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Overview

This habilitation thesis consists of twelve papers which I have written together with a number of
co-authors during my time as a postdoc at the University of Hamburg, which started in October
2014.

The papers can be naturally split into two topics, tree-structure in separation systems and
infinitary combinatorics, which constitute the two parts of the thesis.

Part I

Tree structure in separation systems

The concept of a tree-decomposition of a graph was first introduced by Halin [74], and later
developed by Roberston and Seymour [109] as part of their work on graph minors. Graphs with
tree-decompositions of low width have a global tree-like structure, which makes them simpler to
work with. For example many difficult algorithmic problems are much simpler on graphs with
bounded tree-width. It is therefore useful to know what can be said about the structure of a
graph which does not admit a tree-decomposition of low width. In a shift of paradigm, Roberston
and Seymour [110] introduced the concept of a tangle to represent a highly connected structure
in a graph. Rather than a concrete structure in the graph itself, a tangle is a consistent way to
orient the low order separators of a graph. It can be shown that the existence of a high order
tangle in a graph is dual to the existence of a tree-decomposition of low width. Furthermore,
Roberston and Seymour showed that there is a tree-decomposition of a graph which distinguishes
all of its maximal tangles, and so we can view the global structure of the graph as being built
of of this collection of tangles in a tree-like manner.

Recently Diestel developed an unified abstract framework (see for example [44]), called sep-
aration systems, in which these and other results about tree-structure could be expressed. This
framework is broad enough to encompass many of the varied types of tree-decompositions that
have been considered in the literature, and many others beyond that, allowing for unified proofs
of many know results, as well as allowing one to apply the theory of tree-decompositions to other
mathematical structures, combinatorial or otherwise.

Refining a tree-decomposition which distinguishes tangles

Roberston and Seymour introduced tangles of order k as objects representing highly connected
parts of a graph and showed that every graph admits a tree-decomposition of adhesion < k
in which each tangle of order k is contained in a different part. Recently, Carmesin, Diestel,
Hamann and Hundertmark [35] showed that such a tree-decomposition can be constructed in
a canonical way, which makes it invariant under automorphisms of the graph. These canonical
tree-decompositions necessarily have parts which contain no tangle of order k. We call these
parts inessential. Diestel asked what could be said about the structure of the inessential parts.
In this paper we show that the torsos of the inessential parts in these tree-decompositions have
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branch width < k, allowing us to further refine the canonical tree-decompositions, and also show
that a similar result holds for k-blocks.

This paper appears in the SIAM Journal on Discrete Mathematics [58].

Duality theorems for blocks and tangles in graphs

We prove a duality theorem applicable to a a wide range of specialisations, as well as to some gen-
eralisations, of tangles in graphs. It generalises the classical tangle duality theorem of Robertson
and Seymour, which says that every graph either has a large-order tangle or a certain low-width
tree-decomposition witnessing that it cannot have such a tangle. Our result also yields duality
theorems for profiles and for k-blocks. This solves a problem studied, but not solved, by Diestel
and Oum [50] and answers an earlier question of Carmesin, Diestel, Hamann and Hundertmark
[34].

This paper is joint work with Reinhard Diestel and Philipp Eberenz and appears in the
SIAM Journal on Discrete Mathematics[46].

A unified treatment of linked and lean tree-decompositions

There are many results asserting the existence of tree-decompositions of minimal width which
still represent local connectivity properties of the underlying graph, perhaps the best-known
being Thomas’ theorem [124] that proves for every graph G the existence of a linked tree-
decompositon of width tw(G). We prove a general theorem on the existence of linked and
lean tree-decompositions, providing a unifying proof of many known results in the field, as well
as implying some new results. In particular we prove that every matroid M admits a lean
tree-decomposition of width tw(M), generalizing the result of Thomas.

This paper appears in the Journal of Combinatorial Theory, Series B [59].

Structural submodularity and tangles in abstract separation systems

We prove a tangle-tree theorem and a tangle duality theorem for abstract separation systems−→
S that are submodular in the structural sense that, for every pair of oriented separations,

−→
S

contains either their meet or their join defined in some universe
−→
U of separations containing

−→
S .

This holds, and is widely used, if
−→
U comes with a submodular order function and

−→
S consists

of all its separations up to some fixed order. Our result is that for the proofs of these two
theorems, which are central to abstract tangle theory, it suffices to assume the above structural
consequence for

−→
S , and no order function is needed.

This paper is joint work with Reinhard Diestel and Daniel Weißauer and appears in the
Journal of Combinatorial Theory, Series A [47].

Directed path-decompositions

Many of the tools developed for the theory of tree-decompositions of graphs do not work for
directed graphs. In this paper we show that some of the most basic tools do work in the case
where the model digraph is a directed path. Using these tools we define a notion of a directed
blockage in a digraph and prove a min-max theorem for directed path-width analogous to the
result of Bienstock, Roberston, Seymour and Thomas [21] for blockages in graphs. Furthermore,
we show that every digraph with directed path width > k contains each arboresence of order
6 k + 1 as a butterfly minor. Finally we also show that every digraph admits a linked directed
path-decomposition of minimum width, extending a result of Kim and Seymour [85] on semi-
complete digraphs.
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A short derivation of the structure theorem for graphs with excluded topological
minors

As a major step in their proof of Wagner’s conjecture, Robertson and Seymour [111] showed
that every graph not containing a fixed graph H as a minor has a tree-decomposition in which
each torso is almost embeddable in a surface of bounded genus. Recently, Grohe and Marx [70]
proved a similar result for graphs not containing H as a topological minor. They showed that
every graph which does not contain H as a topological minor has a tree-decomposition in which
every torso is either almost embeddable in a surface of bounded genus, or has a bounded number
of vertices of high degree. We give a short proof of the theorem of Grohe and Marx, improving
their bounds on a number of the parameters involved.

This paper is joint work with Daniel Weißauer.

Part II

The Reconstruction conjecture

We say that two graphs G and H are hypomorphic if there exists a bijection ϕ between the
vertices of G and H such that the induced subgraphs G − v and H − ϕ(v) are isomorphic for
each vertex v of G. Any such bijection is called a hypomorphism. We say that a graph G is
reconstructible if H ∼= G for every H hypomorphic to G. The following conjecture, attributed to
Kelly and Ulam, is perhaps one of the most famous unsolved problems in the theory of graphs.

Conjecture (The Reconstruction Conjecture). Every finite graph with at least three vertices is
reconstructible.

For an overview of results towards the Reconstruction Conjecture for finite graphs see the
survey of Bondy and Hemminger [23]. Harary [75] proposed the Reconstruction Conjecture for
infinite graphs, however Fisher [62] found a counterexample, which was improved to a simpler
counterexample by Fisher, Graham and Harary [63]. These graphs, however, contain vertices of
infinite degree. A graph is locally finite if every vertex has finite degree. Locally finite graphs
are a particular simple class of infinite graphs, which in many ways posses similar properties to
finite graphs.

Harary, Schwenk and Scott [76] showed that there exists a non-reconstructible locally finite
forest. However, they conjectured that the Reconstruction Conjecture should hold for locally
finite trees.

Conjecture (The Harary-Schwenk-Scott Conjecture). Every locally finite tree is reconstructible.

This conjecture has been verified in a number of special cases. Bondy and Hemminger [22]
showed that every tree with at least two but a finite number of ends is reconstructible, and
Thomassen [125] showed that this also holds for one-ended trees. Andreae [10] proved that also
every tree with countably many ends is reconstructible.

A counterexample to the reconstruction conjecture for locally finite trees

It is well known that not all infinite graphs are reconstructible. However, the Harary-Schwenk-
Scott Conjecture from 1972 [76] suggests that all locally finite trees are reconstructible. In this
paper, we construct a counterexample to the Harary-Schwenk-Scott Conjecture. Our exam-
ple also answers four other questions of Nash-Williams [103], Halin and Andreae [12] on the
reconstruction of infinite graphs.

This paper is joint work with Nathan Bowler, Peter Heinig, Florian Lehner and Max Pitz
and appears in the Bulletin of the London Mathematical Society [28].
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Non-reconstructible locally finite graphs

Nash-Williams [102, 104] proved that all locally finite graphs with a finite number > 2 of ends
are reconstructible, and asked whether locally finite graphs with one end or countably many
ends are also reconstructible. In this paper we construct non-reconstructible graphs of bounded
maximum degree with one and countably many ends respectively, answering the two questions
of Nash-Williams about the reconstruction of locally finite graphs in the negative.

This paper is joint work with Nathan Bowler, Peter Heinig, Florian Lehner and Max Pitz
and appears in the Journal of Combinatorial Theory, Series B [29].

The ubiquity conjecture

Let C be a relation between graphs, for example the subgraph relation ⊆, the topological minor
relation 6 or the minor relation 4. We say that a graph G is C-ubiquitous if whenever Γ is a
graph with nG C Γ for all n ∈ N, then one also has ℵ0G C Γ, where αG is the disjoint union of
α many copies of G.

Two classic results of Halin [71, 72] say that both the ray and the double ray are⊆-ubiquitous,
i.e. any graph which contains arbitrarily large collections of disjoint (double) rays must contain
an infinite collection of disjoint (double) rays. However, even quite simple graphs can fail to be
⊆ or 6-ubiquitous, see e.g. [7, 130, 91].

However, for the minor relation, no such simple examples of non-ubiquitous graphs are
known. Indeed, one of the most important problems in the theory of infinite graphs is the
so-called Ubiquity Conjecture due to Andreae [13].

Conjecture (The Ubiquity Conjecture). Every locally finite connected graph is 4-ubiquitous.

In [13], Andreae constructed a graph that is not 4-ubiquitous. However, this construction
relies on the existence of a counterexample to the well-quasi-ordering of infinite graphs under
the minor relation, for which counterexamples are only known with very large cardinality [122].
In particular, it is still an open question whether or not there exists a countable connected graph
which is not 4-ubiquitous.

Topological ubiquity of trees

The Ubiquity Conjecture of Andreae, a well-known open problem in the theory of infinite graphs,
asserts that every locally finite connected graph is ubiquitous with respect to the minor relation.
In this paper, which is the first of a series of papers making progress towards the Ubiquity
Conjecture, we show that all trees are ubiquitous with respect to the topological minor relation,
irrespective of their cardinality. This answers a question of Andreae [8] from 1979.

This paper is joint work with Nathan Bowler, Christian Elbracht, Pascal Gollin, Karl Heuer,
Max Pitz and Maximilian Teegen.

Ubiquity of graphs with non-linear end structure

In this paper we give a sufficient condition on the structure of the ends of a graph G which
implies that G is ubiquitous with respect to the minor relation. In particular this implies that
the full grid is ubiquitous with respect to the minor relation.

This paper is joint work with Nathan Bowler, Christian Elbracht, Pascal Gollin, Karl Heuer,
Max Pitz and Maximilian Teegen.
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Ubiquity of locally finite graphs with extensive tree decompositions

In this paper we show that locally finite graphs admitting a certain type of tree-decomposition,
which we call an extensive tree decomposition, are ubiquitous with respect to the minor relation.
In particular this includes all locally finite graphs of finite tree-width and locally finite graphs
with finitely many ends, all of which are thin.

