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Abstract. We prove new lower bounds on large gaps between integers which
are sums of two squares, or are represented by any binary quadratic form of

discriminant D, improving results of Richards. Let s1, s2, . . . be the sequence

of positive integers, arranged in increasing order, that are representable by any
binary quadratic form of fixed discriminant D, then

lim sup
n→∞

sn+1 − sn

log sn
�

|D|
ϕ(|D|) log |D|

,

improving a lower bound of 1
|D| of Richards. In the special case of sums of

two squares, we improve Richards’s bound of 1/4 to 390
449

= 0.868 . . ..

We also generalize Richards’s result in another direction: If d is composite

we show that there exist constants Cd such that for all integer values of x
none of the values pd(x) = Cd + xd is a sum of two squares. Let d be a prime.

For all k ∈ N there exists a smallest positive integer yk such that none of the

integers yk + jd, 1 ≤ j ≤ k, is a sum of two squares. Moreover,

lim sup
k→∞

k

log yk
�

1
√

log d
.

1. Introduction

Let

S = (s1, s2, s3, s4, s5, s6, . . .) = (0, 1, 2, 4, 5, 8, . . .)

denote the sequence of integers, in increasing order, which can be written as a sum
of two squares of integers. The question of the size of large gaps between these
integers was investigated by Turán and Erdős [9], Warlimont [24] and Richards
[22]; see also [2], [23], [14], [1], [18] and [3] for related or more recent work by
Bambah and Chowla, Shiu, Hooley, Balog and Wooley, Maynard, and Bonfoh and
Enyi. Erdős writes that Turán proved that infinitely often

sn+1 − sn �
log sn

log log sn

holds, which Erdős [9] improved to

(1) sn+1 − sn �
log sn√

log log sn
.

In fact, Erdős’s result was a bit more general, and Warlimont [24] independently
obtained the same estimate (1), again in a more general context for sequences with
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hypotheses slightly different from [9]. In a very short and elegant paper Richards
[22] improved this further to

(2) lim sup
n→∞

sn+1 − sn
log sn

≥ 1

4
.

In fact, the result he obtained was again more general: Fix a fundamental discrim-
inant D and denote by s1, s2, . . . the integers, in increasing order, representable by
any binary quadratic form of discriminant D. Then

(3) lim sup
n→∞

sn+1 − sn
log sn

≥ 1

|D|
.

The special case D = −4 corresponds to sums of two squares and recovers (2).
Apparently, Richards’s record has not been broken since 1982. In this paper we

obtain the following improvements to (2) and (3).

Theorem 1. Let s1 < s2 < . . . be the sequence of positive integers that are sums
of two squares. Then

lim sup
n→∞

sn+1 − sn
log sn

≥ 390

449
= 0.868 . . .

Equivalently, for X → +∞ we have

g(X) ≥
(

390

449
+ o(1)

)
logX,

where
g(X) = max

sn+1≤X
(sn+1 − sn).

Remark 1. The following table records some numerics on g(X).

X g(X)
106 35
107 50
108 60
109 74
1010 105
1011 107

One might wonder what the true order of magnitude of g(X) is. The Cramér
random model would predict that g(X) is of order of magnitude (logX)3/2, see
appendix C.

Theorem 2. Let D 6= 1 be a fundamental discriminant, i.e. D ≡ 1 (mod 4) and D
being squarefree, or D ≡ 0 (mod 4), D4 being squarefree and D

4 ≡ 2 (mod 4) or D
4 ≡

3 (mod 4). Further, let (s1, s2, . . .) be the sequence of positive integers, in increasing
order, that are representable by any binary quadratic form of discriminant D, and
let ϕ denote Euler’s totient function. Then the following two estimates hold:

A)

lim sup
n→∞

sn+1 − sn
log sn

≥ |D| − 1

2|D|(1 + logϕ(|D|))
,

B)

lim sup
n→∞

sn+1 − sn
log sn

≥ |D|
2ϕ(|D|)(log |D|+O((log log |D|)3))

.
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This is a significant improvement over the bound 1/|D| by Richards and now
the dependence on |D| has become very mild. Note that the result in A) is asymp-
totically weaker for large |D| with many prime factors, but is completely explicit
without any O-term.

Our approach for proving Theorem 1 largely follows that of Richards, but in-
troduces two new key ideas: a modular refinement, and in addition a probabilistic
refinement, whereas Richards’ construction is completely deterministic; his argu-
ment used a sieving construction, which amounted to using a variant of the following
proposition with Φ(x) of the form e(4+o(1))x.

Proposition 1. Let Φ be a continuous increasing function, such that for every
Y > 1 there are integers a(Y ) and P (Y ) satisfying:

a) a(Y ) ≤ P (Y ) ≤ Φ(Y )/2 and P (Y ) > Y
b) P (Y ) has no prime factors of the form 4k + 1
c) For every integer 1 ≤ j ≤ Y , at least one of the two conditions is satisfied:

condition (I) There is an odd prime p ≡ 3 (mod 4) and an odd integer k such that
pk+1 divides P (Y ), pk divides a(Y )+j but pk+1 does not divide a(Y )+
j.

condition (II) There is an integer k such that 2k+2 divides P (Y ) and a(Y )+j ≡ 3×2k

(mod 2k+2).

Then for all x ≥ 1 we have

g(x) ≥ Φ−1(x),

where Φ−1 is the inverse function of Φ.

Richards [22] chose the following number to be P (Y ) in his construction:

(4) P (Y ) =
∏
p≤4Y

p≡3 (mod 4)

pβp+1,

where βp = [log(4Y )/ log p]. In this case a(Y ) ∈ [1, P (Y )] is the solution of the
congruence

(5) 4a(Y ) ≡ −1 (mod P (Y )).

From (5) we obtain

4(a(Y ) + j) ≡ 4j − 1 (mod P (Y )) (1 ≤ j ≤ Y ).

Hence there exist a prime p with p ≡ 3 (mod 4) and an odd integer α such that
4j − 1 is divisible by pα, but is not divisible by pα+1. As α ≤ βp, and P (Y ) is
divisible by pβp+1, it follows that condition (I) of Proposition 1 is satisfied. By the
prime number theorem in arithmetic progressions (see for example formula (17.1)
in [16]), we have

P (Y ) < (4Y )2(1+ε)(2Y/ log 4Y ) = exp((1 + ε)4Y ),

for sufficiently large Y ≥ Y (ε), so that (after redefining ε) exp((4 + ε)Y ) is an
admissible choice of Φ(Y ) for arbitrarily small ε > 0. From Proposition 1 we then
recover (2); note that so far we have not used condition (II) in Proposition 1. The
following theorem is the improved version of Proposition 1, with the probabilistic
refinement included.
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Theorem 3. Assume that for Y large enough there are P (Y ) and a(Y ) satisfying
the assumptions of Proposition 1. Suppose that log Φ(Y ) = o(Y log Y ) and that
small prime factors make a small contribution to the size of P (Y ): we assume that

(6) lim
ε→0

lim sup
Y→+∞

logP (Y, ε)

logP (Y )
= 0,

where

P (Y, ε) =
∏

pk||P (Y )
p≤εY

pk.

Further assume that for all ε > 0 and all sufficiently large Y the inequality Y ≤
Φ(Y )ε holds. Then for any ε > 0 and large enough X we have

g(X) ≥ Φ−1(X2−ε).

Remark 2. It would be natural to try to incorporate some of the techniques behind
recent improvements for showing large gaps between primes [19, 11, 10] and other
sieved sets [12] to try to gain a further improvement. Unfortunately neither of these
approaches seems to give an improvement in the situation of gaps between sums of
two squares. Both techniques followed a sieving set-up, where one first would sieve
by ‘small primes’ (following earlier approaches), and then, having sieved by small
primes, follows a more complicated sieving procedure for ‘large primes’ to sieve out
many residue classes for these primes. In the Richards’ setup, having sieved by
primes p < Y 1/2 one is left with those j < Y such that 4j − 1 is the product of
a prime p1 ≡ 3 (mod 4) and other primes all congruent to 1 (mod 4). Richards’
setup proceeds by removing those j for which 4j − 1 is a multiple of p for each
large prime p. It is easy to see that this sieving is perfectly disjoint, and removes
roughly as many elements as possible for each large prime. Therefore there does
not appear to be any scope to refine this ‘large prime’ sieving, and so the newer
techniques offer no improvement in our setup.

