other orbits have length
two, we find that|U | must be odd. So,|T| is also odd, and the action ofX2 onT must
have an orbit of length 1, i.e. there is a fixed point withx = y, giving p = 4x2 +z2.

This is an impressive example that the right choice of a set, group action and orbit
counting can simplify existing proofs. Another example of this principle is McKay’s
proof [28] of a Theorem of Cauchy in group theory.

1.4 Grace’ lattice point proof

In this section we describe a proof based on lattice points, due to Grace [17]. It is
one of the proofs in Hardy and Wright’s book [19].

The proof starts with the fact thata2 ≡ −1 modp has a solution. Take those
lattice points inZ×Z with ax≡ y mod p. Note that if(x,y) and(x′,y′) belongs to
the set, then also(x± x′,y± y′) belong to it, so that the set of these points define
a discrete lattice. LetP1 = (x,y) be one of the points with minimal distance to the
origin P0 = (0,0). Since−ay≡ x mod p, the pointP2 = (−y,x) also belongs to
the lattice. These points together withP3 = (x− y,x+ y) define the fundamental
domain. Observe that there are no further lattice points in this fundamental domain,
since otherwise the distance from(0,0) to (x,y) was not minimal. Also observe that
in this situation the fundamental domain is not only a parallelogram, but even a
square.

In a very large circle about the origin, the proportion of points belonging to the
lattice is 1

p so that the area of the fundamental domain isp. Hence the side lengths

of the square satisfy by Pythagoras’ theorem:x2 +y2 = p.
The lattices can also be understood as coming from the problem of regular so-

lutions of placingp non-taking queens on ap× p chessboard, with reduction mod-
ulo p, i.e. a chessboard on a torus. This approach has been studiedby Polya [30],
Kraitchik [24] and Larson [25]. These proofs also make use ofcounting the lengths
of orbits and are similar in spirit to those discussed below.

1.5 Lucas’ work on regular Satins

In 1867Édouard Lucas [26] had similar ideas on regular “Satin” squares which were
thought of in connection with patterns of fabrics. As Decaillot [7] writes, in France
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at that time there was a group of mathematicians writing as accessible as possible
for a wide audience.

Withoutassuming that there is a solution ofa2 ≡−1 modp, he considered those
integer lattices with slopes 2,3, . . . , p−1

2 . He paired off those lattices with slopessi

andsj wheresisj ≡±1. For a givensi there is a uniquesj in this set. He interpreted
this in terms of the geometric pattern. Starting with an odd number of lattices, one
lattice remains. This remaining lattice is associated to itself, and has a square unit.

In this paper, Lucas did not actually conclude the two squares theorem, namely
that a primep≡ 1 mod 4 is a sum of two squares, but rather the opposite.

The reason for this apparently comes from the historical background. The ques-
tion, for which moduli regular lattices exist, was asked byÉdouard Gand, also in
1867, in connection with fabric patterns, and Gand’s question was answered by Lu-
cas.

However, there is some indirect evidence that Lucas later actually proved Theo-
rem 2 using this method. Dickson [8] (Volume 2, page 245) gives [27] (which does
not contain that proof) and Aubry [2] as references. Decaillot [7] mentions a com-
ment by Aubry in Fermat’s collected works [15] (note 27 of the4th volume). Here
Aubry writes that the two squares theorem is “perhaps the most beautiful of all of
Fermat’s theorems”, and Aubry refers to a graphical proof byLucas.

Decaillot [7] constructed a proof that possibly was the one given by Lucas. It is
very similar to the proof by Grace discussed above.

1.6 A short proof

In this section we aim to modify the two approaches above to assemble a proof
which can be formulated in one sentence. However, as is the case with Zagier’s
proof, several additional words of explanations are appropriate, and several routine
calculations required. The author believes that memorizing this proof may be easier
than memorizing Zagier’s proof.

1.6.1 The long version

• Let p ≡ 1 mod 4 be a prime and letS= {2,3, . . . , p−1
2 }. For z∈ S let us define

the lattices
Lz = {(x mod p, zxmod p) : 0≤ x < p}

as subsets ofZp×Zp (which can be thought of as a torus). To see that these are
lattices take any two points(x mod p, xzmod p) and(y mod p, yzmod p). The
sum(x+y mod p,(x+y)z mod p) is again inSz and the same follows for integer
multiples(λx mod p,λxzmod p).
For p≡ 1 mod 4, the number|S| = p−1

2 −1 of lattices is odd. For a better under-
standing we draw these forp = 17.
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Fig. 1 L2 Fig. 2 L3 Fig. 3 L4

Fig. 4 L5 Fig. 5 L6 Fig. 6 L7

Fig. 7 L8

In the pictures we include the parallelograms which define fundamental domains
of the lattices. A fundamental domain is a parallelogram, spanned by a point
and two of its 4 closest neighbours in two linear independentdirections. In this
sense, each point uniquely corresponds to a fundamental domain, so that there
arep fundamental domain, and for a given lattice all of these parallelograms are
congruent, understood modulop.