This paper is joint work with Nathan Bowler, Christian Elbracht, Pascal Gollin, Karl Heuer,
Max Pitz and Maximilian Teegen.

Hamilton decompositions of infinite Cayley graphs

A Hamiltonian cycle of a finite graph is a cycle which includes every vertex of the graph. A finite
graph G = (V,E) is said to have a Hamilton decomposition if its edge set can be partitioned
into disjoint sets E = E1∪̇E2∪̇ · · · ∪̇Er such that each Ei is a Hamiltonian cycle in G.

The starting point for the theory of Hamilton decompositions is an old result by Walecki from
1890 according to which every finite complete graph of odd order has a Hamilton decomposition
(see [3] for a description of his construction). Since then, this result has been extended in various
different ways, and we refer the reader to the survey of Alspach, Bermond and Sotteau [4] for
more information.

Hamiltonicity problems have also been considered for infinite graphs, see for example the
survey by Gallian and Witte [129]. While it is sometimes not obvious which objects should be
considered the correct generalisations of a Hamiltonian cycle in the setting of infinite graphs,
for one-ended graphs the undisputed solution is to consider double-rays, i.e. infinite, connected,
2-regular subgraphs. Thus, for us a Hamiltonian double-ray is then a double-ray which in-
cludes every vertex of the graph, and we say that an infinite graph G = (V,E) has a Hamilton
decomposition if we can partition its edge set into edge-disjoint Hamiltonian double-rays.

One well known conjecture on the existence of Hamilton decompositions for finite graphs
concerns Cayley graphs: Given a finitely generated abelian group (Γ,+) and a finite generating
set S of Γ, the Cayley graph G(Γ, S) is the multi-graph with vertex set Γ and edge multi-set

{(x, x+ g) : x ∈ Γ, g ∈ S}.

Conjecture (Alspach [2]). If Γ is an abelian group and S generates G, then the simplification
of G(Γ, S) has a Hamilton decomposition, provided that it is 2k-regular for some k.

Hamilton decompositions of one-ended Cayley graphs

We prove that any one-ended, locally finite Cayley graph with non-torsion generators admits
a decomposition into edge-disjoint Hamiltonian (i.e. spanning) double-rays. In particular, the
n-dimensional grid Zn admits a decomposition into n edge-disjoint Hamiltonian double-rays for
all n ∈ N. We also prove an infinite version of a conjecture of Bermond [18] that whenever G
and H are two graphs which admit a decomposition into spanning double-rays, then so does
their cartesian product G�H.

This paper is joint work with Florian Lehner and Max Pitz and has been accepted for
publication in the Journal of Combinatorial Theory, Series B [61].
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Chapter 1

Refining a tree-decomposition which
distinguishes tangles

1.1 Introduction

A classical notion in graph theory is that of the block-cut vertex tree of a graph. It tells us
that if we consider the maximal 2-connected components of a connected graph G then they are
arranged in a ‘tree-like’ manner, separated by the cut vertices of G. A result of Tutte’s [126]
says that we can decompose any 2-connected graph in a similar way. Broadly, it says that every
2-connected graph can be decomposed in a ‘tree-like’ manner, so that the parts are separated by
vertex sets of size at most 2, and every part, together with the edges in the separators adjacent
to it, is either 3-connected or a cycle. We call the union of a part and the edges in the separators
adjacent to it the torso of the part. In contrast to the first example not every part, or even torso,
of this decomposition is 3-connected, and indeed it is easy to show that not every 2-connected
graph can be decomposed in this way such that every torso is 3-connected.

It has long been an open problem how best to extend these results for general k, the aim
being to decompose a (k − 1)-connected graph into its ‘k-connected components’, where the
precise meaning of what these ‘k-connected components’ should be considered to be has varied.
Tutte’s example shows us that there may be parts of this decomposition which are not highly
connected, but rather play a structural role in the graph of linking the highly connected parts
together, and further that the highly connected parts of the decomposition may not correspond
exactly to k-connected subgraphs.

Whereas initially these ‘k-connected components’ were considered as concrete structures in
the graph itself, Robertson and Seymour [110] radically re-interpreted them as tangles of order
k, which for brevity we will refer to as k-tangles1. Instead of being defined in terms of the edges
and vertices of a graph, these objects were defined in terms of structures on the set of low-order
separations of a graph.

Robertson and Seymour showed that, given any set of distinct k-tangles T1, T2, . . . , Tn in a
graph G, there is a tree-decomposition (T,V) of G with precisely n parts in which the orientations
induced by the tangles Ti on E(T ) each have distinct sinks, where we say the tangle is contained
in this sink. We say that such a tree-decomposition distinguishes the tangles T1, T2, . . . , Tn. They
showed further that these tree-decompositions can be chosen so that the separators between the
parts are in some way minimal with respect to the tangles considered. We say that such a tree-
decomposition distinguishes the k-tangles efficiently. If we call the largest size of a separator

1Precise definitions of many of the terms in the introduction will be postponed until Section 1.2, where all the
necessary background material will be introduced.
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in a tree-decomposition the adhesion of the tree-decomposition, then in particular their result
implies the following:

Theorem 1.1.1 (Robertson and Seymour [110]). For every graph G and k > 2 there exists
a tree-decomposition (T,V) of G of adhesion <k which distinguishes the set of k-tangles in G
efficiently.

More recently Carmesin, Diestel, Hamann and Hundertmark [35] described a family of algo-
rithms that can be used to build tree-decompositions which distinguish the set of k-tangles in a
graph and are canonical, that is, they are invariant under every automorphism of the graph.

Just as in Tutte’s theorem, where there were parts of the tree-decomposition whose torsos
were not 3-connected, it is easy to show that the tree-decompositions formed in [35] must
contain parts which do not contain any k-tangle. Since the general motivation for these tree-
decompositions is to decompose the graph into its ‘k-connected components’ in a way that
displays the global structure of the graph, it is natural to ask further questions about the
structure of these tree-decompositions. In [33] Carmesin et al. analysed the structure of the
trees that the various algorithms given in [35] produced. One particular question that was asked
is what can be said about the structure of the parts which do not contain a k-tangle. We will
call the parts of a tree-decomposition that contain a k-tangle essential, and those that do not
inessential.

For example, if the whole graph contains no k-tangle, then these canonical tree-decompositions
tell us nothing about the graph, as they consist of just one inessential part. However there are
theorems which describe the structure of a graph which contains no k-tangle. In the same paper
where they introduced the concept of tangles, Roberston and Seymour [110] showed that a graph
which contains no k-tangle has branch-width <k, and in fact that the converse is also true, a
graph with branch-width > k contains a k-tangle. Having branch-width < k can be rephrased
in terms of the existence of a certain type of tree-decomposition (See e.g. [52]). A nice property
of these tree-decompositions is that each of the parts is in some sense ‘too small’ to contain a
k-tangle. In this way these tree-decompositions witness that a graph has no k-tangle by split-
ting the graph into a number of parts, each of which cannot contain a k-tangle and similarly a
k-tangle witnesses that a graph does not have such a tree-decomposition.

A natural question to then ask is, do the inessential parts in the tree-decompositions from
[35] admit tree-decompositions of the same form, into parts which are too small to contain a
k-tangle? If so we might hope to refine these canonical tree-decompositions by decomposing
further the inessential parts. By combining these decompositions we would get an overall tree-
decomposition of G consisting of some essential parts, each containing a k-tangle in G, and some
inessential parts, each of which is ‘small’ enough to witness the fact that no k-tangle is contained
in that part.

We first note that we cannot hope for these refinements to also be canonical. For example
consider a graph formed by taking a large cycle C and adjoining to each edge a large complete
graph Kn. Then a canonical tree-decomposition which distinguishes the 3-tangles in this graph
will contain the cycle C as an inessential part. However there is no canonical tree-decomposition
of C with branch-width < 3. Indeed, if such a tree-decomposition contained any of the 2-
separations of C as an adhesion set then, since all the rotations of C lie in the automorphism
group of G, every rotation of this separation must appear as an adhesion set. However these
separations cannot all appear as the adhesion sets in any tree-decomposition, as every pair of
vertices in a 2-separation of C are themselves separated by some rotation of that separation.

If we drop the restriction that the refinement be canonical then, at first glance, it might
seem like there should clearly be such a refinement. If there is no k-tangle contained in a part
Vt in a tree-decomposition, (T,V), then by the theorem of Robertson and Seymour there should
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be a tree-decomposition of that part with branch-width <k. However there is a problem with
this naive approach, in that we have no guarantee that we can insert the tree-decomposition
of this part into the existing tree-decomposition. In particular it could be the case that this
tree-decomposition splits up the separators of the part Vt in (T,V). One way to avoid this
problem is to instead consider the torso of the part Vt. If we have a tree-decomposition of the
torso we can insert it into the original tree-decomposition, but it is not clear that adding these
extra edges can not increase the branch-width of the part. In fact it is easy to find examples
where choosing a bad canonical tree-decomposition to distinguish the set of k-tangles in a graph
results in inessential parts whose torsos have branch-width > k.

For example consider the following graph: We start with the union of three large complete
graphs, KN1 , KN2 and KN3 , for N1, N2, N3 >> k. We pick a set of (k− 1)/2 vertices from each
graph, which we denote by X1, X2 and X3 respectively, and join each of these sets completely to
a new vertex x. It is a simple check that there are three k-tangles in this graph, corresponding
to the three large complete subgraphs. However, consider the following tree-decomposition of
the graph into four parts KN1 ∪X2, KN2 ∪X3, KN3 ∪X1 and X1∪X2∪X3∪{x}. This is a tree-
decomposition which distinguishes the k-tangles in the graph, and the part X1 ∪X2 ∪X3 ∪ {x}
is inessential. However the torso of this middle part is a complete graph of order 3(k− 1)/2 + 1,
which can be seen to have branch-width > k.

Figure 1.1: A graph with a bad tangle-distinguishing tree-decomposition.

We will show that, for the canonical tree-decompositions of Carmesin et al, the torsos of the
inessential parts all have branch-width <k and so it is possible to decompose the torsos of the
inessential parts in this way.

Theorem 1.1.2. For every graph G and k > 3 there exists a canonical tree-decompositon (T,V)
of G of adhesion <k such that

• (T,V) distinguishes the set of k-tangles in G efficiently;

• The torso of every inessential part has branch-width <k.

More recently another potential candidate for these ‘k-connected components’ has been con-
sidered in the literature, called k-blocks. We say that a set of at least k vertices in a graph is
(< k)-inseparable if no set of < k vertices can separate any two of the vertices. A k-block is
a maximal (< k)-inseparable set of vertices. These k-blocks differ from subgraphs which are
k-connected in the classical sense in that their connectivity is measured in the ambient graph
rather than the subgraph itself. For example if we take a large independent set, I, and join each
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pair of vertices in I by k vertex disjoint paths, then I is a k-block, even though as a subgraph
it is independent. Carmesin, Diestel, Hundertmark and Stein [36] showed that, for any graph
G, there is a canonical tree-decomposition which distinguishes the set of k-blocks. The work
of Carmesin et al [35] extended the results of [36] to more general types of highly connected
substructures in graphs, and these results have been extended further by Diestel, Hundertmark
and Lemanczyk [48] to more general combinatorial structures, such as matroids.