Remark 3. In our proof of Theorem 2 we only used the modular, not the proba-
bilistic refinement. However, the proof of Theorem 3 does not use any properties
of the set of primes of the form 4n + 3 outside of the statement of Lemma 7 for
D = −4. This means that for general D our probabilistic refinement essentially
allows us to replace all conditions of the form pα || n + a(Y ) for some odd α by
p || n+ a(Y ) for all p ≥ δY and arbitrarily small positive δ. Hence, the bounds of
Theorem 2 can be doubled by our methods.

Finally, we study the distribution of the set S along consecutive values in poly-
nomial sequences. It is obvious that all values of p(x) = x2 + 1 are in S, and
that all values of polynomials such as 4x + 3 or 2x3 + 2x + 3 are always congru-
ent to 3 mod 4 and hence not in S. Here we concentrate on the following class of
polynomials pd(x) = Cd + xd, where Cd is a suitable constant.

We first study in Theorem 4 composite values of d in more detail, and show that
for these values of d one can find a constant Cd such that all values Cd + xd, x ∈ Z
are not in S. There is no congruence obstruction that would render the results in
part B) and C) as trivial. We are not aware of a comparable result of this type
in the literature, even though, with hindsight, it has an elementary proof. For the
proof we took some inspiration from work of Jagy and Kaplansky [17] on Waring’s
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problem with mixed exponents. The method can apparently not be adapted to
the case of prime values d. We then state a result (Theorem 5), which generalizes
Richards’s result (corresponding to d = 1) to all prime values d.

Theorem 4. A) If d ≥ 4 is even, then for no x ∈ Z the value pd(x) = 6 + xd

is in S.
B) Let d be odd and composite, and let q be the least prime factor of d. Then

for no x ∈ Z the value pd(x) = (cqq)
q + xd is in S, where cq = 2, when

q ≡ 3 (mod 4), and cq = 6, when q ≡ 1 (mod 4).
C) If d ∈ {2, 3}, then for all Cd ∈ Z there exists x ∈ Z such that p(x) = Cd+xd

is in S.

Conjecture 1. (1) If d is prime, then for all Cd ∈ Z there exists x ∈ Z such
that p(x) = Cd + xd is in S.

(2) If d is prime or d = 1, then there are sequences Cd(1), Cd(2), . . . and
x1, x2, . . ., both tending to infinity, such that p(x) = Cd(i) + xd is not in S
for all 0 ≤ x ≤ xi, such that

lim sup
i→∞

xi
logCd(i)

=∞.

In regard to the conjecture we remark that there can exist very long chains
without an element in S. We list several polynomials with long chains: The values
of the polynomial p1(x) = 1123 + x23 are not in S, when −10 ≤ x ≤ 222. This
example has quite small coefficients. Searching a bit more, one finds that p2(x) =
2519011 + x11 is S-free in the interval [−209, 1229], and p3(x) = 6420063 + x3 in
[−81, 717]. In Appendix C we discuss a probabilistic model suggesting that logC1(i)

can be chosen of order of magnitude x
2/3
i .

Theorem 5. Let d ≥ 3 be an odd prime. For all k ∈ N there exists a smallest
positive integer yk such that none of the integers yk + jd, 1 ≤ j ≤ k, is a sum of
two squares. The following estimates hold:

lim sup
k→∞

k

log yk
≥ d− 1

4d
(

1− 1
d +

∑
oddm∈S∩[1,d−1]

1
m

) ,
where for d = 3, 5, 7, 11, 13, 17 one can take 1

10 ,
1
9 ,

5
48 ,

225
2198 ,

135
1307 ,

585
5791 as a lower

bound for the lim sup. If ε > 0 and d is sufficiently large in terms of ε, then

lim sup
k→∞

k

log yk
≥ d− 1

4d(1− 1
d + (CR + ε)

√
log d)

,

where

(7) CR =
1√
2

∏
p≡3 (mod 4)

(
1− 1

p2

)−1/2
≈ 0.7642 . . .

is the Landau-Ramanujan constant. Moreover, when d ≥ 17, then

lim sup
k→∞

k

log yk
>

1

60
√

log d
.

Remark 4. Note that we refrained from introducing our modular and probabilistic
refinements of Theorem 1 in order to keep the statement clean as in this case our
focus was more on the qualitative side of the result.
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Notation: We say that a prime power pα exactly divides an integer n if pα divides
n but pα+1 does not, and use the notation pα || n. The symbol

(
m
n

)
always denotes

the Kronecker symbol of m over n, and we use the usual notation ϕ, µ and γ for
the Euler totient function, Möbius function and the Euler-Mascheroni constant,
respectively. Also, as the proof of Theorem 1 in section 4 requires quite heavy
notation, we have a summary of abbreviations in appendix A and some examples
for the sets of residue classes introduced in appendix B.
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attention to Lemma 9 in [20].
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Federation (agreement no. 075-15-2019-1614).
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2. Outline of the proof of Theorem 1

As the details of the proof of Theorem 1 are quite technical, let us briefly outline
the underlying ideas and structure of the proofs.

The key observation for the modular refinement is as follows: We concluded
that 4j − 1 is exactly divisible by some prime power pα with p ≡ 3 (mod 4) and
odd α, say 4j − 1 = pαr. If 4j − 1 < 4Y is composite, then p < 4

5Y . Primes p

with 4
5Y ≤ p ≤ 4Y included in the product (4) therefore are only used once in the

argument, namely when p = 4j − 1. Now integers in I = {a(Y ) + 1, . . . , a(Y ) + Y }
which are congruent to 3 (mod 4) are obviously not sums of two squares. Hence,
additionally assuming that a(Y ) ≡ 0 (mod 4), we conclude that for j ≡ 3 (mod 4)
we trivially know that a(Y )+j is not a sum of two squares. As 4j−1 ≡ 11 (mod 16)
in this case, we deduce that primes p ≡ 11 (mod 16), with 4Y/5 ≤ p ≤ 4Y , are not
needed in the product (4). In other words, for fixed Y one can use a smaller P , or
for a given size of a(Y ), one can find a larger Y than in Richards’s argument. This
basic approach just described in fact would replace the 1

4 in (2) by(
2× 1

2

(
4

5
+

3

4

(
4− 4

5

)))−1
=

5

16
= 0.3125,

but it can be further refined in two ways: First, considering higher powers of 2
one finds a larger proportion of residue classes for j one can dispense with; for
example the residue classes j ≡ 3, 6, 7 modulo 8 immediately rule out that a(Y ) + j
is a sum of two squares, provided that a(Y ) ≡ 0 (mod 8). Therefore the primes
p = 4j − 1 ≥ 4

5Y with p ≡ 11, 23, or 27 (mod 32) are not needed. Secondly,

also smaller primes p can be considered; for example primes p with 4
9Y ≤ p < 4

5Y
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can only occur in the argument if either 4j − 1 = p or 4j − 1 = 5p. One residue
class one can disregard here is for example p ≡ 11 (mod 32), as for such p both p
and 5p are modulo 32 in the set of residue classes 11, 23 and 27 which were ruled
out above for 4j − 1. This optimization, making use of powers of 2, is our first
refinement, the modular one, and is encoded in condition (II) of Proposition 1.
Properly implementing it as in section 4 would yield a result with

195

449
=

1

2
× 390

449

in place of 390
449 in Theorem 1.

A similar idea is used to prove Theorem 2. Here instead of 4j−1 the progression
|D|j+r shows up, for some r with (Dr ) = −1. Whereas Richards [22] uses all primes

p with (Dp ) = −1, it turns out that for large primes p used only once, namely when

|D|j + r = p (i.e. L/`2 < p ≤ L in the notation of section 7), only p with p ≡ r
(mod |D|) need to be considered. Similarly, for somewhat smaller primes p used
only twice, only two residue classes modulo |D| have to be covered, and so on.
This leads to a considerably smaller product P . An even more elaborate analysis
along the same lines as described before for the modular refinement could probably
lead to a further slight improvement in Theorem 2. For the sake of simplicity of
exposition, though, we again opted not to implement a further refinement here.