• But the fundamental domains for different lattices are in general not congruent
to each other. In the above example withp = 17 the shape of the fundamental
domain is the same forL2 andL8, for L3 andL6, for L5 andL7. The latticeL4

(which turns out to deliver the solutionx2 ≡ −1 mod 17 and finally the decom-
position of 17= 12 + 42) does not have a corresponding partner. Generally this
can be described by means of the following map: LetS= {2 ≤ a ≤ p−1

2 }. Let
f : S→ Swith
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a 7→
{

a−1 mod p if 2 ≤ (a−1 mod p) ≤ p−1
2 ,

−a−1 mod p otherwise.

Observe that forp = 17 one has thatf (2) = 8, f (8) = 2, f (3) = 6, f (6) =
3, f (5) = 7, f (7) = 5, f (4) = 4. Here the representatives of the residue classes
modulo p are assumed to be in the interval 0≤ b < p. It can be easily checked
that f is an involution. We have to show that for alla ∈ S: f ( f (a)) = a. If
the first alternative holds for the inner argument, then alsoat the second time
so that f ( f (a)) = f (a−1) = (a−1)−1 = a and similarly f ( f (a)) = f (−a−1) =
−(−a−1)−1 = a. Since|S| is odd, there must be an odd number (i.e. at least
one) of elements witha = f (a). Since−1,1 6∈ S, it follows that(a+1)(a−1) ≡
0 modp has no solution inSwhich implies thata≡ a−1 mod p has no solution.
But then there must be an element witha≡−a−1 mod p. It is this element which
satisfiesa2 ≡−1 modp, but we better leave it asa≡−a−1 mod p. In this form
we see that the slopesa and−a−1 of the sides of the parallelogram are orthogo-
nal. The lattice is invariant under the mapf which means it is invariant under a
rotation by 90o. This proves why for primep≡ 1 mod 4 there must be a lattice
amongst the latticesLz, of which the fundamental domain is a square.

Fig. 8 Lz with z2 ≡ −1 mod
p being a fixed point, here
p = 13,z= 5.

• Since the fundamental domains are defined by a point and its closest neighbours,
the fundamental domains do not contain any lattice point in their interior. Thus
the fundamental domains cover thep× p board without overlap. Since for each

of the p points there is exactly one fundamental domain, its area isp2

p = p, so
that the length of a side is

√
p. An alternative argument here could be the one by

Grace [17].
• Finally, an application of Pythagoras’ theorem to the grid decomposition of the

base side of the square shows thatp = (
√

p)2 = a2 +b2 holds.

It seems particularly pleasant that we did not explicitly need the solution ofa2 ≡
−1 modp, but could rather directly conclude froma≡−a−1 mod p that the paral-
lelogram is a square.
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1.6.2 A short version of the proof

Having said all this, the reader can see that the following one sentence version of
the proof, written in the spirit of Zagier’s proof [41], contains essentially all the
necessary information and is perhaps easier to work with, ormemorize, than other
proofs of this theorem. The amount of hidden routine checking may be comparable
with that in Heath-Brown’s or Zagier’s version.

The involution on the finite setS= {2≤ a≤ p−1
2 } defined by

a 7→
{

a−1 mod p if 2 ≤ (a−1 mod p) ≤ p−1
2 ,

−a−1 mod p otherwise,

has at least one fixed pointz, so the fundamental domain of the lattice defined
by

Lz = {(x, zxmod p),0≤ x < p}
is a square with areap, so that the two squares theorem follows by an appli-
cation of Pythagoras’ theorem.�

2 How Zagier’s involution can be motivated

We will give two explanations, how Zagier’s map can be motivated. One was found
by the present author, and was described in [12, 13, 14]. We will show that this
approach gives a method to search systematically for proofsof related theorems on
quadratic forms.

An alternative motivation can be found in lecture notes by E.W. Dijkstra.

2.1 First motivaton

It is possible toconstructthe “complicated” involution by means of some fairly
easy assumptions, (see also [12]). These assumptions ensure that the final mapping
would be as simple as possible.

If we look for a mapping that

I) can be described by a matrixB =





a b c
d e f
g h i



, with integer entries which are inde-

pendent ofk, (linearity),
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II) maps the solutions (in positive integers) ofp = 4k+ 1 = x2 + 4yz onto such
solutions, (invariance),

III)has the easiest solution, namely(1,1,k) as its only fixed point, (simplicity),

then we are uniquely led toB =





−1 2 0
0 1 0
1 −1 1



.

This can be seen as follows: Property (III) gives




a b c
d e f
g h i









1
1
k





!
=





1
1
k



 .

In particulara+b+ck= 1. But since the coefficients are supposed to be independent
of k, we have that

a+b+ck= 1 ⇒ c = 0, a+b = 1
d+e+ f k = 1 ⇒ f = 0, d+e= 1
g+h+ ik = k ⇒ i = 1, g+h = 0.

Property (II) gives

(x′)2 +4y′z′ = (ax+by+cz)2 +4(dx+ey+ f z)(gx+hy+ iz)
!
= x2 +4yz.