As before, these tree-decompositions will have some parts which are essential, that is they
contain a k-block, and some parts which are inessential, and it is natural to ask about the
structure of these parts. Recently, Diestel, Eberenz and Erde [46] proved a duality theorem for
k-blocks, analogous to the tangle/branch-width duality of Robertson and Seymour. The result
implies that a graph contains a k-block if and only if it does not admit a tree-decomposition
of block-width <k, where as before, every part in a tree-decomposition of block-width <k is in
some sense ‘too small’ to contain a k-block. We also show a corresponding result for blocks.

Theorem 1.1.3. For every graph G and k > 3 there exists a canonical tree-decompositon (T,V)
of G of adhesion <k such that

• (T,V) distinguishes the set of k-blocks in G efficiently;

• The torso of every inessential part has block-width <k.

The main result in this paper, of which Theorems 1.1.2 and 1.1.3 are corollaries, is a lemma
that gives sufficient conditions on the separators of an inessential part in a distinguishing tree-
decomposition for the torso to have small width. These conditions seem quite natural and rea-
sonable, in particular they are satisfied by every part of the canonical tangle/block-distinguishing
tree-decompositions constructed by Carmesin et al.

In some sense the canonical tangle-distinguishing tree-decompositions tell us most about the
structure of the graph when the essential parts correspond closely to the tangles inside them.
For example consider the following two graphs, firstly two KN s overlapping in k−1 vertices and
secondly two K3k/2s each with a long path attached, of length N ′ = N − 3k/2, overlapping in a
similar way, see Figure 1.2.

Figure 1.2: Two graphs with the same canonical k-tangle-distinguishing tree-decomposition.

Since the tangle-distinguishing tree-decompositions of Carmesin et al. only use essential
separations, that is separations which distinguish some pair of k-tangles, they will construct the
same tree-decomposition for both of these graphs, with just two parts of size N . However in
the second example a more sensible tree-decomposition would further split up the long paths.
This could be done in a way to maintain the property that the inessential parts have small
branch-width, and by separating these inessential parts from the essential part we have more
precisely exhibited the structure of the graph. We will also apply our methods to the problem
of further refining the essential parts of these tree-decompositions.
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In Section 1.2 we introduce the background material necessary for our proof and in Section 1.3
we prove our central lemma and deduce the main results in the paper. In Section 1.4 we discuss
how our methods can also be used to further refine the essential parts of a tree-decomposition.

1.2 Background material

1.2.1 Separation systems and tree-decompositions

A separation of a graph G is a set {A,B} of subsets of V (G) such that A ∪ B = V and there
is no edge of G between A \ B and B \ A. There are two oriented separations associated with
a separation, (A,B) and (B,A). Informally we think of (A,B) as pointing towards B and away
from A. We can define a partial ordering on the set of oriented separations of G by

(A,B) 6 (C,D) if and only if A ⊆ C and B ⊇ D.

The inverse of an oriented separation (A,B) is the separation (B,A), and we note that mapping
every oriented separation to its inverse is an involution which reverses the partial ordering.

In [51] Diestel and Oum generalised these properties of separations of graphs and worked in
a more abstract setting. They defined a separation system (

−→
S ,6, ∗) to be a partially ordered

set
−→
S with an order reversing involution, ∗. The elements of

−→
S are called oriented separations.

Often a given element of
−→
S is denoted by −→s , in which case its inverse −→s ∗ will be denoted by

←−s , and vice versa. Since ∗ is ordering reversing we have that, for all −→r ,−→s ∈ S,

−→r 6 −→s if and only if ←−r >←−s .

A separation is a set of the form {−→s ,←−s }, and will be denoted by simply s. The two elements −→s
and ←−s are the orientations of s. The set of all such pairs {−→s ,←−s } ⊆ −→S will be denoted by S. If
−→s =←−s we say s is degenerate. Conversely, given a set S′ ⊆ S of separations we write

−→
S′ :=

⋃
S′

for the set of all orientations of its elements. With the ordering and involution induced from
−→
S ,

this will form a separation system. When we refer to a oriented separation in a context where
the notation explicitly indicates orientation, such as −→s or (A,B), we will usually suppress the
prefix “oriented” to improve the flow of the paper.

Given a separation of a graph {A,B} we can identify it with the pair {(A,B), (B,A)} and
in this way any set of separations in a graph which is closed under taking inverses forms a
separation system. We will work within the framework developed in [51] since we will need to
use directly some results proved in this abstract setting, but also because our results are most
easily expressible in this framework. An effort has been made to state the results in the widest
generality, so as to be applicable in the broadest sense, however we will always have in mind the
motivating example of separation systems which arise as sets of separations in a graph, and so a
reader will not lose too much by thinking about these separation systems solely in those terms.

The separator of a separation −→s = (A,B) in a graph is the intersection A∩B and the order of
a separation, |−→s | = ord(A,B), is the cardinality of the separator |A∩B|. Note that if−→r = (A,B)
and −→s = (C,D) are separations then so are the corner separations −→r ∨ −→s := (A ∪ C,B ∩D)
and −→r ∧ −→s := (A ∩ C, ,B ∪D) and the orders of these separations satisfy the equality

|−→r ∨ −→s |+ |−→r ∧ −→s | = |−→r |+ |−→s |.

Hence the order function is a submodular function on the set of separations of a graph, and we
note also that it is clearly symmetric.

For abstract separations systems, if there exists binary operations ∨ and ∧ on
−→
S such that

−→r ∨ −→s is the supremum and −→r ∧ −→s is the infimum of −→r and −→s then we call (
−→
S ,6, ∗,∨,∧) a
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Figure 1.3: Two separations (A,B) and (C,D) with the corner separation (A∪C,B∩D) marked.

universe of (oriented) separations, and we call any real, non-negative, symmetric and submodular
function on a universe an order function.

Two separations r and s are nested if they have 6-comparable orientations. Two oriented
separations −→r and −→s are nested if r and s are nested 2. If −→r and −→s are not nested we say that
the two separations cross. A set of separations S is nested if every pair of separations in S is
nested, and a separation s is nested with a set of separations S if S ∪ {s} is nested.

A separation −→r ∈ −→S is trivial in
−→
S , and ←−r is co-trivial, if there exist an s ∈ S such that

−→r < −→s and −→r <←−s . Note that if −→r is trivial, witnessed by some s, then, since the involution
is order reversing, we have that −→r < −→s < ←−r . So, in particular, ←−r cannot also be trivial.
Separations −→s such that −→s 6←−s , trivial or not, will be called small and their inverses co-small.

In the case of separations of a graph, it is a simple check that the small separations are
precisely those of the form (A, V ). Furthermore the trivial separations can be characterised as
those of the form (A, V ) such that A ⊆ C ∩D for some separation (C,D) such that {C,D} 6=
{A,B}. Finally we note that there is only one degenerate separation in a graph, (V, V ).

A tree-decomposition of a graph G is a pair (T,V) consisting of a tree T and family V =
(Vt)t∈T of vertex sets Vt ⊆ V (G), one for each vertex t ∈ T such that:

• V (G) =
⋃
t∈T Vt;

• for every edge e ∈ G there exists some t ∈ T such that e ∈ G[Vt];

• Vt1 ∩ Vt2 ⊆ Vt3 whenever t3 lies on the t1 − t2 path in T .

The sets Vt in a tree-decomposition are its parts and the sets Vt ∩ Vt′ such that (t, t′) is an
edge of T are the adhesion sets. The torso of a part Vt is the union of that part together with
the completion of the adhesion sets adjacent to that part, that is

Vt = G|Vt ∪
⋃

(t,t′)∈T

KVt∩Vt′ .

The width of a tree-decomposition is max{|Vt| − 1 : such that t ∈ T}, and the adhesion is the
size of the largest adhesion set. Deleting an oriented edge e = (t1, t2) ∈ −→E (T ) divides T − e into
two components T1 3 t1 and T2 3 t2. Then (

⋃
t∈T1 Vt,

⋃
t∈T2 Vt) can be seen to be a separation

2In general we will use terms defined for separations informally for oriented separations when the meaning is
clear, and vice versa
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of G with separator Vt1 ∩ Vt2 . We say that the edge e induces this separation. Given a tree-
decomposition (T,V) it is easy to check that the set of separations induced by the edges of T
form a nested separation system. Conversely it was shown in [36] that every nested separation
system is induced by some tree-decomposition, and so in a sense these two concepts can be
thought of as equivalent.

We say that a nested set of separations N ′ refines a nested set of separations N if N ′ ⊇
N , and similarly a tree-decomposition (T ′,V ′) refines a tree-decomposition (T,V) if the set of
separations induced by the edges of T ′ refines the corresponding set of separations for T .

1.2.2 Duality of tree-decompositions

There are a number of theorems that assert a duality between certain structurally ‘large’ objects
in a graph and an overall tree structure. For example a graph has small tree-width if and only if
it contains no large order bramble [118]. In [51] a general theory of duality, in terms of separation
systems, was developed which implied many of the existing theorems. Following on from the
notion of tangles in graph minor theory [110] these large objects were described as orientations
of separations systems avoiding certain forbidden subsets.

An orientation of a set of separations S is a subset O ⊆ −→S which for each s ∈ S contains
exactly one of its orientations −→s or ←−s . A partial orientation of S is an orientation of some
subset of S, and we say that an orientation O extends a partial orientation P if P ⊆ O.

In our context we will think of an orientation O on some set of graph separations as choosing
a side of each separation s = {A,B} to designate as large. For example given a graph G and
the set S of all separations of the graph G, we denote by

−→
Sk = {−→s ∈ −→S : |−→s | < k},

the set of all orientations of order less than k. If there is a large clique (of size > k) in G then
for every s = {A,B} ∈ Sk we have that the clique is contained entirely in A or B. So this clique
defines an orientation of Sk by picking, for each {A,B} ∈ Sk the orientated separation such that
the clique is contained in second set in the pair.

We call an orientation O of a set of separations S consistent if whenever we have distinct r
and s such that −→r < −→s , O does not contain both ←−r and −→s . Note that a consistent orientation
must contain all trivial separations −→r , since if −→r < −→s and −→r <←−s then, whichever orientation
of s is contained in O would be inconsistent with ←−r .

Given a set of subsets F ⊆ 2
−→
S we say that an orientation O is F-avoiding if there is no

F ∈ F such that F ⊆ O. So for example an orientation is consistent if it avoids F = {{←−r ,−→s } :
r 6= s,−→r < −→s }. In general we will define the ‘large’ objects we consider by the collection F of
subsets they avoid. For example a k-tangle in a graph G can easily be seen to be equivalent to
an orientation of Sk which avoids the set of triples

Tk = {{(A1, B1), (A2, B2), (A3, B3)} ⊆ −→Sk :
3⋃
i=1

G[Ai] = G}.

(Where the three separations need not be distinct). That is, a tangle is an orientation such
that no three small sides cover the entire graph, it is a simple check that any such orientation
must in fact also be consistent. We say that a consistent orientation which avoids a set F is an
F-tangle.