The second key observation, the probabilistic refinement, is that when p | a(Y )+j
for some large prime p ≡ 3 (mod 4) that divides P (Y ), then it is rather unlikely that
p2 | a(Y ) + j. Using a probabilistic construction instead of the deterministic one
so far, one can reduce the required exponent βp for large primes p to 1. Theorem 3
indeed shows that under certain additional restrictions on P (Y ) and Φ(Y ) the con-
ditions (I) and (II) of Proposition 1 imply the lower bound g(X) ≥ Φ−1(X2−o(1)).
In this way we can improve the result that comes out of the modular approach by
another factor 2, with the probabilistic approach yielding 2× 195

449 = 390
449 in Theorem

1.

3. The modular refinement I: Proof of proposition 1

The interval I = [1 + a(Y );Y + a(Y )] lies inside the interval [1,Φ(Y )] for all Y
as Y + a(Y ) ≤ 2P (Y ) ≤ Φ(Y ). Let us show that this interval does not contain any
elements of the set S. Indeed, if n ∈ I then for some j ≤ Y one has n = j + a(Y ).
Now, if condition I of Proposition 1 holds for j then n is not a sum of two squares,
because for some prime number p with p ≡ 3 (mod 4) there is an odd number k,
a positive integer aj which is not divisible by p and a positive integer bj such that
P (Y ) = pk+1bj and n = a(Y ) + j ≡ pkaj (mod P (Y )). From this we obtain

n = pkaj + cP (Y ) = pk(aj + bjcp)

for some integer c. Therefore, some prime p congruent to 3 modulo 4 has an odd
exponent in the prime factorization of n and thus n is not in S.

On the other hand, if for j the second condition holds then an analogous argu-
ment shows that n is equal to 2k(4u− 1) for some positive integer u, but numbers
of this form are not sums of two squares.

Hence, for all large enough Y the interval [1,Φ(Y )] contains a subinterval of
length Y that does not intersect with S. Consequently,

g(Φ(Y )) ≥ Y.
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Choosing Y = Φ−1(x) we get the desired result.

4. The modular refinement II: Two-adic preparations

For all ` ∈ N with ` ≥ 2 define

(8) S` = {2ab ∈ {1, . . . , 2`} : a ≤ `− 2, b ≡ 3 (mod 4)}.
Clearly

(9) S` ⊂ S`+1

for all ` ≥ 2.
The following lemma is immediate.

Lemma 1. For ` ≥ 2 we have

#S` = 2`−1 − 1.

In the following it is convenient to use the projection

π` : Z→ {1, . . . , 2`}

x 7→ n ∈ {1, . . . , 2`} such that x ≡ n (mod 2`).

Define the map τ by
τ : Z→ Z; j 7→ 4j − 1,

and for ` ∈ N, ` ≥ 2 define

T`+2 = τ(S`) ⊂ {1, . . . , 2`+2}.
Again, one observes that

(10) T` ⊂ T`+1

for all ` ≥ 4.

Lemma 2. Let ` ≥ 2 and s ∈ S` with s 6= 3×2`−2. Then we have π`(s+2`−1) ∈ S`.

Proof. As s ∈ S`, s 6= 3×2`−2, it follows that s ≡ 2ab (mod 2`) where a ≤ `−3 and
b ≡ 3 (mod 4). Hence s+2`−1 ≡ 2a(b+2`−1−a) (mod 2`), where b+2`−1−a ≡ b ≡ 3
(mod 4), whence π`(s+ 2`−1) ∈ S`. �

Corollary 1. Let ` ≥ 2 and t ∈ T`+2 with t 6= 3×2`−1. Then π`+2(t+2`+1) ∈ T`+2.

Lemma 3. Let ` ≥ 3. Then 3× 2` − 1 6∈ T`+1.

Proof. Let x = 3 × 2` − 1. Since T`+1 ⊂ {1, . . . , 2`+1} and x > 2`+1, clearly
x 6∈ T`+1. �

Let

(11) U3 = {3} ⊂ S3,

and for ` ≥ 4, recursively define

(12) U` = U`−1 ∪ {u+ 2`−1 : u ∈ U`−1} ∪ {3× 2`−2}.
It follows by induction from (8), (9), Lemma 2, (11) and (12) that U` ⊂ S` for all
` ≥ 3. Moreover, for ` ≥ 2 define

V` = {s ∈ S` : π`+2(5τ(s)) ∈ T`+2}.
In a similar way, define

W5 = {24} ⊂ U5,
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and, for ` ≥ 6,

W` = W`−1 ∪ {u+ 2`−1 : u ∈W`−1} ∪ {3× 2`−2}.

As above one shows that

W` ⊂ U`
for all ` ≥ 5. Further, for ` ≥ 2 let

R` = {s ∈ S` : π`+2(5τ(s)) ∈ T`+2 and π`+2(9τ(s)) ∈ T`+2}.

Note that

R` ⊂ V`
for all ` ≥ 5.

Lemma 4. Let ` ≥ 3. Then #U` = 2`−2 − 1 and U` ⊂ V`.

Proof. We prove the lemma by induction on `. For ` = 3, it is immediate to check
that

U3 = V3 = {3},
whence

#U3 = 1 = 2`−2 − 1,

and no element in U3 is divisible by 2`−1. Now let ` ≥ 4, and suppose that
#U`−1 = 2`−3 − 1, no element in U`−1 is divisible by 2`−2 and U`−1 ⊂ V`−1.
The three sets on the right hand side of (12) are disjoint as U`−1 ⊂ {1, . . . , 2`−1},
{u+ 2`−1 : u ∈ U`−1} ⊂ {2`−1 + 1, . . . , 2`}, and no element in U`−1 is divisible by
2`−2. Hence

#U` = 2#U`−1 + 1 = 2`−2 − 1

and no element in U` is divisible by 2`−1. To prove U` ⊂ V`, let s ∈ U`.
Case I: s = 3× 2`−2. Then

1

4

(
5τ(s)− 3× 2`+2 + 1

)
=

1

4

(
5× (4× 3× 2`−2 − 1)− 3× 2`+2 + 1

)
= 3× 2`−2 − 1,

hence

5τ(s) ≡ 4× (3× 2`−2 − 1)− 1 (mod 2`+2).

Now 3×2`−2−1 ≡ 3 (mod 4), so 3×2`−2−1 ∈ S`, whence 4×(3×2`−2−1)−1 ∈ T`+2,
so π`+2(5τ(s)) ∈ T`+2.

Case II: s 6= 3 × 2`−2. Then by definition of U`, we have π`−1(s) ∈ U`−1, so
π`+1(5τ(s)) ∈ T`+1 by our inductive assumption U`−1 ⊂ V`−1. Hence π`+2(5τ(s)) ∈
T`+1 or π`+2(5τ(s)) ∈ {u + 2`+1 : u ∈ T`+1}. If π`+2(5τ(s)) ∈ T`+1 then by (10)
we immediately obtain π`+2(5τ(s)) ∈ T`+2 as required, whereas if π`+2(5τ(s)) ∈
{u+2`+1 : u ∈ T`+1} then (10), Lemma 3 and Corollary 1 again yield π`+2(5τ(s)) ∈
T`+2. �

Lemma 5. Let ` ≥ 5. Then #W` = 2`−4 − 1 and W` ⊂ R`.

Proof. We use a similar strategy as in the proof of Lemma 4; the proof for #W` =
2`−4 − 1 is completely analogous, so let us focus on the second part W` ⊂ R`.
The case ` = 5 is immediately checked directly. Now suppose that ` ≥ 6 and
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W`−1 ⊂ R`−1. For s 6= 3 × 2`−2 we argue in exactly the same way as in the proof
of Lemma 4. Therefore let us only discuss the case s = 3× 2`−2. Here

1

4

(
9τ(s)− 6× 2`+2 + 1

)
=

1

4

(
9× (4× 3× 2`−2 − 1)− 6× 2`+2 + 1

)
= 2× (3× 2`−3 − 1),

hence

9τ(s) ≡ 4× 2× (3× 2`−3 − 1)− 1 (mod 2`+2).