Hence, a comparison of the coefficients shows that

x2 a2 +4dg= 1
xy 2ab+4(dh+eg) = 0
...

...
yz with c = f = 0, i = 1 : ei = 1 ⇒ e= 1,⇒ d = 0.

Now a2 + 4dg= 1 is simplified toa2 = 1. Suppose thata = 1. Thenb = 0 and
from 2ab+4(dh+eg) = 0 we getg = 0 and finallyh = 0. Then, the matrix would
be the identity matrixI . This is not what we want, since the map shall have only one
fixed point.

Thus,a = −1, and sob = 2,g = 1, and finallyh = −1. So, we have found the
matrixB.

Surprisingly, we did not even need that our map shall be an involution but we can
readily check thatB2 = I .

This only works for−x+ 2y > 0 andx− y+ z > 0. For the other cases one
apparently needs a different matrix. Let us see how we can manipulateB to yield
a corresponding row conditionx− 2y > 0. We look for a matrixX which turns

the row conditions ofB into (1,−2,0) and (1,−1,1). Let X =





−1 0 0
0 0 1
0 1 0



. The

matricesA = BX andC = XB cover all cases. LetA = BX =





1 0 2
0 0 1
−1 1−1



 and
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C = XB =





1 −2 0
1 −1 1
0 1 0



. We see that the row conditions perfectly fit to each other

and induce a partition of all solutions.
Alternatively, one can find these matricesA andC by choosing small primes

(p = 13,17,29) and observing that here the sets of solutions with−x+ 2y < 0 or
x−y+z< 0 only have one or two elements. Forp= 13, we find that(1,3,1) must be
mapped to(3,1,1) and vice versa. Forp= 17, we find that(1,4,1) must be mapped
to (3,1,2) and vice versa. Forp= 29 there are two possibilities. One excludes by the
partially known mapping that(1,7,1) is mapped to(5,1,1) and finds that(1,7,1)
is mapped to(3,1,5), from whichA andC uniquely follow.

Even though we did not know about the partition ofS into three sets we have
found the mapα : S→ Swith

α =











α1 decribed by matrix A, if−x+y−z> 0

α2 described by matrix B, if−x+2y > 0 andx−y+z> 0

α3 decribed by matrix C, ifx−2y > 0 andx−y+z> 0.

This is precisely the mapping given by Zagier. Of course,α as a whole is not a
linear map, so that property (I) is not strictly satisfied. Weobtain in this way the
easiest involution,α, with the required property, namely that we know the set of
fixed points.

Let us remark that the intersection into three subsets was caused since we work
with positivex,y,z. In Heath-Brown’s version negative values are allowed, andso
he did not need this division into three cases.

Zagier’s second mapping,β (say), withβ : S→ S and(x,y,z) 7→ (x,z,y) corre-
sponds to the matrix

Y =





1 0 0
0 0 1
0 1 0



 .

2.2 Making the proof constructive

In his paper, Zagier mentioned the proof only shows the existence of the solution.
Combining the two involutionsα andβ , we can give a constructive proof. Starting
with the only fixed point ofα, and iteratingβ ,α... we must arrive at a period.

(1,1,k)
β→ (1,k,1)

α→ (3,1,k−2)
β→ ·· · β→ (3,1,k−2)

α→ (1,k,1)
β→ (1,1,k).

Since the maps are bijective, there is no pre-period. So, we eventually come back
to (1,1,k) with β . The number of elements in the period is even. By symmetry,
there must be another fixed point in the middle of the cycle. Since there is only one
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fixed point of α, this iteration constructs a fixed point ofβ , that is a solution of
p = x2 +4y2.

Applying this algorithm to a composite non-square integern = 4k+ 1 the very
same argument shows that any cycle containing(1,1,k) must also contain another
fixed point. Sincen is no longer prime we may well come to another fixed point
of α which corresponds to a factorization ofn. To see that this can happen, let us
concentrate on products of two distinct primesn = p1p2 with p1 ≡ p2 ≡ 3 mod 4.
Here β does not have a fixed point, sincen cannot be written as a sum of two
squares. Hence, in this case the iterationβ ,α,β . . . must eventually come to another
fixed point ofα which corresponds tox = y, i.e. a factorization ofn.

This algorithm for finding the decomposition into 2 squares is very slow. For
some details see Bagchi [4]. Shiu [32] describes how one can accelerate this algo-
rithm. It turns out to have an interpretation in the theory ofcontinued fractions. A
fast algorithm is described by Wagon [37].

2.3 A motivation due to Dijkstra

A different, and very elegant derivation of Zagier’s map wasalso given by Dijkstra
[9]. His notes are written in the language of a computer scientist and are extraordi-
nary detailed. I will try keeping the flavour of his exposition, but will have to shorten
his account. After some general remarks on involutions Dijkstra concludes that to
write p as a sum of two integer squares it is enough to look at

(x,y) : x2 +4y2 = p. (∗)

In order to establish the desired correspondence between solutions of this equation
and the fixed points of an involution “we do something with which every computer
scientist is very familiar: replacing in a target relation”(∗) “something by a fresh
variable”. Dijkstra refers to “Leibniz’ principle” (informally: substituting equals for
equals) to rewrite (∗) as

(x,y,z) : x2 +4yz= p andy = z.