Given a set F ⊆ 2
−→
S , an S-tree over F is a pair (T, α), of a tree T with at least one edge and

a function α :
−→
E (T )→ −→S from the set

−→
E (T ) := {(x, y) : {x, y} ∈ E(T )}
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of orientations of it’s edges to
−→
S such that:

• For each edge (t1, t2) ∈ −→E (T ), if α(t1, t2) = −→s then α(t2, t1) =←−s ;

• For each vertex t ∈ T , the set {α(t′, t) : (t′, t) ∈ −→E (T )} is in F ;

For any leaf vertex w ∈ T which is adjacent to some vertex u ∈ T we call the separation
−→s = α(w, u) a leaf separation of (T, α). A particularly interesting class of such trees is when the
set F is chosen to consist of stars. A set of non-degenerate oriented separations σ is called a star
if −→r 6←−s for all distinct −→r ,−→s ∈ σ. In what follows, if we refer to an S-tree without reference
to a specific family F of stars, it can be assumed to be over the set of all stars in 2

−→
S . We say

that an S-tree over F is irredundant if there is no t ∈ T with two neighbours, t′ and t′′ such
that α(t, t′) = α(t, t′′). If (T, α) is an irredundant S-tree over a set of stars F , then it is easy to
verify that the map α preserves the natural ordering on

−→
E (T ), defined by letting (s, t) 6 (u, v)

if the unique path in T between those edges starts at s and ends at v (see [[51], Lemma 2.2]).

Given an irredundant S-tree (T, α) over a set of stars and an orientation O of S, O induces
an orientation of the edges of T , which will necessarily contain a sink vertex. If the orientation
O is consistent then this sink vertex, which we will denote by t, will be unique. We say that O is
contained in t. If S = Sk for some graph G, we have that (T, α) defines some tree-decomposition
(T,V) of G, and we say that O is contained in the part Vt. So, each F-tangle of S must live in
some vertex of every such S-tree, and by definition this vertex give rise to a star of separations
in F . In this way, each of the vertices in an S-tree over F (and each of the parts in the
corresponding tree-decomposition when one exists) is ‘too small’ to contain an F-tangle.

Suppose we have a separation −→r which is neither trivial nor degenerate. In applications −→r
will be a leaf separation in some irredundant S-tree over a set F of stars. Given some −→s > −→r ,
it will be useful to have a procedure to ‘shift’ the S-tree (T, α) in which −→r is a leaf separation to
a new S-tree (T, α′) such that −→s is a leaf separation. Let S>−→r be the set of separations x ∈ S
that have an orientation −→x > −→r . Since −→r is a leaf separation in an irredundant S-tree over a
set of stars we have by the previous comments that the image of α is contained in

−→
S >−→r .

Given x ∈ S>−→r \ {r} we have, since −→r is non-trivial, that only one of the two orientations
of x, say −→x is such that −→x > −→r . So, we can define a function f ↓−→r−→s on

−→
S >−→r \ {←−r } by3

f ↓−→r−→s (−→x ) := −→x ∨ −→s and f ↓−→r−→s (←−x ) := (−→x ∨ −→s )∗.

Given an S-tree (T, α) and −→s > −→r as above let α′ := f ↓−→r−→s ◦α. The shift of (T, α) onto −→s
is the S-tree (T, α′).

We say that −→s emulates −→r in
−→
S if −→r 6 −→s and for every

−→
t ∈ −→S >−→r \ {←−r }, −→s ∨

−→
t ∈ −→S .

Given a particular set of stars F ⊆ 2
−→
S we say further that −→s emulates −→r in

−→
S for F if −→s

emulates −→r in
−→
S and for any star σ ⊂ −→S >−→r \ {←−r } in F that contains an element

−→
t > −→r we

also have f ↓−→r−→s (σ) ∈ F . The usefulness of this property is exhibited by the following lemma,
which is key both in the proof of Theorem 1.2.2 from [51], and will be essential for the proof of
our central lemma.

Lemma 1.2.1. [[51], Lemma 4.2] Let (
−→
S ,6,∗ ) be a separation system, F ⊆ 2

−→
S a set of

stars, and let (T, α) be an irredundant S-tree over F . Let −→r be a nontrivial and nondegenerate
separation which is a leaf separation of (T, α), and is not the image of any other edge in T , and
let −→s emulate −→r in

−→
S . Then the shift of (T, α) onto −→s is an S-tree over F ∪ {{←−s }} in which

−→s is a leaf separation, associated with a unique leaf.

3The exclusion of ←−r here is for a technical reason, since it could be the case that −→r < ←−r , however we want
to insist that f ↓

−→r−→s (←−r ) is the inverse of f ↓
−→r−→s (−→r )
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Figure 1.4: Shifting a separation −→x > −→r under f ↓−→r−→s .

It is shown in [[51], Lemma 2.4] that if we have an S-tree over F , (T, α), and a set of non-
trivial and non-degenerate leaf separations, −→r i, of (T, α) then there also exists an irredundant
S-tree over F , (T ′, α′), such that each −→r i is a leaf separation of (T ′, α) and is not the image of
any other edge in T ′.

We say a set F ⊆ 2
−→
S forces a separation −→r if {←−r } ∈ F or r is degenerate. Note that the

non-degenerate forced separations in F are precisely those separations which can appear as leaf
separations in an S-tree over F . We say F is standard if it forces every trivial separation in

−→
S .

We say that a separation system
−→
S is separable if for any two non-trivial and non-degenerate

separations −→r ,←−r ′ ∈ −→S such that −→r 6 −→r ′ there exists a separation s ∈ S such that −→s emulates
−→r in

−→
S and ←−s emulates ←−r ′ in

−→
S . We say that

−→
S is F-separable if for all non-trivial and

non-degenerate −→r ,←−r ′ ∈ −→S that are not forced by F such that −→r 6 −→r ′ there exists a separation
s ∈ S such that −→s emulates −→r in

−→
S for F and ←−s emulates ←−r ′ in

−→
S for F . Often one proves

that
−→
S is F-separable in two steps, first by showing it is separable, and then by showing that

F is closed under shifting : that whenever −→s emulates some −→r in
−→
S , it also emulates that −→r

in
−→
S for F .

We are now in a position to state the Strong Duality Theorem from [51].

Theorem 1.2.2. [[51], Theorem 4.3] Let (
−→
U ,6, ∗,∨,∧) be a universe of separations containing

a separation system (
−→
S ,6, ∗). Let F ⊆ 2

−→
S be a standard set of stars. If

−→
S is F-separable,

exactly one of the following assertions holds:

• There exists an S-tree over F .

• There exists an F-tangle of S.

The property of being F-separable may seem a rather strong condition to hold, however
in [52] it is shown that for all the sets F describing classical ‘large’ objects (such as tangles or
brambles) the separation systems

−→
Sk are F-separable. More specifically, by definition a k-tangle

is a consistent orientation which avoids the set Tk as defined earlier. In fact it is shown in [52]
that a consistent orientation avoids Tk if and only if it avoids the set of stars in Tk

T ∗k = {{(Ai, Bi)}31 : {(Ai, Bi)}31 ⊆ Sk is a star and
⋃
i

G[Ai] = G}.

Note that T ∗k is standard. Indeed it forces all the small separations (A, V ), and so it forces the
trivial separations. It can also be checked that

−→
Sk is T ∗k -separable.
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The dual structure to a k-tangle is therefore an Sk-tree over T ∗k . It is shown in [52] that the
existence of such an Sk-tree is equivalent to the existence of a branch-decomposition of width
<k for all k > 3. We note that the condition that k > 3 is due to a quirk in how branch-width
is traditionally defined, which results in, for example, stars having branch-width 1 but all other
trees having branch-width 2, whilst both contain 2-tangles.

If a tree-decomposition (T,V) of a graph G is such that the set of separations induced by the
edges of T is an Sk-tree over T ∗k for some k, then there is some smallest such k′, and we say the
branch-width of the tree-decomposition is k′− 1. If no such k exists then we will let the branch-
width be infinite. By the preceding discussion we have that the branch-width (in the traditional
sense) of a graph is the smallest k such that G has a tree-decomposition of branch-width k
(except when the branch-width of G is 1), and so this should not cause too much confusion.

1.2.3 Canonical tree-Decompositions distinguishing tangles

Given two orientationsO1 andO2 of a set of separations S we say that a separation s distinguishes
O1 and O2 if −→s ∈ O1 and←−s ∈ O2. As in the previous section, every tree-decomposition, (T,V),
corresponds to some nested set of separations, N . We say that a tree-decomposition distinguishes
O1 and O2 if there is some separation in N which distinguishes O1 and O2. If O1 and O2 are
consistent, then the tree-decomposition will distinguish them if and only if they are contained
in different parts of the tree.

As in Section 1.2.2 a k-block b can be viewed as an orientation of Sk. Indeed given any
separation (A,B) with ord(A,B) < k, since b is (<k)-inseparable, b ⊆ A or b ⊆ B, so we can
think of b as orienting each s ∈ Sk towards the side of the separations that b lies in. In [36]
Carmesin, Diestel, Hundertmark and Stein showed how to algorithmically construct a nested set
of separations in a graph G (and so a tree-decomposition) in a canonical way, that is, invariant
with respect to the automorphism group of G, which distinguishes all of its k-blocks, for a given
k.

These ideas were extended in [35] to construct canonical tree-decompositions which distin-
guish all the k-profiles in a graph, a common generalization of k-tangles and k-blocks. A k-profile
can be defined as a Pk-tangle of Sk, where

Pk = {σ = {(A,B), (C,D), (B ∩D,A ∪ C)} : σ ⊆ −→Sk}.

More generally, given a universe of separations (
−→
U ,6, ∗,∨,∧) with an order function con-

taining a separation system (
−→
S ,6, ∗), we can define as before an S-profile to be a PS-tangle of

S where

PS = {σ = {−→r ,−→s ,←−r ∧←−s } : σ ⊆ −→S }.
Given two distinct S-profiles P1 and P2 there is some s ∈ S which distinguishes them. Fur-
thermore, there is some minimal l such that there is a separation of order l which distinguishes
P1 and P2, and we define κ(P1, P2) := l. We say that a separation s distinguishes P1 and P2

efficiently if s distinguishes P1 and P2 and |s| = κ(P1, P2). Given a set of profiles φ we say
that a separation s is φ-essential if it efficiently distinguishes some pair of profiles in φ. We will
often consider in particular, as in the case of graphs, the separation system arising from those
separations in a universe of order <k, that is we define

−→
Sk = {−→u ∈ −→U : |−→u | < k},

where in general it should be clear from the context which universe Sk lives in.

In [35] a number of different algorithms, which they call k-strategies, are described for con-
structing a nested set of separations distinguishing a set of profiles. These algorithms build the
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set of separations in a series of steps, and at each step there is a number of options for how
to pick the next set of separations. A k-strategy is then a description of which choice to make
at each step. The authors showed that, regardless of which choices are made at each step, this
algorithm will produce a nested set of separations distinguishing all the profiles in G. We say
a set of profiles is canonical if it is fixed under every automorphism of G. In particular the
following is shown.

Theorem 1.2.3. [[35] Theorem 4.4] Every k-strategy Σ determines for every canonical set φ of
k-profiles of a graph G a canonical nested set NΣ(G,φ) of φ-essential separations of order <k
that distinguishes all the profiles in φ efficiently.