Now 2× (3× 2`−3 − 1) ≡ 6 (mod 8), so 2× (3× 2`−3 − 1) ∈ S`, thus 4× 2× (3×
2`−3−1)−1 ∈ T`+2 and π`+2(9τ(s)) ∈ T`+2; from the proof of Lemma 4 we already
know that π`+2(5τ(s)) ∈ T`+2. �

We now follow the idea of Richards [22] already explained in the introduction.
Let ε > 0. Then, in terms of ε, fix a sufficiently large positive integer ` ≥ 5 and
a sufficiently large positive integer Y , and let the sets S`, T`+2, U`, V`, W`, R` be
defined as above. In the following it is convenient to define

A := T`+2, B := π`+2(τ(U`)), C := π`+2(τ(W`)).

Note that

C ⊂ B ⊂ A
since W` ⊂ U` ⊂ S`. By Lemma 1, Lemma 4 and Lemma 5 we have

#A = #T`+2 = #S` = 2`−1 − 1, #B = #U` = 2`−2 − 1,

#C = #W` = 2`−4 − 1.

Hence if ` is chosen sufficiently large in terms of ε, then

(13)
#A

ϕ(2`+2)
≥ 1

4
(1− ε); #B

ϕ(2`+2)
≥ 1

8
(1− ε); #C

ϕ(2`+2)
≥ 1

32
(1− ε).

Now for each prime p ≤ 4Y define

βp = max
pm≤4Y

m,

let

X1 = (1 + ε)
4

13
Y, X2 = (1 + ε)

4

9
Y, X3 = (1 + ε)

4

5
Y,

and let

P (Y ) =2`
∏

p1≤X1:
p1≡3 (mod 4)

p
βp1+1
1

∏
X1<p2≤X2:

p2≡3 (mod 4),
π`+2(p2) 6∈C

p
βp2+1
2

×
∏

X2<p3≤X3:
p3≡3 (mod 4),
π`+2(p3)6∈B

p
βp3

+1
3

∏
X3<p4≤4Y :

p4≡3 (mod 4),
π`+2(p4)6∈A

p
βp4

+1
4 ,

where p1, . . . , p4 denote prime numbers, varying over the respective intervals. Then
by the prime number theorem in arithmetic progressions (see for example formula
(17.1) in [16]), using the upper bound pβp+1 ≤ (4Y )2, the lower bounds (13) and
the fact that all elements in A are congruent to 3 modulo 4, we obtain

P (Y ) ≤ (4Y )2(1+ε)Y α/ log(4Y ),
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where

α =
1

2

(
4

13
+

(
4

9
− 4

13

)
15

16
+

(
4

5
− 4

9

)
3

4
+

(
4− 4

5

)
1

2

)
=

1

2
× 449

195
.

Hence

(14) P (Y ) ≤ exp

(
(1 + ε)

449

195
Y

)
.

Now use the Chinese Remainder Theorem to find a(Y ) ∈ {1, . . . , P (Y )} such that

(i) 2` | y,
(ii) if p ≡ 3 (mod 4) and p ≤ X1, then 4a(Y ) ≡ −1 (mod pβp+1),

(iii) if p ≡ 3 (mod 4), X1 < p ≤ X2 and π`+2(p) 6∈ C,
then 4a(Y ) ≡ −1 (mod pβp+1),

(iv) if p ≡ 3 (mod 4), X2 < p ≤ X3 and π`+2(p) 6∈ B,
then 4a(Y ) ≡ −1 (mod pβp+1),

(v) if p ≡ 3 (mod 4), X3 < p ≤ 4Y and π`+2(p) 6∈ A,
then 4a(Y ) ≡ −1 (mod pβp+1).

We claim that all the numbers a(Y ) + 1, . . . , a(Y ) + Y satisfy condition (I) or
condition (II) of Proposition 1. To settle the claim, let 1 ≤ j ≤ Y . If π`(j) ∈ S`,
then by property (i) above a(Y ) + j satisfies condition (II) of Proposition 1, so we
can assume that π`(j) 6∈ S`, whence π`+2(τ(j)) 6∈ A. Now τ(j) ≡ 3 (mod 4), so
τ(j) must be divisible by a prime p with p ≡ 3 (mod 4) where 3 ≤ p ≤ 4Y − 1 and
pγ || τ(j) for odd γ ≤ βp.
Case I: p ≤ X1. Then by property (ii) above 4a(Y ) ≡ −1 (mod pβp+1).

Case II: X3 < p ≤ 4Y . Then p ≡ 3 (mod 4) and p | τ(j) imply that τ(j) = p,
so π`+2(τ(j)) = π`+2(p) 6∈ A and by property (v) above, we have 4a(Y ) ≡ −1
(mod pβp+1).

Case III: X2 < p ≤ X3. Then p ≡ 3 (mod 4) and p | τ(j) imply that τ(j) = p
or τ(j) = 5p. As above, if τ(j) = p we conclude that π`+2(p) 6∈ A, whereas if
τ(j) = 5p we obtain π`+2(5p) 6∈ A. Writing p = τ(s) for some positive integer s, we
then find that π`(s) 6∈ V`, whence by Lemma 4 also π`(s) 6∈ U`, hence π`+2(p) 6∈ B.
As B ⊂ A, we get π`+2(p) 6∈ B regardless of whether τ(j) = p or τ(j) = 5p, so by
property (iv) again 4a(Y ) ≡ −1 (mod pβp+1).

Case IV: X1 < p ≤ X2. Then p ≡ 3 (mod 4) and p | τ(j) imply that τ(j) = p
or τ(j) = 5p or τ(j) = 9p. If τ(j) = p, then π`+2(p) = π`+2(τ(j)) 6∈ A. Next,
if τ(j) = 5p, then π`+2(τ(j)) = π`+2(5p) 6∈ A, hence as above π`+2(p) 6∈ B by
Lemma 4. Finally, if τ(j) = 9p, then π`+2(τ(j)) = π`+2(9p) 6∈ A, hence as above
π`+2(p) 6∈ C by Lemma 5. As C ⊂ B ⊂ A, we obtain π`+2(p) 6∈ C regardless
whether τ(j) = p, τ(j) = 5p or τ(j) = 9p, whence 4a(Y ) ≡ −1 (mod pβp+1) by
property (iii) above.

In all cases,

4(a(Y ) + j) ≡ 4j − 1 (mod pβp+1),

so pγ || (a(Y ) + j). Since p ≡ 3 (mod 4) and γ is odd, a(Y ) + j satisfies condition
(I) of Proposition 1.
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Remark 5. One might wonder if the study of further iterations leading to analogous
sets D,E, . . . would reduce the size of P even more. As far as we see this is not the
case because C ∩ 13C = ∅, but this does not exclude other refinements.

5. The probabilistic refinement: Proof of Theorem 3

Let us choose δ = δ(ε) < 1 so that for large enough Y we have logP (Y, δ) <
ε logP (Y ). Set

P(Y ) = P (Y, δ)
∏

p|P (Y )
p>δY

pγp ,

where γp = 1 if there is a positive integer j ≤ Y with pk+1 | P (Y ) and

a(Y ) + j ≡ pkaj (mod P (Y ))

for some odd k with aj coprime to p. Let γp = 0 otherwise. Here a(Y ) is the same
as in Proposition 1.

Note that P(Y ) ≤ P (Y )1/2+ε/2. Indeed, every exponent γp is at most half the
exponent of p > δY in the factorization of P (Y ). Therefore

P(Y ) ≤ P (Y, δ)

√
P (Y )

P (Y, δ)
=
√
P (Y, δ)P (Y ) < P (Y )1/2+ε/2

by the choice of δ. Now choose a positive integer a0(Y ) such that the congruence
a0(Y ) ≡ a(Y ) (mod P(Y )) and the inequalities 0 < a0(Y ) ≤ P(Y ) hold. Define
the family of intervals

In = [1 + a0(Y ) + nP(Y );Y + a0(Y ) + nP(Y )],

where the variable n takes integer values with 0 ≤ n ≤ δY . Let us show that at
least one of the constructed intervals does not contain any sum of two squares.
Indeed, assume that m ∈ In is an element of S. As m lies in In, for some j ≤ Y
the equality m = a0(Y ) + j + nP(Y ) holds. By the definition of a(Y ) and P (Y ),
at least one of the following conditions holds:

(I) There are positive integers k and m with 2k+2 | P (Y ) and

a(Y ) + j ≡ 2k(4m− 1) (mod P (Y )).