Let S= {(x,y,z) : x,y,z∈ N : x2 + 4yz= p}. Exploiting the symmetry iny andz,
Dijkstra chooses a first involutioninv0 by S→S: (x,y,z) 7→ (x,z,y). The fixed points
of inv0 satisfyy= z. Hence it is enough to show thatinv0 has at least one fixed point.
In order to do this one intends to construct a second involution inv1 onS, which has
exactly one fixed point.

Next, Dijkstra gathers some elementary facts:
x > 0,y > 0,z> 0,x 6= ±(y−z), sincep is odd and not a square.

Next, “can we think of operators on(x,y,z) for which x2 +4yz= p is an invari-
ant”, i.e. an operator which maps solutions ofSonto such solutions?

Dijkstra then studies operators of the type
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(x,y,z) 7→ (x+∆x,y+∆y,z+∆z).

Here Dijkstra implicitly assumes that∆ is an operator, for which

∆ f (x) = f (x+∆x)− f (x)

so that for example∆(x2) = (x+∆x)2−x2 = 2x∆x+(∆x)2.
Since∆x = 0 would too easily lead back toinv0, he assumes∆x 6= 0. Since for

all elements ofS, x is odd,∆x is even, so that∆x = 2b, say.
The invariance assumption∆ : S→ S, i.e.(x′)2 +4y′z′ = p means that

∆(x2 +4yz) = 0.

So,
∆(x2 +4yz) = 0

∆(x2) = −4∆(yz)
2x(∆x)+(∆x)2 = −4((y+∆y)(z+∆z)−yz)

b(x+b) = −y∆z−z∆y−∆y∆z.

In order to simplify this expression Dijkstra chooses∆y = 0 and arrives at

b(x+b) = −y∆z.

He remarks that this choice does not restrict the generality, since one could arrive at
any “move” with∆y 6= 0,∆z 6= 0 by means of two single moves.

Now, the last equation suggests the following 4 possibilities:

1. b = −y,x+b = ∆z, giving (x,y,z) 7→ (x−2y,y,z+x−y)
2. b = y,x+b = −∆z, giving (x,y,z) 7→ (x+2y,y,z−x−y)
3. b = ∆z,x+b = −y, giving (x,y,z) 7→ (−x−2y,y,z−x−y)
4. b = −∆z,x+b = y, giving (x,y,z) 7→ (2y−x,y,z+x−y)

In order to satisfy the invariance ofx> 0,y> 0,z> 0, one sees that the third case
above withx′ = −x−2y can be discarded from consideration.

So far, we have not yet used the factinv1 is supposed to have exactly one fixed
point. Now, for a fixed point(x,y,z) = (x′,y′,z′). Herex = x′ andy > 0 mean that
the only remaining case is the 4th case above. Herex = 2y− x shows that a fixed
point can only occur ifx = y so thatp = x2 +4yz= x(x+4z) implies thatz= p−1

4 ,

giving the unique fixed point(1,1, p−1
4 ).

Dijkstra then completes the construction of the involutioninv1 for those solutions
for whichy > z+x or x > 2y, respectively.

2.4 Comparison

Comparing both constructions in sections 2.1 and 2.3, it canbe observed that the
principle to keep the construction as simple as possible, but also as general as nec-
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essary is quite successful. While in my motivation in section2.1 the choice of the
fixed point(1,1,k) quickly led to the entriesc = f = 0, i = 1 of the matrixB, and
then the invariance of the quadratic form delivered the additional entries. Dijkstra’s
choice of∆y= 0, in the language of section 2.1 quickly led tod = f = 0,e= 1, and
then the invariance of the form and consideration of the fixedpoint completed the
entries ofB.

Let us finally ask: is there any application (other than the two squares theorem
itself) of the fact discovered by this combinatorial proof that the number of solutions
(x,y,z) of a given type (say forp = x2 + 4yzwith x < y− z) equals the number of
solutions of another type (say herex > 2y)? If so, that could be of interest also for
the generalizations considered below.

3 Generalization of the method

One can ask for similar involutionsα for related question onp = sx2 + tyz, where
s and t are fixed constants. For example it is well known that for a prime p the
following holds

p≡ 1,3 mod 8⇔ p = x2 +2y2 in positive integers.

It would be nice to have an easy proof of this theorem by the idea of the Heath-
Brown—Zagier proof.

Such generalizations were found by the current author in 1996, see [13], and also
by Jackson [21, 22, 23] and Generalov [16].

Here we shall derive the following results:

Theorem 3.Let p denote a prime.

a) For p= 8k+3 there is a solution of p= x2 +2y2 in positive integers.
b) For p= 8k+7 there is a solution of p= x2−2y2 in positive integers.
c) For p= 8k+5 there is a representation as p= x2 +y2. (A new proof!)