Note that any k-tangle, O, is also a k-profile. Indeed, it is a simple check that O is consistent.
Also for any pair of separations (A,B), (C,D) ∈ −→Sk we have that G[A]∪G[C]∪G[B ∩D] = G,
since any edge not contained inA or C is contained in bothB andD. Hence, {(A,B), (C,D), (B∩
D,A ∪ C)} ∈ Tk, and so Pk ⊆ Tk. Therefore any k-tangle, which by definition avoids Tk, must
also avoid Pk, and so must be a k-profile. Similarly one can show that the orientations defined
by k-blocks are consistent and Pk avoiding, and so k-profiles. Even more, there is some family
Bk ⊇ Pk such that the orientations defined by k-blocks are Bk-tangles, and if there is a Bk-tangle
of Sk then the graph G contains a unique k-block corresponding to this orientation.

One of the aims of [51, 52] had been to develop a duality theorem which would be applicable
to k-profiles and k-blocks. The same authors showed in [50] that there is a more general duality
theorem of a similar kind which applies in these cases, however the dual objects in this theorem
correspond to a more general object than the classical notion of tree-decompositions.

Nevertheless, it was posed as an open question whether or not there was a duality theorem
for k-profiles or k-blocks expressible within the framework of [51]. By Theorem 1.2.2 it would
be sufficient to show that there is a standard set of stars F such that the set of k-profiles or
k-blocks coincides with the set of F-tangles. Recently Diestel, Eberenz and Erde [46] showed
that, if we insist the orientations satisfy a slightly stronger consistency condition, this will be
the case. We say that an orientation O of a separation system S is regular if whenever we have
r and s such that −→r 6 −→s , O does not contain both ←−r and −→s . We note that a consistent
orientation is regular if and only if it contains every small separation. A regular F-tangle of S
is then a regular F-avoiding orientation of S, and a regular S-profile is a regular PS-tangle. For
most natural examples of separation systems there will not be a difference between regular and
irregular profiles. Indeed, in [46] it is shown that for k > 3 every k-profile of a graph is in fact
a regular k-profile4.

We say a separation system is submodular if whenever−→r ,−→s ∈ −→S either−→r ∧−→s or−→r ∨−→s ∈ −→S .
Note that, if a universe U has an order function, then the separation systems Sk are submodular.

Theorem 1.2.4. [Diestel, Eberenz and Erde [46]] Let S be a separable submodular separation
system contained in some universe of separations (

−→
U ,6, ∗,∨,∧), and let F ⊇ PS. Then there

exists a standard set of stars F∗ (which is closed under shifting, and contains {−→r } for every
co-small −→r ) such that every regular F-tangle of S is an F∗-tangle of S, and vice versa, and
such that the following are equivalent:

• There is no regular F-tangle of S;

• There is no F∗-tangle of S;

• There is an S-tree over F∗.
4There do exist pathological examples of 2-profiles in graphs which are not regular, however they can be easily

characterized.
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In the case where S = Sk is the set of separations of a graph with k > 3, we have that
F ⊇ Pk, and so every F-tangle is a k-profile, and so regular. Hence, in this case, we can omit
the word regular from the statement of the theorem. We note that Tk ⊇ Pk, (and in fact the
T ∗k of the theorem can be taken to be the T ∗k defined earlier) and so Theorem 1.2.4 also implies
the tangle/branch-width duality theorem.

Applying the result to Pk or Bk also gives a duality theorem for k-blocks and k-profiles. As in
the case of tangles, if a tree-decomposition (T,V) of a graph G is such that the set of separations
induced by the edges of T is an Sk-tree over P∗k for some k, then there is some smallest such k′,
and we say the profile-width of the tree-decomposition is k′− 1. If no such k exists then we will
let the profile-width be infinite. The profile-width of a graph is then the smallest k such that G
has a tree-decompositions of profile-width k. Then, as was the case with tangles, Theorem 1.2.4
tells us that the profile-width of a graph is the largest k such that G contains a k-profile. We
define the block-width of a tree-decomposition and graph in the same way.

In a similar way as before, we can think of any part in a tree-decomposition of block-width
at most k− 1 as being ‘too small’ to contain a k-block, as the corresponding star of separations
must lie in B∗k, and by Theorem 1.2.4 every k-block defines an orientation of Sk which avoids
B∗k.

1.3 Refining a tree-decomposition

Given a set of profiles of a graph, φ, we say a part Vt of a tree-decomposition is φ-essential if
some profile from φ is contained in this part. We will keep in mind as a motivating example the
case φ = τk, the set of k-tangles and, when the set of profiles considered is clear, we will refer
to such parts simply as essential. Conversely if no such profile is contained in the part we call
it inessential. The main result of the paper can now be stated formally.

Lemma 1.3.1. Let (
−→
U ,6, ∗,∨,∧) be a universe of separations with an order function. Let φ be

a set of Sk-profiles and let F be a standard set of stars which contains {−→r } for every co-small −→r ,
and which is closed under shifting, such that φ is the set of F-tangles. Let σ = {−→s i : i ∈ [n]} ⊆−→
Sk be a non-empty star of separations such that each si is φ-essential, and let F ′ = F ∪⋃n

1{←−si }
Then either there is an F ′-tangle of Sk, or there is an Sk-tree over F ′ in which each −→s i

appears as a leaf separation.

If we compare Lemma 1.3.1 to Theorem 1.2.2, we see that Lemma 1.3.1 can be viewed in
some way as a method of building a new duality theorem from an old one, by adding some
singleton separations to our set F . The restriction to considering only Sk-profiles rather than
those of arbitrary separation systems S contained in U comes from the proof, where we need
to use the submodularity of the order function to show that certain separations emulate others.
It would be interesting to know if the result would still be true for any S which is separable,
or even any pair F and S such that S is F-separable. The condition that F contains every
co-small separation as a singleton is to ensure that the F-tangles are regular F-tangles, as we
will need to use the slightly stronger consistency condition in the proof.

What does Lemma 1.3.1 say in the case of k-tangles arising from graphs? Recall that τk
is the set of T ∗k -tangles, and that T ∗k is closed under shifting, and contains {−→r } for every co-
small −→r . Given a star σ = {−→s i : i ∈ [n]} ⊆ −→Sk we note that a T ∗k ∪

⋃n
1{←−s i}-tangle is just a

T ∗k -tangle which contains −→s i for each i, and so it is a k-tangle which orients the star inwards.
Conversely, an Sk-tree over T ∗k ∪

⋃n
1{←−s i} in which each −→s i appears as a leaf separation will give

a tree-decomposition of the part of the graph at σ. In particular, since each of the separations
in the tree will be nested with σ, the separators Ai ∩Bi of the separations −→s i will lie entirely on
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one side of every separation in the tree, and so this will in fact be a decomposition of the torso
of the part (since any extra edges in the torso lie inside the separators).

Therefore, in practice this tells us that if we have a part in a tree-decomposition whose
separators are τk-essential then either there is a k-tangle in the graph which is contained in
that part, or there is a tree-decomposition of the torso of that part with branch-width <k. In
the second case we can then refine the original tree-decomposition by combining it with this
new tree-decomposition. By applying this to each inessential part of one of the canonical tree-
decompositions formed in [35] we get the following result, which easily implies Theorems 1.1.2
and 1.1.3 by taking F = T ∗k and B∗k respectively.

Corollary 1.3.2. Let k > 3 and let F ⊇ Pk be such that the set φ of regular F-tangles is
canonical. If F∗ is defined as in Theorem 1.2.4 then there exists a nested set of separations
N ⊆ Sk corresponding to an Sk-tree (T, α) of G such that:

• there is a subset N ′ ⊆ N that is fixed under every automorphism of G and distinguishes
all the regular F-tangles in φ efficiently;

• every vertex t ∈ T either contains a regular F-tangle or {α(t′, t) : (t′, t) ∈ −→ET )} ∈ F∗.

Proof. By Theorem 1.2.3 there exists a canonical nested set N ′ of φ-essential separations of
order <k that distinguishes all the regular F-tangles in φ efficiently, and by Theorem 1.2.4 φ is
also the set of F∗-tangles. Given an inessential part Vt in the corresponding tree-decomposition
(T,V), this part corresponds to some star of separations σ = {−→s i : i ∈ [n]} ⊆ N ′. Each −→s i ∈ N ′
is φ-essential, and, by Theorem 1.2.4, F∗ is a standard set of stars which is closed under shifting,
and contains {−→r } for every co-small −→r . Hence, by Lemma 1.3.1, if we let F ′ = F∗ ∪⋃n

1{−→s i},
there is either an F ′-tangle of Sk, or an Sk-tree over F ′ in which each −→s i appears as a leaf
separation.

Suppose that there exists an F ′-tangle O. Since O avoids F ′ ⊇ F∗, it is also an F∗-tangle,
and so O ∈ φ. By assumption N ′ distinguishes all the regular F-tangles in φ, so O is contained
in some part of the tree-decomposition, and since O avoids {{←−s i} : i ∈ [n]}, it must extend σ,
and so this part must be Vt. However, this contradicts the assumption that Vt is inessential.

Therefore, by Lemma 1.3.1, there exists an Sk-tree over F∗ ∪⋃n
1{←−s i}. This gives a nested

set of separations Nt which contains the set σ. If we take such a set for each inessential Vt then
the set

N = N ′ ∪
⋃

Vt inessential

Nt

satisfies the conditions of the corollary.

We note that, whilst the existence of such a tree-decomposition is interesting in its own right,
perhaps a more useful application of Lemma 1.3.1 is that we can conclude the same for every
tree-decomposition constructed by the algorithms in [35]. So, we are able to choose whichever
algorithm we want to construct our initial tree-decomposition, perhaps in order to have some
control over the structure of the essential parts, and we can still conclude that the inessential
parts have small branch-width.

Apart from the set τk of k-tangles there is another natural set of tangles for which tangle-
distinguishing tree-decompositions have been considered. Since a k-tangle, as a Tk-avoiding
orientation of Sk, induces an orientation on Si for all i 6 k, it induces an i-tangle for all i 6 k.
If an i-tangle for some i is not induced by any k-tangle with k > i we say it is a maximal tangle.

Robertson and Seymour [110] showed that there is a decomposition of the graph which
distinguishes its maximal tangles, but the theorem does not tell us much about the structure of
this tree-decomposition. The approach of Carmesin et al was extended by Diestel, Hundertmark
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and Lemanczyk [48] to show how an iterative approach to Theorem 1.2.3 could be used to build
canonical tree-decompositions distinguishing the maximal tangles in a graph (in fact they showed
a stronger result for a broader class of profiles which implies the result for tangles). In particular,
the results of [48] imply the following.

Theorem 1.3.3. If φ is a canonical set of tangles in a graph G, then there exists a canonical
nested set N (G,φ) of φ-essential separations that distinguishes all the tangles in φ efficiently.

In particular we can apply this to the set of maximal tangles. By looking directly at the proof
in [48] one can see the structure of the tree-decomposition formed. The proof proceeds iteratively,
by choosing for each i in a turn a nested set of (i− 1)-separations (that is, separations of order
(i − 1)), which distinguishes efficiently the pairs of i-tangles which are distinguished efficiently
by an (i− 1)-separation, such that this set is also nested with the previously constructed sets.