In this case we also have

a0(Y ) + j ≡ 2k(4m− 1) (mod P(Y ))

and 2k+2 | P(Y ), therefore m cannot be the sum of two squares, which is a
contradiction.

(II) There are an odd prime p and an odd positive integer k with pk+1 | P (Y )
and

a(Y ) + j ≡ pkaj (mod P (Y ))

for some aj that is not divisible by p. If p ≤ δY then these congruences
and divisibilities remain true for a0(Y ) and P(Y ), which once again leads
us to a contradiction. If, on the contrary, p > δY , then necessarily γp = 1
and hence

m = a0(Y ) + j + nP(Y ) ≡ 0 (mod p).

As p ≡ 3 (mod 4) and m is the sum of two squares, we have p2 | m.
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Notice now, that for fixed j ≤ Y and p > δY there exists at most one n such
that a0(Y ) + j + nP(Y ) is divisible by p2. Indeed, otherwise for two distinct
0 ≤ n1, n2 ≤ δY we have

a0(Y ) + j + n1P(Y ) ≡ a0(Y ) + j + n2P(Y ) (mod p2).

As p2 - P(Y ) we obtain n1 ≡ n2 (mod p), which is impossible because

0 < |n1 − n2| ≤ δY < p.

Furthermore, for a fixed prime p > δY there are at most 1 + 1/δ ≤ 2/δ numbers
j ≤ Y with a0(Y ) + j ≡ 0 (mod p), as any two numbers having this property are
congruent modulo p. Thus, the number of n for which In contains a sum of two
squares is at most the number of all exceptional pairs (j, p), i.e. at most 2F/δ,
where F is the number of prime factors p > δY of P (Y ). Clearly, P (Y ) ≥ (δY )F

so

F ≤ logP (Y )/ log(δY )� logP (Y )/ log Y ≤ log Φ(Y )/ log Y = o(Y )

due to the conditions of Theorem 3. Therefore, all but o(Y ) of the intervals In do
not intersect S. In particular, for all large enough Y there is at least one interval
with this property.

Next, all the resulting intervals lie inside the interval [1, Y Φ(Y )1/2+ε/2] because

Y + a0(Y ) + δY P(Y ) ≤ Y + P(Y ) + δY P(Y ) ≤ Y P (Y )1/2+ε/2 ≤ Y Φ(Y )1/2+ε/2.

By the conditions of Theorem 3 for all large enough Y we have Y ≤ Φ(Y )ε/2.
Consequently, for all large Y the inequality Y Φ(Y )1/2+ε/2 ≤ Φ(Y )1/2+ε is true,
which means that the interval [1,Φ(Y )1/2+ε] contains a subinterval of length Y
that does not contain sums of two squares. Choosing Y = Φ−1(X2/(1+2ε)), we
obtain the estimate g(X) ≥ Φ−1(X2/(1+2ε)). As ε was an arbitrary positive real
number, this concludes our proof.

6. Proof of Theorem 1

In this section we will prove Theorem 1. By (14), there are P (Y ) and a(Y ) which
satisfy the conditions of Proposition 1 and the relation

logP (Y ) = (449/195 + o(1))Y.

Furthermore, all the prime factors of P (Y ) are at most 4Y and all the exponents
of p in the factorization do not exceed

βp + 1 = [log(4Y )/ log p] + 1 ≤ 2βp.

Therefore, if pα || P (Y ) then pα ≤ 16Y 2. It follows that small primes make a small
contribution in P (Y ). Indeed, if ε > 0 then

P (Y, ε) =
∏

pk||P (Y )
p≤εY

pk ≤
∏

pk||P (Y )
p≤εY

16Y 2 ≤ (4Y )2π(εY ).

Consequently,

logP (Y, ε) ≤ 2π(εY ) log(4Y ) ∼ 2
εY

log εY
log Y ∼ 2εY.

As we also have logP (Y )� Y , we finally get
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lim
ε→0

lim sup
Y→+∞

logP (Y, ε)

logP (Y )
≤ lim
ε→0

2ε

c
= 0,

for some c > 0. Thus, the assumption (6) of Theorem 3 is satisfied. Choosing
Φ(Y ) = exp((449/195 + ε)Y ), we observe that also the assumptions log Φ(Y ) =
o(Y log Y ) and Y ≤ Φ(Y )ε are satisfied, so from Theorem 3 for arbitrary ε1 > 0 we
get

g(X) ≥ Φ−1(X2−ε1)

= (449/195 + ε)−1(2− ε1) logX

≥ (390/449− 2ε− 195/449ε1) logX.

Small enough values of ε and ε1 give the desired result.

7. Longer gaps between numbers representable by binary quadratic
forms of discriminant D: Proof of Theorem 2

Again, we follow the idea of Richards [22]: By our assumptions on D in Theorem
2, we can choose and fix a positive integer r ∈ {1, . . . , |D|} such that the Kronecker
symbol (D/r) has value (

D

r

)
= −1.

Also note that necessarily |D| ≥ 3. The following three well known results are
provided for easy later reference.

Lemma 6. For fixed m ∈ Z\{0} with m ≡ 0 (mod 4) or m ≡ 1 (mod 4), the
Kronecker symbol (m· ) is periodic of period dividing |m|, i.e. for all k, n ∈ Z where
n 6= 0 and n+ km 6= 0 we have(

m

n+ km

)
=
(m
n

)
.

Proof. This is Theorem 2.29 in [5]. �

Lemma 7. Let D 6= 1 be a fundamental discriminant, n ∈ N and p be a prime such
that pα exactly divides n for odd α and with (Dp ) = −1. Then n is not representable

by any binary quadratic form of discriminant D.

Proof. Let RD(n) be the total number of representations of n by any binary qua-
dratic form of discriminant D. Then by Theorem 3 in [25, §8], we have

(15) RD(n) =
∑
`|n

(
D

`

)
.

Since (D` ) is multiplicative in `, RD(n) is multiplicative in n as well. Now α is odd

and (Dp ) = −1, whence RD(pα) = 0. By multiplicativity, as pα exactly divides n,

also RD(n) = 0, so indeed n is not represented by any binary quadratic form of
discriminant D. �

Lemma 8. Let n ≥ 3 be an integer. Then∑
d|n

log d

d
� (log log n)

2
.
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Proof. As shown on page 208 of [15], we have∑
d|n

log d

d
� (log log n)σ−1(n),

where

σ−1(n) =
∑
d|n

1

d
=
σ(n)

n

and
σ(n) =

∑
d|n

d� n log log n

due to Gronwall’s theorem (see for example Theorem 323 in [13]). �

Next, let
t = ϕ(|D|),

and let `1 = 1, . . . , `t = |D| − 1 be the coprime residue classes modulo |D|, ordered
by size. Further, for i ∈ N define

(16) Ti = {x ∈ (Z/|D|Z)∗ : `jx ≡ r (mod |D|) for some j ≤ i},
and let π be the projection

π : Z→ Z/|D|Z.
Further, fix ε > 0 and in terms of ε and |D| fix a sufficiently large positive integer
k. Moreover, let

L = |D|(k + 1),

and for prime p let
βp = max

pm≤L
m.

Finally, define

(17) P =
∏

pt≤L/`t:
(pt,D)=1

p
βpt+1
t

t−1∏
i=1

∏
L/`i+1<pi≤L/`i:

π(pi)∈Ti

p
βpi

+1

i ,

where p1, . . . , pt denote prime numbers, varying over the respective intervals. Using
the observations

pβp+1 ≤ L2

and
#Ti = i (i ≤ t)

together with the prime number theorem in arithmetic progressions, from (17) we
obtain

P ≤ L2(1+ε)α,

where

α =
L/`t

logL/`t
+
L

t

t−1∑
i=1

i(1/`i − 1/`i+1)

log(L/`i − L/`i+1)

≤ L/`t
logL/`t

+
L

t

1

logL/`2t

t−1∑
i=1

i

(
1

`i
− 1

`i+1

)
≤ L/`t

logL/`2t
R(|D|),
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say; here

R(|D|) =

t−1∑
i=1

i

`i
−

t−1∑
i=1

i

`i+1
+

t

`t
=

t∑
i=1

1

`i
.