Theorem 4.Let p denote a prime.

a) For p= 12k+7 there is a solution of p= 3x2 +4y2 in positive integers.
b) For p= 12k+11 there is a solution of p= 3x2−4y2 in positive integers.

Generalizing the approach of section 2.1 one can prove that the matrix

B =





−1 2m
n 0

0 1 0

4sm
tn −4sm2

tn2 1



 maps solutions ofp = sx2 + tyz to such solutions and

has the fixed point(m,n,k′). Herem,n,s, andt are fixed non-negative integers. So

k′ =
p−sm2

tn
. We note that againB2 = I . Unfortunately, in the general case the

boundaries induced by the rows, namely−x+2m
n > 0 and 4sm

tn x−4sm2

tn2 y+z> 0, do
not induce such a balanced three-partition of the set of solutions.



Christian Elsholtz/Author’s version 15

However, it is possible to construct mappings forp= x2+2y2 andp= 3x2+4y2

consisting of even more matrices. As before, these matricesare generated byB and
X.

Note, even though the occurring matrices will be more complicated, the idea of
the proof is still the same. The justification of the properties of the mapα can -in
principle- be left to an automatic system since it requires elementary calculations
only.

As before, we try, ifA = BX can be useful. As above we useX =





−1 0 0
0 0 1
0 1 0



 .

At this point, we do not worry about the boundaries or a partition of the set of all
solutions.

Geometrically, we can expect that|detA| = 1, since we should not map bijec-
tively a large region to a small one and vice versa.

Consider the eigenvalues of

A = BX =





−1 2m
n 0

0 1 0

4sm
tn −4sm2

tn2 1









−1 0 0
0 0 1
0 1 0





=





1 0 2m
n

0 0 1

−4sm
tn 1 −4sm2

tn2



 =





1 0 a
0 0 1
−c 1 −d



 , say.

Noting thatac= 2d we find

0 = (1−λ )(0−λ )(−d−λ )− (1−λ )− (−c)(0−λ )a

= (λ +1)(λ 2 +(d−2)λ +1).

We find thatλ1 = −1 andλ2,3 = −d−2
2 ±

√

(

d−2
2

)2−1.

For integersd≥ 5 ord≤−1, the values ofλ2,3 are real but irrational numbers. So
the order ofA is infinite, and there is little hope of finding a suitable map consisting
of finitely many parts. Sod = 0,1,2,3,4 and in these cases|λ1| = |λ2| = |λ3| = 1.
This justifies our expectation that detA = 1.

Recall thatd =
4sm2

tn2 . Since we want to represent primes withp = sx2 + tyz=

sm2 + tnzwe may assume that gcd(sm, tn) = 1. We shall systematically consider all
cases.

3.1 d = 0

For d = 0 we havesm= 0, so thatp = tnz. This case is of no interest.
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3.2 d = 1

Hered =
4sm2

tn2 = 1, and(s, t) = (s,n) = (t,m) = (m,n) = 1. Hence there are two

possibilities:

• s= m= n = 1, t = 4. This is precisely the case of Heath-Brown’s and Zagier’s
proof.

• s= m= t = 1, n = 2.
In p = x2 +yz the solution withp = x2 +y2 = y2 +x2 is counted twice. In order
to make the original argument work we need to break the symmetry. This can be
done by assumingy andz to be even.
The involutionα is generated by

B =





−1 1 0
0 1 0
2 −1 1



 ,

A = BX, andC = A−1.
This gives the following variant of the proof of the two squares theorem:
The involution on the finite setS= {(x,y,z)∈N×2N×2N : x2+yz= p} defined
by

(x,y,z) 7→







(x+z,z,−2x+y−z) if 2x+z< y
(−x+y,y,2x−y+z) if x < y < 2x+z
(x−y,2x−y+z,y) if y < x

has exactly one fixed point, so|S| is odd and the involution defined by(x,y,z) →
(x,z,y) also has a fixed point.

3.3 d = 2

3.3.1 The casep = x2 +2yz

Here we consider the cased =
4sm2

tn2 = 2. By the coprime condition(sm2, tn2) = 1

we necessarily have thats= m= n = 1, t = 2.
Empirically one observes that the number of fixed points varies with the residue

classes modulo 8:
a) primesp≡ 3 mod 8 induce 1 fixed point,
b) primesp≡ 7 mod 8 induce 2 fixed points,
c) primesp≡ 5 mod 8 induce 2 fixed points, and
d) primesp≡ 1 mod 8 induce 3 fixed points.

Case a) was also proved by Jackson [21] and Generalov [16]. They also observed
d), but did not prove it by elementary methods. We shall provea), b) and c) which
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corresponds to our Theorem 3 a,b,c). Unfortunately we do notsee either a conve-
nient way to prove d) without appealing to the theory of quadratic forms.

Let S= {(x,y,z) ∈ N
3 : x2 +2yz= p}. The one sentence proof is as before with

the following mapα : S→ S.