At each stage in the construction we have a tree-decomposition which distinguishes all the
tangles of order 6 i in the graph. Some of these i-tangles however will extend to (i+ 1)-tangles
in different ways (induced by distinct maximal tangles in the graph). The next stage constructs
a nested set of separations distinguishing such tangles, which gives a tree-decomposition of the
torsos of the relevant parts. In these tree-decompositions some parts will be ‘essential’, and
containing (i+ 1)-tangles, but some will be inessential.

It is natural to expect that the inessential parts constructed at stage i should have branch-
width < i, by a similar argument as Corollary 1.3.2. However it is not always the case that the
separators of the inessential part satisfy the conditions of Lemma 1.3.1, since it can be the case
that these inessential parts have separators which are separations constructed in an earlier stage
of the process, and as such might not efficiently distinguish a pair of tangles of order i.

Question 1.3.4. Can we bound the branch-width of the inessential parts in such a tree-decomposition
in a similar way?

A positive answer to the previous question in the strongest form would give the following
analogue of Theorem 1.1.2.

Conjecture 1.3.5. For every graph G there exists a canonical sequence of tree-decompositions
(Ti,Vi) for 1 6 i 6 n of G such that

• (Ti,Vi) distinguishes every i-tangle in G for each i;

• (Tn,Vn) distinguishes the set of maximal tangles in G.

• (Ti+1,Vi+1) refines (Ti,Vi) for each i;

• The torso of every inessential part in (Ti,Vi) has branch-width < i.

1.3.1 Proof of Lemma 1.3.1

Proof of Lemma 1.3.1. Let us write

F = F ∪ {{←−x } : ←−s i 6←−x for some i ∈ [n]}.

We first claim that
−→
Sk is F-separable. We note that by [[52], Lemma 3.4] for every universe−→

U and any k ∈ N, the separation system
−→
Sk is separable. Therefore it is sufficient to show

that F is closed under shifting. By assumption F is closed under shifting, and the image of any
singleton star {←−x } ∈ F under some relevant f ↓−→r−→s is {←−y } for some separation ←−x 6 ←−y , and
hence {←−y } ∈ F . Therefore, F is closed under shifting. Furthermore, since F was standard, so
is F . Hence, we can apply Theorem 1.2.2 to F .
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By Theorem 1.2.2, either there exists an Sk-tree over F , or there exists an F-tangle. Since
F ⊃ F ′, every F-tangle is also an F ′-tangle, and so in the second case we are done. Therefore
we may assume that there exists an Sk-tree over F , (T, α). We will use (T, α) to form an Sk-tree
over F ′.

Since there is no F-tangle, each F-tangle O must contain some ←−s i. We note that, since by
assumption F contains every co-small separation, O is regular. Hence, since σ is a star, this ←−s i
is unique. We claim that, for every F-tangle O such that ←−s i ∈ O there is some leaf separation
−→x ∈ α(

−→
E (T )) such that ←−x 6←−s i.

Indeed, since O is a consistent orientation of
−→
Sk, it is contained in some vertex of (Tα).

However, the star of separations at that vertex, by definition of an F-tangle, cannot lie in F ,
and so must lie in F \ F . Since each of these stars are singletons, the vertex must be a leaf.
Therefore, there is some leaf separation −→x such that←−x ∈ O. Since {←−x } ∈ F \F , it follows that
←−sr 6 ←−x for some r ∈ [n]. However, since ←−s i ∈ O, and it was the unique separation in σ with
that property, it follows that r = i, and so ←−s i 6←−x i as claimed.

If the only leaf separations in F \ F were the separations {−→s i : i ∈ [n]} then (T, α) would
be the required S-tree over F ′. In general however the tree will have a more arbitrary set
{−→xi,j} of leaf separations (along with some leaf separations arising as separations forced by F)
where ←−s i 6 ←−xi,j , see Figure 1.5. Note that there may not necessarily be any edges in this tree
corresponding to the separations si.

Figure 1.5: The Sk-tree over F with unlabelled leafs corresponding to separations forced by F .

We claim that each −→s i emulates some −→xi,j in
−→
Sk for F . By assumption, every si ∈ σ

distinguishes efficiently some pair O1 and O2 of F-tangles. Suppose that −→s i ∈ O1 and ←−s i ∈ O2.
By our previous claim, there is some leaf separation −→xi,j such that ←−xi,j ∈ O2. We claim that
−→s i emulates this −→xi,j in

−→
Sk. Note that, since F is closed under shifting, it would follow that −→s i

emulates −→xi,j in
−→
Sk for F . Note that, since −→s i and −→xi,j both distinguish two F-tangles, they

are non-trivial and non-degenerate.

Indeed, given any separation −→r > −→xi,j we have that −→s i > −→s i ∧ −→r > −→xi,j and so −→s i ∧ −→r
distinguishes O1 and O2. Therefore, since si distinguises O1 and O2 efficiently, |−→s i ∧−→r | > |−→s i|.
Hence, by submodularity, |−→s i ∨ −→r | 6 |−→r | < k and so −→s i ∨ −→r ∈ Sk. Therefore the image of
f ↓
−→xi,j
−→s i

is contained in Sk and so −→s i emulates −→xi,j in
−→
Sk. Furthermore, since −→xi,j is non-trivial

and non-degenerate, by the comment after Lemma 1.2.1 we can assume that T is irredundant,
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and that −→xi,j is not the image of any other edge in T .
Since −→sn and −→xn,j satisfy the conditions of Lemma 1.2.1, we conclude that the shift of (T, α)

onto −→sn is an Sk-tree over F which contains −→sn as a leaf separation, and not as the image of
any other edge. Let us write (Tn, αn) for this Sk-tree.

If there is some leaf separation ←−r of (Tn, αn) such that ←−sn <←−r then, since the leaf separa-
tions form a star and ←−s i is the image of a unique leaf, we also have that −→s i <←−r . Hence, −→r is
trivial, and so {←−r } ∈ F . Therefore (Tn, αn) is also an Sk-tree over

Fn = F ∪ {←−sn} ∪ {{←−x } : ←−s i 6←−x for some i ∈ [n− 1]}.

If we repeat this argument for each 1 6 i 6 n, we end up with a sequence of Sk-trees
(Tn, αn),
(Tn−1, αn−1), . . . (T1, α1) over F such that (Tj , αj) is also an Sk-tree over

F j = F ∪ {←−s i : i > j} ∪ {{←−x } : ←−s i 6←−x for some i ∈ [j − 1]}.

We note that F1 = F ′, and so (T1, α1) is an Sk-tree over F ′, completing the proof.

1.4 Further refining essential parts of tangle-distinguishing tree-
decompositions

In some sense the tree-decompositions of Corollary 1.3.2 tell us most about the structure of
the graph when the essential parts correspond closely to the profiles inside them. However, as
the example in Figure 1.2 shows, sometimes there can be essential parts which could be further
refined, in order to more precisely exhibit the structure of the graph.

In this section we will discuss how the tools from the paper can be used to achieve this goal.
Given a graph G we call a separation ←−x ∈ −→Sk inessential if ←−x ∈ O for every k-tangle O of G.
Given a k-tangle O letM(O) be the set of maximal separations in O, and letMI(O) be the set
of maximal inessential separations. Our main tool will be the following lemma.

Lemma 1.4.1. Let G be a graph, O be a k-tangle of G and let ←−x ∈ MI(O) be non-trivial.
Then there is an Sk-tree over T ∗k ∪ {←−x }.

Proof. As in the proof of Lemma 1.3.1 let us consider the family of stars

F = T ∗k ∪ {{←−r } : ←−x 6←−r }.

A similar argument show that this family is standard and closed under shifting, and so Theorem
1.2.2 asserts the existence of a F-tangle, or an Sk-tree over F . As before, an F-tangle would
be a k-tangle of G which contains −→x , contradicting the fact that ←−x is inessential. Therefore,
there is an Sk-tree over F . However, O must live in some part of this tree-decomposition, and
since O is T ∗k -avoiding it must live in some leaf vertex, corresponding to a singleton star {←−r }
for some←−x 6←−r . However,←−x was a maximal separation in O and hence←−r 6∈ O unless←−r =←−x .
Therefore the Sk-tree is in fact over T ∗k ∪ {←−x }.

Lemma 1.4.1 tell us that for every ←−x ∈ MI(O) there is a tree-decomposition of the part of
the graph behind ←−x with branch-width < k. So, we could perhaps hope to refine our canon-
ical k-tangle-distinguishing tree-decompositions further using these tree-decompositions. How-
ever, there is no guarantee that MI(O) will be nested with the τk-essential separations used
in a k-tangle-distinguishing tree-decomposition, and so we cannot in general refine such tree-
decompositions naively in this way. Moreso, in order to decompose as much of the inessential
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parts of the graph as possible we would like to take such a tree for each such maximal separation,
however again in general, MI(O) itself may not be nested.

Our plan will be to find, for each ←−x ∈ MI(O), some inessential separation ←−u such that −→u
emulates −→x in

−→
S k, that is also nested with the separations from the k-tangle-distinguishing

tree-decomposition. Furthermore we would like to able to do this in such a way that the
separations −→u emulating different maximal separations form a star. Then, for each maximal
separation, we could shift the Sk-tree given by Lemma 1.4.1 to an Sk-tree over T ∗k ∪{←−u }. These
tree-decompositions could then be used to refine our k-tangle-distinguishing tree-decomposition
further. We will in fact show a more general result that may be of interest in its own right.

1.4.1 Uncrossing sets of separations

Given two separations −→r 6 −→s in an arbitrary universe with an order function, we say that −→s
is linked to −→r if for every −→x > −→r we have that

|−→x ∨ −→s | 6 |−→x |.

In particular we note that if −→r ,−→s ∈ −→Sk, then −→s being linked to −→r implies that −→s emulates −→r
in
−→
Sk. We first note explicitly a fact used in the proof of Lemma 1.3.1.

Lemma 1.4.2. Let (
−→
U ,6, ∗,∨,∧) be a universe of separations with an order function, and let

←−s 6←−r be two separations in
−→
U . If ←−x is a separation of minimal order such that ←−s 6←−x 6←−r ,

then −→x is linked to −→r .

Proof. Given any separation −→y > −→r we note that

←−s 6←−x 6←−x ∨←−y 6←−r ,

and so by minimality of ←−x we have that |←−y ∨←−x | > |←−x |. Hence, by submodularity |−→y ∨ −→x | =
|←−y ∧←−x | 6 |−→y |, and so −→x is linked to −→r . Note that, by symmetry, ←−x is linked to ←−s also.

In what follows we will need to use two facts about a universe of separations. The first is
true for any universe of separations, that for any two separations ←−x and ←−y

(←−x ∧←−y )∗ = −→x ∨ −→y and (←−x ∨←−y )∗ = −→x ∧ −→y .

The second will not be true in general, and so we say a universe of separations is distributive
if for every three separations ←−x ,←−y and ←−z it is true that

(←−x ∧←−y ) ∨←−z = (←−x ∨←−z ) ∧ (←−y ∨←−z ) and (←−x ∨←−y ) ∧←−z = (←−x ∧←−z ) ∨ (←−y ∧←−z ).

It is a simple check that the universe of separations of a graph is distributive.