To estimate R(|D|), we rewrite the sum and use Lemma 8 to obtain

R(|D|) =
∑
n≤|D|

(n,D)=1

1

n
=
∑
n≤|D|

1

n

∑
d|(n,|D|)

µ(d) =
∑
d||D|

µ(d)

d

∑
k≤|D|/d

1

k

=
∑
d||D|

µ(d)

d
(log |D|+ γ − log d+O(d/|D|))

= (log |D|+ γ)
∑
d||D|

µ(d)

d
+O

∑
d||D|

log d

d


=
ϕ(|D|)
|D|

log |D|+O((log log |D|)2).

Let

δ =
|D|
`t

=
|D|
|D| − 1

.

With

lim
k→+∞

logL

log(L/`2t )
= 1

we obtain, for k sufficiently large in terms of |D| and ε > 0,

P ≤ exp

(
2(1 + 2ε)

L

`t

(
t

|D|
log |D|+O((log log |D|)2)

))
≤ exp

(
2(1 + 2ε)δ(k + 1)

(
t

|D|
log |D|+O((log log |D|)2)

))
,

and from this

k + 1

logP
≥ 1

2(1 + 2ε)δ( t
|D| log |D|+O((log log |D|)2))

=
(|D| − 1)/ϕ(|D|)

2(1 + 2ε)(log |D|+O((log log |D|)3))
.(18)

Now choose y ∈ {1, . . . , P} such that

|D|y ≡ r (mod P )

which is possible as (D,P ) = 1 by definition (17) of P . We claim that none of
the numbers y + 1, . . . , y + k can be represented by any binary quadratic form of
discriminant D, which together with y ≤ P and (18) proves the theorem. To settle
the claim, fix j ∈ {1, . . . , k}. Now

(19) |D|(y + j) ≡ |D|j + r (mod P ).

Since

−1 =

(
D

r

)
=

(
D

|D|j + r

)
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by Lemma 6, we conclude that |D|j+r must be divisible by a prime p with (D/p) =
−1 to an odd power γ at most βp: Writing

|D|j + r = pγ`

where ` is a certain positive integer coprime to D and p, we find that |D|j + r ≤
|D|(k + 1) = L, so γ ≤ βp. If γ ≥ 3, then p ≤ L1/3. As L/`t ≥ L1/3 for sufficiently
large k (in terms of D), by (17) we can then assume that pβp+1 divides P . If γ = 1,
then |D|j + r = p`, so p ≤ L. Moreover, if L/`i+1 < p ≤ L/`i, then ` ≤ `i, so
π(p) ∈ Ti by definition (16) of Ti, whence pβp+1 again divides P by (17) as well
as in case p ≤ L/`t, once more by definition (17). Using (19), we conclude that p
divides y + j to an odd power, so as (D/p) = −1 by Lemma 7 the number y + j
indeed cannot be represented by any binary quadratic form of discriminant D. This
proves part B) of Theorem 2. For part A), which is without any O-term, we use
`i ≥ i for all i ∈ N to obtain the alternative upper bound

R(|D|) =

t∑
i=1

1

`i
≤

t∑
i=1

1

i
≤ (1 + log t).

Now as above we obtain, for k sufficiently large in terms of |D| and ε,

P ≤ exp (2(1 + 2ε)δ(k + 1)(1 + log t)) ,

and from this
k + 1

logP
≥ |D| − 1

2(1 + 2ε)|D|(1 + logϕ(|D|)
.

We now proceed as above to complete the proof of part A).

8. Sums of two squares in the sequence Cd + xd: Proof of Theorem 4

Proof. A) If x is odd, then pd(x) ≡ 2 + 1 = 3 (mod 4), hence pd(x) 6∈ S. If x
is even, then pd(x) ≡ 6 + 0 = 6 (mod 8), hence pd(x) 6∈ S.

B) Let d be odd and a composite number d = qd2, where q is the least prime
factor of d. Then pd(x) = N = (cqq)

q + xd. Suppose that N ∈ S.

Case I: Let q ≡ 3 (mod 4). As cq = 2, it is not possible that x is even, as
otherwise N/2q ≡ 3 (mod 4), and N 6∈ S. If x ≡ 3 (mod 4), then N ≡ 3
(mod 4), and again N 6∈ S. Therefore x ≡ 1 (mod 4). One can factorize
N as follows:

(20) N = (cqq)
q + xd = (cqq + xd2)

(
q∑
i=1

(−1)i+1(cqq)
i−1xd−id2

)
= N1N2,

say. Note that N1 = cqq+xd2 ≡ 2q+1 ≡ 3 (mod 4), as x ≡ 1 (mod 4) and
q ≡ 3 (mod 4). Further, N ∈ S. Hence there exists a prime t ≡ 3 (mod 4)
which must divide both factors N1 and N2. Now cqq ≡ −xd2 (mod t). This
gives

N2 = xd−d2 − (cqq)x
d−2d2 ± · · ·+ (cqq)

q−1(21)

≡ xd−d2 + xd−d2 + · · ·+ xd−d2 ≡ qxd−d2 (mod t).

We distinguish whether t | q or t - q. Let us first assume that t | q, then
also t | x, as t | cqq+ xd2 . Now d2 > 1, so t exactly divides N1 = cqq+ xd2 .
On the other hand t exactly divides N2 to an even power, as with cq = 2
each of the summands (2q)i−1xd−id2 is divisible by qq−1, and all but one
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summand are even divisible by qq. Hence tq−1 exactly divides N2, and tq

exactly divides N . Since q ≡ t ≡ 3 (mod 4), this contradicts N ∈ S.
Hence t - q, so from (21) we obtain that t | x and hence t | 2q, so t = 2,

contradicting t ≡ 3 (mod 4).

Case II: Let q ≡ 1 (mod 4). As cq = 6, it is not possible that x is even,
as otherwise N/2q ≡ 3 (mod 4), and N 6∈ S. If x ≡ 3 (mod 4), then
N ≡ 3 (mod 4), and again N 6∈ S. Therefore x ≡ 1 (mod 4). One can
factorize N in the same way as in (20). Note that the first factor satisfies
N1 = cqq+xd2 ≡ 6q+1 ≡ 3 (mod 4), as x ≡ 1 (mod 4) and q ≡ 1 (mod 4).
As in Case I, this factor N1 contains a prime divisor t ≡ 3 (mod 4) with
odd multiplicity, which must also divide the second factor N2. Further, as
in Case 1) we have cqq ≡ −xd2 (mod t) from which we obtain (21). In this
case t - q is obvious, as t ≡ 3 mod 4 and q ≡ 1 (mod 4) are distinct primes.
It follows from (21) that t | x and hence also t | 6q. Therefore t = 3. But
then the first factor N1 = 6q + xd2 shows that 3 | x. With d2 > 1 we
see again that t = 3 exactly divides N1, whereas in the second factor N2

each term (cqq)
i−1xd−id2 is divisible by an even power of 3, and exactly one

summand is divisible by 3 with the minimum exponent q− 1. Hence again
N2 is exactly divisible by 3 with even exponent, and so N 6∈ S.

C) It is known that every integer N ∈ Z can be written in the form N =
x2 + y2 + z3, with z ∈ Z. Indeed, Elkies, Kaplansky and Adler [7] showed
the existence of a finite set of congruences covering all integers:

2x+ 1 = (x3 − 3x2 + x)2 + (x2 − x− 1)2 − (x2 − 2x)3

4x+ 2 = (2x3 − 2x2 − x)2 + (2x3 − 4x2 − x+ 1)2 − (2x2 − 2x− 1)3

8x+ 4 = (x3 + x+ 2)2 + (x2 − 2x− 1)2 − (x2 + 1)3

16x+ 8 = (2x3 − 8x2 + 4x+ 2)2 + (2x3 − 4x2 − 2)2 − (2x2 − 4x)3

16x = (x3 + 7x− 2)2 + (x2 + 2x+ 11)2 − (x2 + 5)3

Now, for every N ∈ Z there exists some z ∈ Z such that N−z3 = N+(−z)3
is a sum of two squares. An easier argument holds for the exponent d = 2.
Every odd integer is a difference of two consecutive squares: 2k + 1 =
(k + 1)2 − k2 = y2 − z2. With x = 0 or 1 we see that every integer can be
written as N = x2 + y2 − z2 and hence that for every N ∈ Z there exists a
z ∈ Z such that N + z2 = x2 + y2.