α =































































































































A = BX =







1 0 2

0 0 1

−2 1−2






if −2x+y−2z> 0

E = −XA2 =







−3 2 −2

−2 2 −1

2 −1 2

















if −3x+2y−2z> 0

and 2x−y+2z> 0

(then−2x+2y−z> 0 is implied.)

D = −A2 =







3 −2 2

2 −1 2

−2 2 −1

















if 3x−2y+2z> 0

and−2x+2y−z> 0

(then 2x−y+2z> 0 is implied.)

B = XA3 =







−1 2 0

0 1 0

2 −2 1






if −x+2y > 0 and 2x−2y+z> 0

C = A−1 = A3 = XB =







1 −2 0

2 −2 1

0 1 0







if x−2y > 0,

(2x−2y+z> 0 follows trivially.)

Note that this map makes use of all matrices of the form(−1) j+1A j ,( j = 1,2,3),
and(−1) j+1XAj ,( j = 2, j = 3). Note that alsoA4 = I . The matrixXA is of no use,
since this contains an impossible row condition−x−2z> 0.

The map above is equivalent to that given by Jackson and Generalov, here in
Jackson’s notation [21]:

(x,y,z) 7→























(x−2y,z+2x−2y,y) if y < x
2

(2y−x,y,2x−2y+z) if x
2 < y < x+ z

2
(3x−2y+2z,2x−y+2z,−2x+2y−z) if x+ z

2 < y < 3
2x+z

(−3x+2y−2z,−2x+2y−z,2x−y+2z) if 3
2x+z < y < 2x+2z

(x+2z,z,−2x+y−2z) if 2x+2z < y.

Let us call the subsets ofS that correspond to the matricesA,B,C,D,E by
A ,B,C ,D ,E . For a complete proof we have to show that

1. α : S→ S, i.e.α maps(x,y,z) with p= x2+2yzto (x′,y′,z′) with p= x′2+2y′z′,
2. α2 = id,
3. the boundaries (x−2y = 0,2x−2y+z= 0 etc.) are never attained,
4. the setsA ,B,C ,D ,E induce a partition of the set of all solutions,
5. there is only one fixed point.
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3.3.2 Proof of theorem 3

1. Since all parts of the mappingα are generated by−I ,X andB, it suffices to prove
the first property for−I ,X andB. It is obvious for−I andX. ForB we have:

(x′)2 +2y′z′ = (−x+2y)2 +2(y)(2x−2y+z) = x2 +2yz= p.

2. Note thatA maps the regionA to the regionC . Because ofC= A−1 the regionC
is mapped to the regionA . The first assertion follows fromx′−2y′ = (x+2z)−
2z> 0 and 2x′−2y′+z′ = 2(x+2z)−2z+(−2x+y−2z) = y> 0. For the second
assertion we need that−2x′+y′−2z′ > 0 with x′ = x−2y,y= 2x−2y+z,z′ = y
and so−2x′ + y′ − 2z′ = z > 0. Note thatB2 = D2 = E2 = I . So the matrixB
maps the setB ontoB. The same holds forD : D → D andE : E → E .

3. Suppose the boundaries are attained. This will lead to a contradiction.

a. For the boundaries in the first row, namelyx−2y = 0,−x+2y = 0,3x−2y+
2z = 0,−3x+ 2y− 2z = 0, it would follow thatx is even. This contradicts
p = x2 +2yz, sincep is odd.

b. −2x+y−2z= 0: p= x2+2yz= x2+2(2x+2z)z= (x+2z)2. This contradicts
the primality ofp.

c. 2x−2y+ z= 0: p = x2 + 2yz= x2 + 2y(2y−2x) = (x−2y)2, contradicting
the primality ofp.

d. 2x−y+2z= 0: See (b).
e. −2x+2y−z= 0: See (c).

4. It follows easily from the boundaries in Jackson’s notation (given above) thatα
induces a partition ofS.

5. We now look for the fixed points ofα. Here we distinguish between the various
cases depending on the residue class modulo 8. We see thatA andC cannot have
fixed points, since the setA is mapped ontoC and the other way around.
Suppose that(x,y,z) is a fixed point ofB, then

B





x
y
z



 =





−x+2y
y

2x−2y+z





!
=





x
y
z



 .

Hencex = y. Because ofp = x2 +2yz this is only possible forx = y = 1. Hence
B has precisely one fixed point.
For the matrixD we find that

D





x
y
z



 =





3x−2y+2z
2x−y+2z
−2x+2y−z





!
=





x
y
z



 .

Hencey = x+z, and therefore,p = x2 +2yz= x2 +2(x+z)z= (x+z)2 +z2.
Similarly,
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E





x
y
z



 =





−3x+2y−2z
−2x+2y−z
2x−y+2z





!
=





x
y
z



 .