Lemma 1.4.3. Let (
−→
U ,6, ∗,∨,∧) be a distributive universe of separations with an order func-

tion, and let ←−x1 and ←−x2 be two separations in
−→
U . Let ←−u1 be any separation of minimal order

such that ←−x1 ∧ −→x2 6
←−u1 6

←−x1 and let ←−u2 =←−x2 ∧ −→u1. Then the following statements hold:

• −→u1 is linked to −→x1 and −→u2 is linked to −→x2;

• |←−u1| 6 |←−x1| and |←−u2| 6 |←−x2|;

• ←−u1 =←−x1 ∧ −→u2.
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Proof. We note that −→u1 is linked to −→x1 by Lemma 1.4.2. We want to show that −→u2 is linked to
−→x2, that is, given any−→r > −→x2 we need that |−→r ∨−→u2| 6 |−→r |. We first claim that−→r ∨−→u2 =←−u1∨−→r .
Indeed,

−→r ∨ −→u2 = −→r ∨ (−→x2 ∨←−u1) = (−→r ∨ −→x2) ∨←−u1 = −→r ∨←−u1.

We also claim that←−x1∧−→x2 6
←−u1∧−→r 6←−x1. Indeed, ←−x1∧−→x2 6

←−u1 and←−x1∧−→x2 6
−→x2 6

−→r
and so

←−x1 ∧ −→x2 6
←−u1 ∧ −→r 6←−u1 6

←−x1.

Therefore, by minimality of ←−u1 we have that |←−u1 ∧ −→r | > |←−u1| and so, by submodularity, it
follows that

|−→r ∨ −→u2| = |←−u1 ∨ −→r | 6 |−→r |,
as claimed.

By minimality of ←−u1 we have that |←−u1| 6 |←−x1|. Also we note that, since ←−u2 = ←−x2 ∧ −→u1 we
have that

|←−u2|+ |←−x2 ∨ −→u1| 6 |←−x2|+ |←−u1|.
However, |←−x2 ∨ −→u1| = |←−u1 ∧ −→x2|, and we claim that

←−x1 ∧ −→x2 6
←−u1 ∧ −→x2 6

←−x1.

Indeed, that second inequality is clear since, ←−u1 6
←−x1. For the first we note that←−x1∧−→x2 6

−→x2,
and also ←−x1 ∧ −→x2 6

←−x1 ∧ −→u2 = ←−u1, and so ←−x1 ∧ −→x2 6
←−u1 ∧ −→x2. Hence, by the minimality of

←−u1, we have |←−x2 ∨ −→u1| > |←−u1|. Hence it follows that |←−u2| 6 |←−x2|, as claimed.
For the last condition, we have that←−u1 6

←−x1 and←−u1 6
←−u1∨−→x2 = −→u2, and so←−u1 6

←−x1∧−→u2.
However,

←−x1 ∧ −→u2 =←−x1 ∧ (−→x2 ∨←−u1) = (←−x1 ∧ −→x2) ∨ (←−x1 ∧←−u1) = (←−x1 ∧ −→x2) ∨←−u1 6
←−u1,

and so ←−u1 =←−x1 ∧ −→u2.

We note that if we apply the above lemma to a pair of separations ←−x1 and ←−x2 such that x1

distinguishes efficiently a pair of regular k-profiles, which x2 does not distinguish, say ←−x1 ∈ P1

and −→x1 ∈ P2 and ←−x2 ∈ P1 ∩ P2, then ←−x1 is of minimal order over all separations ←−x1 ∧ −→x2 6←−u1 6
←−x1. Hence, in Lemma 1.4.3, we can take ←−u1 =←−x1 and ←−u2 =←−x2 ∧ −→x1.

Indeed, suppose ←−x1 ∧ −→x2 6
←−u1 6

←−x1 is of minimal order. We note that ←−u1 ∈ P1 by
regularity. Similarly, let←−u2 =←−x2∧−→u1 then←−u2 ∈ P2 by regularity. Recall that, by Lemma 1.4.3
←−u1 = ←−x1 ∧ −→u2. Hence, −→u1 = −→x1 ∨←−u2 ∈ P2. Therefore, u1 distinguishes P1 and P2 and so, by
the efficiency of x1, |←−x1| 6 |←−u1| as claimed.

The question remains as to what happens for a larger set of separations. It would be tempting
to conjecture that the following extension of Lemma 1.4.3 holds, where we note that, in general,
(−→x ∧−→y )∧−→z = −→x ∧(−→y ∧−→z ) and so, when writing such an expression we can, without confusion,
omit the brackets.

Conjecture 1.4.4. Let (
−→
U ,6, ∗,∨,∧) be a distributive universe of separations with an order

function, and let {←−xi : i ∈ [n]} be a set of separations in
−→
U . Then there exists a set of

separations {←−ui : i ∈ [n]} such that the following conditions hold:

• {←−ui : i ∈ [n]} is a star;

• −→ui is linked to −→xi for all i ∈ [n];

• |←−ui| 6 |←−xi| for all i ∈ [n];
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• ←−ui =←−xi
∧
j 6=i
−→uj for all i ∈ [n].

However, it seems difficult to ensure that the fourth condition holds with an inductive ar-
gument. We were able to show the following in the case of graph separations, by repeatedly
applying Lemma 1.4.3. The extra sets {←−r i} and φ appearing in the statement will be useful for
the specific application we have in mind, the conclusion when these are empty is the weakened
form of the above conjecture.

Lemma 1.4.5. Let G be a graph, k > 3, and let φ be the set of k-profiles in G. Suppose
that {←−r i = (Ai, Bi) : i ∈ [n]} is a star composed of φ-essential separations, which distinguish
efficiently some set φ′ of regular k-profiles and let {←−xj = (Xj , Yj) : j ∈ [m]} ⊆ −→Sk be such
that ←−xj ∈ P for all j ∈ [m] and P ∈ φ′. Then there exists a set {←−uj : j ∈ [m]} such that the
following conditions hold:

• {←−r i : i ∈ [n]} ∪ {←−uj : j ∈ [m]} is a star;

• |←−uj | 6 |←−xj | for all j ∈ [m];

• −→uj is linked to −→xj for all j ∈ [m];

• ←−xj
∧
i
−→r i
∧
k 6=j
−→xk 6←−uj 6←−xj for all j ∈ [m];

• ⋃m
j=1Xj ∪

⋃n
i=1Ai =

⋃m
j=1 Uj ∪

⋃n
i=1Ai.

Proof. Let us start with a set of separations

Y = {←−y i : i ∈ [n+m]},

and some arbitrary order on the set of pairs Y (2). Initially we set ←−y i = ←−xj for j ∈ [m] and
←−ym+i = ←−r i for i ∈ [n]. For each pair {←−y i,←−y j} in order we apply Lemma 1.4.3 to this pair of
separations and replace {←−y i,←−y j} with the nested pair given by Lemma 1.4.3. After we have
done this for each pair, we let ←−uj :=←−y j for each j ∈ [m].

Note that, since each ←−xj is φ-inessential, and with each application of Lemma 1.4.3 we only
ever replace a separation by one less than or equal to it, ←−y j is also φ-inessential at each stage of
this process for j ∈ [m]. Also, {←−r i : i ∈ [n]} is a star, and so if we apply Lemma 1.4.3 to a pair
←−r i and ←−r k, neither is changed. Therefore, by the comment after Lemma 1.4.3, we may assume
that at every stage in the process ←−ym+i = ←−r i for each i ∈ [n]. In particular at the end of the
process we have that

Y = {←−r i : i ∈ [n]} ∪ {←−uj : j ∈ [m]}.
To see that the first condition is satisfied we note that, given any pair of separations ←−y i and

←−y j ∈ Y , at some stage in the process we applied Lemma 1.4.3 to this pair, and immediately
after this step we have that ←−y i 6 −→y j . Since Lemma 1.4.3 only ever replaces a separation with
one less than or equal to it, it follows that at the end of the process Y is a star. Therefore the
family {←−r i : i ∈ [n]} ∪ {←−uj : j ∈ [m]} forms a star.

To see that the second condition is satisfied we note that, whenever we apply Lemma 1.4.3
we only ever replace a separation with one whose order is less than or equal to the order of the
original separation.

To see that the third condition is satisfied we note that whenever we apply Lemma 1.4.3
we only ever replace a separation with one whose inverse is linked to the inverse of the original
separation. Therefore it would be sufficient to show that the property of being linked to is
transitive. Indeed, suppose that −→r > −→s >

−→
t , −→r is linked to −→s and −→s is linked to

−→
t , all in

some separation system S. Let −→x >
−→
t also be in

−→
Sk.
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However, since −→s is linked to
−→
t , it follows that |−→x ∨ −→s | 6 |−→x |. Then, since −→x ∨ −→s > −→s

and −→r is linked to −→s , it follows that |(−→x ∨−→s )∨−→r | 6 |−→x ∨−→s | 6 |−→x |. However, since −→s 6 −→r ,
(−→x ∨ −→s ) ∨ −→r = −→x ∨ −→r , and so −→r is linked to

−→
t .

To see that the fourth condition is satisfied let us consider ←−y j for some j ∈ [m]. There is
some sequence of separations ←−xj = ←−v0 >

←−v1 > . . . > ←−v t = ←−uj that are the values ←−y j takes
during this process, corresponding to the t times we applied Lemma 1.4.3 to a pair containing
the separation←−y j . Suppose that the other separations in those pairs were←−y i1 ,←−y i2 , . . . ,←−y it , and
let us denote by ←−wk the value of the separations ←−y ik at the time which we applied Lemma 1.4.3
to the pair {←−y j ,←−y ik}.

We claim inductively that for all 0 6 r 6 t

←−v0

r∧
k=1

−→wk 6←−v r 6←−v0.

The statement clearly holds for r = 0. Suppose it holds for r − 1. We obtain ←−v r by applying
Lemma 1.4.3 to the pair {←−v r−1,

←−wr}, giving us the pair {←−v r,←−z}. We have that ←−v r−1 ∧−→z =←−v r
and so, since −→wr 6 −→z it follows that

←−v r−1 ∧ −→wr 6←−v r 6←−v r−1.

By the induction hypothesis we know that

←−v0

r−1∧
k=1

−→wk 6←−v r−1 6
←−v0,

and so

←−v0

r∧
k=1

−→wk 6←−v r−1 ∧ −→wr 6←−v r 6←−v r−1 6
←−v0

as claimed.
For each of the ←−wk there is some separation ←−sk from our original set (that is some ←−r i or

←−xj) such that ←−wk 6←−sk and so, since −→sk 6 −→wk, and since we apply Lemma 1.4.3 to each pair of
separations in our original set, we have that

←−v0

∧
i

−→r i
∧
k 6=j

−→xj 6←−v0

t∧
k=1

−→wk.

So, recalling that ←−v0 =←−xj and ←−v t =←−uj , we see that

←−xj
∧
i

−→r i
∧
k 6=j

−→xk 6←−uj 6←−xj

as claimed.
Finally we note that, if we apply Lemma 1.4.3 to a pair of separations (C,D) and (E,F ),

resulting in the nested pair {(C ′, D′), (E′, F ′)}, then

C ∪ E = C ′ ∪ E′.