�

9. Long gaps between sums of two squares in sparse sequences:
Proof of Theorem 5

In order to prove Theorem 5, we need the following auxiliary results.

Lemma 9. Let d be an odd prime as in the statement of Theorem 5, and let j be
a positive integer. Then

gcd

(
(4dj)d − 1

4dj − 1
, 4dj − 1

)
= 1.

Proof. Let a = 4dj. Then the claim is

gcd

(
ad − 1

a− 1
, a− 1

)
= 1.
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As ai ≡ 1 (mod a− 1), when a > 2, one also has:

ad − 1

a− 1
=

d−1∑
i=0

ai ≡
d−1∑
i=0

1 ≡ d (mod a− 1).

Applied with a = 4dj, this gives

gcd

(
(4dj)d − 1

4dj − 1
, 4dj − 1

)
= (d, 4dj − 1) = 1

and the claim follows. �

Lemma 10. Let S(x) denote the counting function of S\{0}. For x ≥ 2 we have∣∣∣∣S(x)− CR
x√

log x

∣∣∣∣ ≤ 9.62
x

log x
,

where CR is the Landau-Ramanujan constant (see equation (7)).

Proof. This is Lemma 9 a) in [20]. �

Lemma 11. Let C1 = 9.62. For x ≥ 2 we have∑
1≤m≤x,m∈S

1

m
≤ 2CR

√
log x+ C1 log log x+ 1− 2CR

√
log 2− C1 log log 2

+
CR√
log x

+
C1

log x
.

Proof. By Lemma 10 the inequality

S(x) ≤ CR
x√

log x
+ C1

x

log x

holds. Applying partial summation with am = 1 if m ∈ S, and am = 0 otherwise,
we obtain ∑

2≤m≤x

am
m

=
1

x

∑
2≤m≤x

am +

∫ x

2

∑
m≤u

am

 1

u2
du.

It follows for x ≥ 2 that∑
1≤m≤x,m∈S

1

m
≤ 1 +

CR√
log x

+
C1

log x
+

∫ x

2

(
CR

u
√

log u
+

C1

u log u

)
du

≤ 2CR
√

log x+ C1 log log x− 1 +
CR√
log x

+
C1

log x

− 2CR
√

log 2− C1 log log 2.

�

Lemma 12. Let ε > 0 and let d be sufficiently large in terms of ε. Then

(22)
∑

m≤d,m odd,m∈S

1

m
≤ (CR + ε)

√
log d.

Proof. It clearly follows from Lemma 10, for sufficiently large d ≥ dε, that∑
1≤m≤d,m∈S

1

m
≤ (2CR + ε)

√
log d
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holds. As the sum in our estimate only runs over odd values m we observe: if
m ∈ S is odd, then 2m, 4m, . . . is also in S. The sum over a dyadic interval gives a
bounded contribution, hence the major contribution comes from small m ≤ x/2i,
for some large i. Hence the “odd” contribution is almost half the contribution of
all such power-of-2-multiples of m, also counted in the above sum:

1

m
≤ 1

m
+

1

2m
+ · · ·+ 1

2im
=

2

m
− 1

2im
.

Hence for d ≥ dε we obtain (22). �

Lemma 13. For d ≥ 17 we have

(23)
∑

1≤m≤d,m∈S

1

m
≤ 13

√
log d.

Proof. Let CR be the Landau-Ramanujan constant (see equation (7)) and let C1 =
9.62. Using the inequality

log log x ≤ 2

e

√
log x (x ≥ 3),

which is easy to verify by calculus, we obtain

2CR
√

log d+ C1 log log d < 8.66
√

log d.

Further, observing for d ≥ 17 the inequality

1 +
CR√
log d

+
C1

log d
− 2CR

√
log 2− C1 log log 2 < 4.242

√
log d

then via Lemma 11 confirms (23). �

Proof of Theorem 5. For convenience, let us introduce the function fd(j) = jd.
Recall that d ≥ 3 and fix the gap size k. For each prime p ≤ 4kd, p ≡ 3 (mod 4)
let β = βp be the highest power with pβ ≤ 4kd. Let

P =
∏
p≤4k

p≡3 (mod 4),(p,d)=1

pβp+1
∏

m≤d,(m,4d)=1
m∈S

∏
p≤4kd/m

pm≡−1 (mod 4d)

pβp+1.

Define y ∈ {1, . . . , P} by the congruence (4d)dy ≡ −1 (mod P ). We show below
that none of the integers in

(24) I = {y + fd(1), . . . , y + fd(k)}

is the sum of two squares. To estimate the size of P , by the prime number theorem
in arithmetic progressions, we have∏

p≤4k
p≡3 (mod 4),(p,d)=1

pβp+1 ≤ (4k)2(1+ε)2k/ log(4k) ≤ exp(4(1 + ε)k).

Similarly, for any integer m with

0 < m ≤ d, (m, 4d) = 1



LONGER GAPS BETWEEN VALUES OF BINARY QUADRATIC FORMS 21

we obtain ∏
p≤4kd/m

pm≡−1 (mod 4d)

pβp+1 ≤ (4kd)2(1+ε)4kd/(mϕ(4d) log(4kd/m))

= exp

(
8kd(1 + ε) log(4kd)

ϕ(4d)m log(4kd/m)

)
.

Now
log(4kd)

log(4kd/m)
= 1 +O(1/ log k) = 1 + o(1)

as k → +∞. Noting that ϕ(4d) = 2ϕ(d) = 2(d− 1) as d is an odd prime, we obtain

logP ≤ 4(1 + ε)k +
∑

oddm∈S∩[1,d−1]

4kd(1 + ε)(1 + o(1))

(d− 1)m

≤
4kd(1 + ε)(1 + o(1))

(
1− 1

d +
∑

oddm∈S∩[1,d−1]
1
m

)
d− 1

.

Consequently,

k

logP
≥ d− 1

4d(1 + ε)(1 + o(1))
(

1− 1
d +

∑
oddm∈S∩[1,d−1]

1
m

) ,
so using y ≤ P we find that

(25) lim sup
k→∞

k

log y
≥ d− 1

4d
(

1− 1
d +

∑
oddm∈S∩[1,d−1]

1
m

)
as required in the first part of Theorem 5; the explicit numerical values for d =
3, 5, 7, 11, 13, 17 follow from a straightforward computation.

From (25) and Lemma 12 we obtain the second statement in Theorem 5.
Finally, (25) and Lemma 13 yield

lim sup
k→∞

k

log yk
≥ d− 1

4d
(

1 +
∑
m∈S∩[1,d−1]

1
m

) ≥ d− 1

4d(1 + 13
√

log d)
≥ 1

60
√

log d
,

when d ≥ 17. Clearly, for all particular regions of d better constants can be
achieved.

To prove our claim from above, that none of the integers in (24) is a sum of two
squares, note that for 1 ≤ j ≤ k

(4d)d(y + fd(j)) ≡ fd(4dj)− 1 (mod P ).

Now a = 4dj − 1 is a divisor of fd(4dj) − 1 and further, as a ≡ 3 (mod 4) and
(a, d) = 1, the number a is exactly divisible by some prime power pα with

(26) p ≡ 3 (mod 4), p 6= d and α odd.