Hencey= 2x+z, which implies thatp= x2+2yz= x2+2(2x+z)z= (x+2z)2−
2z2.
If p≡ 3 mod 8, there is no fixed point coming fromD andE. To see this recall
that squares modulo 8 only take the values 0,1,4. So, the only fixed point is inB,
and so|S| is odd. As before, the involutionβ must have an odd number of fixed
points. Hence there is at least one fixed point withy = z, leading to the solution
of p = 8k+3 = x2 +2y2.
The same consideration of the values of squares modulo 8 shows:
If p≡ 7 mod 8, we have again the trivial fixed point ofB. There cannot be a fixed
point from D. Since there cannot be a representationp = x2 + 2y2, we see that
there must be a fixed point coming fromE. So, p ≡ 7 mod 8 can be written as
p = x2−2y2. This proves theorem 3b).
If p≡ 5 mod 8, there cannot be a fixed point ofE. Sincep = x2 +2y2 is impos-
sible, there must be a fixed point ofD, hencep has a representation of the form
x2 + y2. This gives a new proof for one half of the two squares theorem, here
Theorem 3c).
If p≡ 1 mod 8, we have a fixed point ofB and (by the two squares theorem) of
D. In order to prove the existence of the representationp = x2 +2y2 it is enough
to prove that there is (precisely) one fixed point ofE. We do not see how to prove
this with the methods of this paper. For this reason we did notstate a theorem for
the casep≡ 1 mod 8.

3.4 d = 3

3.4.1 The casep = 3x2 +4y2

Here we deal with the cased =
4sm2

tn2 = 3. We have again two sub-cases.

• s= 3, m= n = 1, t = 4.
• s= 3, m= t = 1, n = 2, with eveny andz.

As above in the cased = 1, both of these sub-cases are equivalent. We will thus
concentrate on the first case.

The formp = 3x2 +4yzrepresents only primesp≡ 3 mod 4, hence we consider
p = 12k+7 andp = 12k+11. We will proceed as in the cased = 2.

The general form of our matrixB is now

B =





−1 2 0
0 1 0
3 −3 1



 ,A = BX =





1 0 2
0 0 1
−3 1−3



 .
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In view of A6 = I we consider the 9 matrices

(−1) j+1A j ,( j = 1, . . . ,5) and(−1) j+1XAj ,( j = 2, . . . ,5).

(As before, the matrixXA is of no use, in view of the row condition−x−2z> 0.)

−A2 =





5 −2 4
3 −1 3
−6 3 −4



 ,A3 =





7 −4 4
6 −3 4
−6 4 −3



 ,−A4 =





5 −4 2
6 −4 3
−3 3 −1



 ,

A5 = A−1 = XB=





1 −2 0
3 −3 1
0 1 0



 , D = −XA2 =





−5 2 −4
−6 3 −4
3 −1 3



 ,

E = XA3 =





−7 4 −4
−6 4 −3
6 −3 4



 , F = −XA4 =





−5 4 −2
−3 3 −1
6 −4 3



 ,B = XA5.

The corresponding boundaries are induced by the matrices themselves: for ex-

ample the matrix





−5 4 −2
−3 3 −1
6 −4 3



 corresponds to−5x+4y−2z> 0, −3x+3y−z>

0,6x−4y+3z> 0.
Hence the mapα is:

(x,y,z) →























































(x−2y,3x−3y+z,y) if y < x
2

(−x+2y,y,3x−3y+z) if x
2 < y < x+ z

3
(5x−4y+2z,6x−4y+3z,−3x+3y−z) if x+ z

3 < y < 5
4x+ z

2
(−5x+4y−2z,−3x+3y−z,6x−4y+3z) if 5

4x+ z
2 < y < 3

2x+ 3
4z

(7x−4y+4z,6x−3y+4z,−6x+4y−3z) if 3
2x+ 3

4z < y < 7
4x+z

(−7x+4y−4z,−6x+4y−3z,6x−3y+4z) if 7
4x+z < y < 2x+ 4

3z
(5x−2y+4z,3x−y+3z,−6x+3y−4z) if 2x+ 4

3z < y < 5
2x+2z

(−5x+2y−4z,−6x+3y−4z,3x−y+3z) if 5
2x+2z < y < 3x+3z

(x+2z,z,−3x+y−3z) if 3x+3z < y.

In order to prove theorem 4, we shall show: For primesp ≡ 7 mod 12 there is
one fixed point ofα. For primesp≡ 11 mod 12 there are two fixed points ofα.

3.4.2 Proof of theorem 4

Suppose that the boundaries are attained. This will lead to acontradiction. Note that
for odd primesp = 3x2 + 4yz the value ofx is odd. This excludes the boundaries
−x+ 2y = 0, 5x−2y+ 4z= 0, 5x−4y+ 2z= 0 and 7x−4y+ 4z= 0. Sincep =
3x2 + 4yz is prime (p > 3), we can deduce thaty andz are not divisible by 3. This
excludes the boundaries 3x− 3y+ z = 0, 3x− y+ 3z = 0, 6x− 4y+ 3z = 0, and
6x−3y+4z= 0.
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Now let us look at the fixed points: The mappingsA,−A2,−A4,A5 cannot have
any fixed points, (sinceA maps the regionA onto the regionA5 etc.). The matrices
B,A3,D,E,F are involutions. So we have to check their fixed points.

• As before,B has precisely one fixed point:(1,1,k′ = p−3
4 ).

• ForA3 the fixed point conditionA3





x
y
z





!
=





x
y
z



 simplifies to: 3x−2y+2z= 0.

This is a contradiction sincex is odd.
• Similarly, for D, we need to look at 3x− y+2z= 0. Consider the equationp =

3x2 +4yz= 3x2 +12xz+8z2 = 3(x+2z)2−4z2 modulo 3. Withz2 ≡ 0,1 mod 3
and forp≡ 7 mod 12, we find that 1= 2z2 mod 3, a contradiction.

• For E, the fixed point condition is 2x− y+ z= 0. We look atp = 3x2 + 4yz=
3x2 +8xz+4z2 = 4(x+z)2−x2 = (3x+2z)(x+2z), contradicting the primality
of p.

• Finally, for F we have to look at 3x−2y+ z= 0, and plug this into our ternary
form p = 3x2 +4yz= 3x2−12xy+8y2 = 3(x−2y)2−4y2. Again, we consider
this modulo 3: Forp = 12k+7 and with 2y2 = 1 mod 3 we see that there cannot
be a fixed point.

We find that forp = 12k+ 7 there is only the trivial fixed point ofB, namely
(1,1,(p−3)/4). By the standard argumentp can be written asp = 3x2 +4y2.

Sincep= 12k+11 cannot be written asp= 3x2+4y2, there must be a fixed point
of D or F . Any such fixed point induces a representation of the typep = 3x2−4y2,
(see the analysis of these cases above).

This proves theorem 4.

3.5 d = 4

d =
4sm2

tn2 = 4. Here necessarilys= t = m= n = 1, and therefore

B =





−1 2 0
0 1 0
4 −4 1



 .

This matrix generates an infinite partition. Since in the case s = t = 1 we do not
expect anything new, we do not pursue this case further.

4 On infinite but incomplete mappings

One can also consider corresponding mappings induced byB andX for other values
of d. We cannot expect that the number of required matrices is finite.
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Considerp = 3x2 +2yz= 24k+5. Generate the matrices with

B =





−1 2 0
0 1 0
6 −6 1



 .

Take
A = BX andC = A−1 = XB.

A = BX,−A2,A3,−A4,A5 etc.

C = XB,−C2,C3,−C4, etc.

B,−BC,BC2,−BC3,BC4 etc.

−XA2,XA3,−XA4 etc.

(Note:−X andXAare again omitted.) The matrixA does not have a finite order. This
can easily be seen by looking at the eigenvalues ofA, namely−1,−2−

√
3,−2+√

3.
Taking infinitely many of these matrices, we see: The “region” of each matrix

becomes smaller and smaller.
For the powers of−A the row conditions come arbitrarily close to:

(3+
√

3)x−y+(2+
√

3)z> 0

and
−(3+

√
3)x+y− (2+

√
3)z> 0.

There are similar row conditions for the other series of matrices. The series

C = XB,−C2,C3,−C4, etc.

corresponds to
B,−BC,BC2,−BC3,BC4 etc.

in that respect that the row conditions of the first and third row are the same and the
condition of the first row is reversed. Similarly, the two series

A = BX,−A2,A3,−A4,A5 etc.

and
−XA2,XA3,−XA4 etc.

have associated boundaries. This latter series tends to a row condition of

(3+
√

3)x− (2+
√

3)y+z> 0

and
−(3+

√
3)x+(2+

√
3)y−z> 0.

Unfortunately the two boundaries
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(3+
√

3)x−y+(2+
√

3)z> 0

and
(3+

√
3)x− (2+

√
3)y+z> 0

do not correspond. Hence there is a gap in between the regionsof these series.
One would need further matrices to close this gap in order to proceed.
Looking at the conditionsax− by+ cz> 0 andax− cy+ bz> 0, we see how

incidental the above described finite mappings are.
In the case studied by Zagier we havea = b = c. So there are no problems at all.

In the casep = x2 + 2yz we had 2x− y+ 2z. Herea = c so we still do not clearly
see, what the condition in the general case is.

In the casep = 3x2 +4yzwe had 6x−3y+4zand 6x−4y+3z. Here, we see the
importance of the matricesA3 = BXBXBXandXA3 = XBXBXBXwith both rows,
6,−3,4 and−6,4,−3. These matrices are the “turning point”, reversing they and
zcoordinate. We have a complete cycle:(−3,1,−3) ⇒ (3,−1,3) ⇒ (−6,3,−4) ⇒
(6,−3,4) ⇒ (−6,4,−3) ⇒ (6,−4,3) ⇒ (−3,3,−1) ⇒ (3,−3,1). These matrices
can be discovered by a sub-matrix (omit the first row and column) of the form
(

a −b
−b a

)

.

In the incomplete mapping above there are no such “turning points”.
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