By Lemma 9 the codivisor (4dj)d−1
4dj−1 is coprime to a, which implies that fd(4dj)− 1

is exactly divisible by this prime power pα. Assume that pα is the smallest prime
power dividing 4dj − 1 with the condition in (26). As α ≤ βp, if p ≤ 4k, then P
is divisible by pα+1 | pβp+1, so that y + fd(j) is also exactly divisible by pα, and
is therefore not the sum of two squares. On the other hand, if p > 4k, then for
sufficiently large k the number 4dj−1 cannot be divisible by any other prime power
qν ≡ 3 (mod 4), because in this case due to the minimality of pα, α odd, we obtain
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qνp ≥ p2 > 16k2 and thus 4dj−1 > 16k2 > 4dk−1, contradicting j ≤ k. Therefore,
the number m = (4dj − 1)/p is a sum of two squares and also 4dj−1

p < 4dk
4k = d,

so that pm = 4dj − 1 ≡ −1 (mod 4d) and pβp+1 divides P . Now α ≤ βp, hence
y + fd(j) is exactly divisible by pα and is not a sum of two squares. �

10. Concluding remarks

Remark 6. One may wonder about another connection to primes. It is known
that every interval of type [X,X + X0.525], where X is sufficiently large, contains

at least � X0.525

logX many primes.

Let ε > 0, and n ≥ nε be sufficiently large. By a binomial estimate, see [21],
the interval [2n − 20.525n, 2n] must contain primes where the proportion of binary
digits being ‘1’ is, for any ε > 0, larger than 0.7375 − ε. Similarly, the interval
[2n, 2n + 20.525n] contains many primes with at least (0.7375 − ε)n many binary
digits being ‘0’.

In view of 2n+2i it is clear that S contains elements with very few binary 1-digits
only. Interestingly, with another identity one can also achieve this for sums of two
squares with only very few ‘0’ digits: The integers of the form

N =

(
2n+1∑
i=0

2i

)
−
(

22
n

+ 2
)

= 3(22
n

− 1)

= 3(22
1

− 1)(22
1

+ 1)(22
2

+ 1) · · · (22
n−1

+ 1)

= 9(22 + 1)(24 + 1) · · · (22
n−1

+ 1)

have exactly two binary digits being zero. Here we repeatedly used the binomial
formula 22i − 1 = (2i + 1)(2i − 1). Moreover as a product of integers

9, 22 + 1, 24 + 1, . . . ,

where each factor is a sum of two squares, and as this property is multiplicative,
N is itself a sum of two squares. Hence the problem of binary digits in the set S is
considerably easier than in the set of primes, due to explicit identities.

For the quadratic form 3x2 + y2 this also works with exactly three ‘0’ digits. We
use several times the identity

(23
i

− 1)(22×3
i

+ 23
i

+ 1) = 23
i+1

− 1.

Now

N = 7(23
n

− 1)

= 7(23 − 1)(26 + 23 + 1)× (218 + 29 + 1)× · · · × (22×3
n−1

+ 23
n−1

+ 1)

=

(
3n+2∑
i=0

2i

)
−
(

21 + 22 + 23
n
)
.

Note that N is a product of 49 = 3× 42 + 12 and integers of the form

22×3
i

+ 23
i

+ 1 = 3x2 + (x+ 1)2 = 4x2 + 2x+ 1

with x = 23
i−1. A product of two integers of the form 3x2 + y2 is again of this

type, in view of the identity

(3a2 + b2)(3c2 + d2) = 3(bc+ ad)2 + (3ac− bd)2.
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Hence N is of type 3x2 + y2 and has only three of its binary digits being 0.

Remark 7. It is trivial that short gaps exist between integers in S, such as
3 = (n2 + 4) − (n2 + 1). Brüdern and Dietmann [4] showed that each positive
integer occurs as the gap between pairs in S infinitely often, and they also study
triples of integers in S. In view of the Green-Tao theorem on primes in arithmetic
progressions it is clear that S contains arbitrarily long arithmetic progressions.
Good upper bounds on the length of progressions in S in terms of the size of the
gap have recently been given in [8].
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Appendix A. Table of abbreviations

In this appendix we briefly collect some notation used in the proof of Theorem 1
in section 4. First recall the maps

π` : Z→ {1, . . . , 2`}, x 7→ x (mod 2`)

and

τ : Z→ Z; j 7→ 4j − 1.

The sets S`, T`, U`, V`, W` and R` are then defined by

Sl = {2ab ∈ {1, . . . , 2`} : a ≤ `− 2, b ≡ 3 (mod 4)} (` ≥ 2),

T`+2 = π`+2(τ(S`)) (` ≥ 2),

U3 = {3},

U` = U`−1 ∪ {u+ 2`−1 : u ∈ U`−1} ∪ {3× 2`−2} (` ≥ 4),

V` = {s ∈ S` : π`+2(5τ(s)) ∈ T`+2} (` ≥ 2),

W5 = {24},

W` = W`−1 ∪ {u+ 2`−1 : u ∈W`−1} ∪ {3× 2`−2} (` ≥ 6),

R` = {s ∈ S` : π`+2(5τ(s)) ∈ T`+2 and π`+2(9τ(s)) ∈ T`+2} (` ≥ 2).

Note the inclusions

R` ⊂ V` ⊂ S` (` ≥ 5),

W` ⊂ U` ⊂ S` (` ≥ 5),

U` ⊂ V` (` ≥ 3),

W` ⊂ R` (` ≥ 5).



LONGER GAPS BETWEEN VALUES OF BINARY QUADRATIC FORMS 25

Appendix B. Some examples for the sets of residue classes
introduced in section 4

We have

S2 = {3},
S3 = {3, 6, 7},
S4 = {3, 6, 7, 11, 12, 14, 15},
S5 = {3, 6, 7, 11, 12, 14, 15, 19, 22, 23, 24, 27, 28, 30, 31},
T4 = {11},
T5 = {11, 23, 27},
T6 = {11, 23, 27, 43, 47, 55, 59},
T7 = {11, 23, 27, 43, 47, 55, 59, 75, 87, 91, 95, 107, 111, 119, 123},
U3 = {3} = V3 ⊂ S3,

U4 = {3, 11, 12} = V4 ⊂ S4,

U5 = {3, 11, 12, 19, 24, 27, 28} = V5 ⊂ S5,

π5(τ(U3)) = {11} ⊂ T5,
π6(τ(U4)) = {11, 43, 47} ⊂ T6,
π7(τ(U5)) = {11, 43, 47, 75, 95, 107, 111} ⊂ T7,

W5 = {24} = R5,

π7(τ(W5)) = {95} ⊂ π7(τ(U5)) ⊂ T7.

Appendix C. Cramér’s model, adapted to sums of two squares

In this section we briefly discuss the adaptation of Cramér’s model (see [6])
for primes to the set S. The Cramér random model for the set S of numbers
representable as the sum of two squares suggests that distributional properties of S
should be similar to that of a random set R where each integer k > 1 is included in
R independently with probability CR/

√
log k. Here CR is the Landau-Ramanujan

constant

CR =
1√
2

∏
p≡3 (mod 4)

(
1− 1

p2

)−1/2
≈ 0.7642 . . .

(already introduced in (7)), chosen such that the size of S ∩ {1, . . . , x} is asymp-
totically that of R∩ {1, . . . , x} with probability 1.

Given c > 0, let f(k) := bc(log k)3/2/CRc and let Ek denote the random event
that

R∩ {k + 1, . . . , k + f(k)} = ∅.
We then see that

P(Ek) =

f(k)∏
j=1

(
1− CR√

log(k + j)

)
= exp

(
−CR(1 + o(1))f(k)√

log k

)
= k−c+o(1).

If c > 1 then
∑
k P(Ek) <∞, and so the Borel-Cantelli lemma implies that almost

surely only finitely many of the events Ek occur. On the other hand, we see that
the events Edk(log k)2e are independent for k large enough (the underlying sets are
disjoint) and if c < 1 then

∑
k P(Edk(log k)2e) =∞. Therefore by the Borel-Cantelli
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lemma if c < 1 then almost surely infinitely many of the events occur. Therefore
we find that if R = {r1, r2, . . . } with r1 < r2 < . . . then with probability 1 we have

lim sup
k→∞

rk+1 − rk
(log rk)3/2

=
1

CR
.

In particular, the Cramér random model would predict that the maximal gap be-
tween elements of S∩{1, . . . , x} should be of size roughly (log x)3/2. (It is likely the
maximal gap would differ slightly from the precise prediction (1/CR+o(1))(log x)3/2

from this model because the model does not account for divisibility effects caused
by small primes.)
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