Indeed, we have that (C ∩ F ′, D ∪ E′) = (C ′, D′) and (E ∩ D′, F ∪ C ′) = (E′, F ′) and so we
have that C ′ ∪ E′ = (C ∩ F ′) ∪ E′ ⊇ C and similarly C ′ ∪ E′ = C ′ ∪ (E ∩ D′) ⊇ E and so
C ′ ∪ E′ ⊇ C ∪ E. However, since C ′ ⊆ C and E′ ⊆ E we also have C ′ ∪ E′ ⊆ C ∪ E.
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1.4.2 Refining the essential parts

The content of Lemma 1.4.5 can be thought of as a procedure for turning an arbitrary set of
separations into a star which is in some way ‘close’ to the original set, and is linked pairwise to
the original set. We note that the second property guarantees us that this star lies in the same
Sk as the original set.

Let us say a few words about the other properties of the star which represent this closeness.
It will be useful to think about these properties in terms of how we can use this lemma to refine
further an essential part in a k-tangle-distinguishing tree-decomposition.

Suppose {←−xj : j ∈ [m]} = MI(O) for some k-tangle O, and {←−r i : i ∈ [n]} is the star of
separations at the vertex where O is contained in a tree-decomposition, specifically one where
each ri distinguishes efficiently some pair of k-tangles. By applying Lemma 1.4.5 we get a star
{←−uj : j ∈ [m]} satisfying the conclusions of the lemma. For each non-trivial ←−xj , by Lemma
1.4.1, there exists an irredundant Sk-tree over T ∗k ∪ {←−xj} containing ←−xj as a leaf separation,
such that ←−xj is not the image of any other edge. We can then use Lemma 1.2.1 to shift each
of these Sk-trees onto −→uj , giving us an Sk-tree over T ∗k ∪ {←−uj} . If ←−xj is trivial then so is ←−uj ,
and so there is an obvious Sk-tree over T ∗k ∪ {←−uj} containing −→uj as a leaf separation, that with
a single edge corresponding to uj .

Doing the same for each k-tangle in the graph and taking the union all of these Sk-trees,
together with the tree-decomposition from Corollary 1.3.2, will give us a refinement of this tree-
decomposition which maintains the property of each inessential part being too small to contain a
k-tangle, but also further refines the essential parts. The properties of the star given by Lemma
1.4.5 give us some measurement of how effective this process is in refining the essential parts of
the graph.

We first note that, given a k-tangle O, which is contained in some part Vt of a k-tangle-
distinguishing tree-decomposition, by the fifth property in Lemma 1.4.5 every vertex in the part
Vt which lies on the small side of some maximal inessential separation in O will be in some
inessential part of this refinement.

However this property is also satisfied by the rather naive refinement formed by just taking
the union of some small separations (Ai, V ) with the Ai covering the same vertex set. The
problem with this naive decomposition is it does not really refine the part Vt, since there is a
still a part with vertex set Vt in the new decomposition. Ideally we would like our refinement to
make this essential part as small as possible, to more precisely exhibit how the k-tangle O lies
in the graph.

Our refinement comes some way towards this, as evidenced by the fourth condition . For
example if we have some separation ←−s = (A,B) which lies ‘behind’ some maximal inessential
separation in O, that is ←−s 6 ←−xj for some j, and is nested MI(O) ∪ {←−r i : i ∈ [n]}, then it
is easy to check that the fourth property guarantees it will also lie behind some ←−uk given by
Lemma 1.4.5. So, in the refined tree-decomposition, the part containing O will not contain any
vertices that lie strictly in the small side of such a separation, A \B.

Suppose {←−r i : i ∈ [n]} is an essential part in a tree-decomposition (T,V) containing a
tangle O. We say a vertex v ∈ V is inessentially separated from O relative to (T,V) if there
is a separation (A,B) which is nested with MI(O) ∪ {←−r i : i ∈ [n]} such that v ∈ A \ B, and
there exists some (X,Y ) ∈ MI(O) such that (A,B) 6 (X,Y ). For example, in Figure 1.2,
the vertices in the long paths are inessentially separated from the tangles corresponding to the
complete subgraphs relative to the canonical tangle-distinguishing tree-decomposition.

Theorem 1.4.6. For every graph G and k > 3 there exists a tree-decomposition (T,V) of G of
adhesion <k with the following properties
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• The tree-decomposition (T ′,V ′) induced by the essential separations is canonical and dis-
tinguishes every k-tangle in G;

• The torso of every inessential part has branch-width <k.

• For every essential part Vt which contains a tangle O, there are no vertices v ∈ Vt which
are inessentially separated from O relative to (T ′,V ′).

Given a vertex v ∈ V we say that that x is well separated from O if there is a separation
(A,B) which is nested with M(O) such that v ∈ A \ B, and there exists some (X,Y ) ∈ M(O)
such that (A,B) 6 (X,Y ).

We can think of the vertices which are well separated from O as being ‘far away’ from O in
the graph. Indeed, ifM(O) is a star, then O is a k-block, and the set of vertices well separated
from O are just the vertices not in the k-block. In general a tangle will not correspond as
closely to a concrete set of vertices as a k-block, and crossing separations in M(O) somehow
demonstrate the uncertainty of whether a vertex ‘lives in’ O or not. However, if a separation
(A,B) ∈ O is nested with M(O), then O should be in some way fully contained in B, and so
the vertices in A \B are ‘far away’ from O.

Question 1.4.7. For every graph G, does there exist a tree-decomposition which distinguishes
the k-tangles in a graph, whose essential parts are small in the sense that for each k-tangle O,
there is no vertex x which can be well separated from O in the part of the tree-decomposition
which contains O? Does there exist such a tree-decomposition with the further property that the
inessential parts have branch-width <k?
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Chapter 2

Duality theorems for blocks and
tangles in graphs

2.1 Introduction

There are a number of theorems about the structure of sparse graphs that assert a duality
between the existence of a highly connected substructure and a tree-like overall structure. For
example, if a connected graph G has no 2-connected subgraph or minor, it is a tree. Less
trivially, the graph minor structure theorem of Robertson and Seymour says that if G has no
Kn-minor then it has a tree-decomposition into parts that are ‘almost’ embeddable in a surface
of bounded genus; see [43].

Another example of a highly connected substructure is that of a k-block, introduced by
Mader [99] in 1978 and studied more recently in [34, 36, 37]. This is a maximal set of at least k
vertices in a graph G such that no two of them can be separated in G by fewer than k vertices.

One of our main results is that the non-existence of a k-block, too, is always witnessed by
a tree structure (Theorem 2.1.2). This problem was raised in [34, Sec. 7]. In [51], Diestel and
Oum used a new theory of ‘abstract separation systems’ [44] in pursuit of this problem, but
were unable to find the tree structures needed: the simplest witnesses to the nonexistence of
k-blocks they could find are described in [50], but they are more complicated than trees. Our
proof of Theorem 2.1.2, and the rest of this paper, are still based on the theory developed in [44]
and [51], and we show that there are tree-like obstructions to the existence of k-blocks after all.

Tangles, introduced by Robertson and Seymour in [110], are substructures of graphs that
also signify high local connectivity, but of a less tangible kind than subgraphs, minors, or blocks.
Basically, a tangle does not tell us ‘what’ that substructure is, but only ‘where’ it is: by orienting
all the low-order separations of the graph in some consistent way, which we then think of as
pointing ‘towards the tangle’. See Section 2.2.2 below, or [43], for a formal introduction to
tangles.

Tangles come with dual tree structures called branch decompositions. Although defined
differently, they can be thought of as tree-decompositions of a particular kind. In [51, 52],
Diestel and Oum generalised the notion of tangles to ways of consistently orienting the low-order
separations of a graph so as to describe other known types of highly connected substructures too,
such as those dual to tree-decompositions of low width. We shall build on [51] to find dual tree
structures for various types of tangles, for blocks, and for ‘profiles’: a common generalisation of
blocks and tangles introduced in [48] and defined formally in Section 2.2.3.

Let us describe our results more precisely. A classical k-tangle, as in [110], is an orientation
of all the separations {A,B} of order < k in a graph G, say as (A,B) rather than as (B,A), so
that no three of these cover G by the subgraphs that G induces on their ‘small sides’ A. Let
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T denote the set of all such forbidden triples of oriented separations of G, irrespective of their
order. The tangle duality theorem of Robertson and Seymour then asserts that, given k, either
the set Sk of all the separations of G of order < k can be oriented in such a way as to induce
no triple from T – an orientation of Sk we shall call a T -tangle – or G has a tree-decomposition
of a particular type: one from which it is clear that G cannot have a k-tangle, i.e., a T -tangle
of Sk.

Now consider any superset F of T . Given k, the orientations of Sk with no subset in F will
then be particular types of tangles. Our F-tangle duality theorem yields duality theorems for
all these: if G contains no such ‘special’ tangle, it will have a tree-decomposition that witnesses
this. Formally, to every such F and k there will correspond a class TF (k) of tree-decompositions
that witness the non-existence of an F-tangle of Sk, and which are shown to exist whenever a
graph has no F-tangle of Sk:

Theorem 2.1.1. For every finite graph G, every set F ⊇ T of sets of separations of G, and
every integer k > 2, exactly one of the following statements holds:

• G admits an F-tangle of Sk;

• G has a tree-decomposition in TF (k).

Every k-block also defines an orientation of Sk: as no separation {A,B} ∈ Sk separates it, it
lies entirely in A or entirely in B. These orientations of Sk need not be k-tangles, so we cannot
apply Theorem 2.1.1 to obtain a duality theorem for k-blocks. But still, we shall be able to
define classes TB(k) of tree-decompositions that witness the non-existence of a k-block, in the
sense that graphs with such a tree-decomposition cannot contain one, and which always exist
for graphs without a k-block:

Theorem 2.1.2. For every finite graph G and every integer k > 0 exactly one of the following
statements holds:

• G contains a k-block;

• G has a tree-decomposition in TB(k).

Finally, we define classes TP(k) of tree-decompositions which graphs with a k-profile cannot
have, and prove the following duality theorem for profiles:

Theorem 2.1.3. For every finite graph G and every integer k > 2 exactly one of the following
statements holds:

• G has a k-profile;

• G has a tree-decomposition in TP(k).

For readers already familiar with profiles [48] we remark that, in fact, we shall obtain a more
general result than Theorem 2.1.3: our Theorem 2.3.9 is a duality theorem for all regular profiles
in abitrary submodular abstract separation systems, including the standard ones in graphs and
matroids but many others too [54].

Like Theorem 2.1.1, Theorems 2.1.2 and 2.1.3 are ‘structural’ duality theorems in that they
identify a structure that a graph G cannot have if it contains a k-block or k-profile, and must
have if it does not. Alternatively, we can express the same duality more compactly in terms of
graph invariants, as follows. Let

β(G) := max { k | G has a k-block }
π(G) := max { k | G has a k-profile }
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be the block number and the profile number of G, respectively, and let

bw(G) := min { k | G has a tree-decomposition in TB(k + 1) }
pw(G) := min { k | G has a tree-decomposition in TP(k + 1) }

be its block-width and profile-width. Theorems 2.1.2 and 2.1.3 can now be rephrased as

Corollary 2.1.4. As invariants of finite graphs, the block and profile numbers agree with the
block- and profile-widths:

β = bw and π = pw.

In Section 2.2 we introduce just enough about abstract separation systems [44] to state the
fundamental duality theorem of [51], on which all our proofs will be based. In Section 2.3 we
give a proof of our main result, a duality theorem for regular profiles in submodular abstract
separation systems. In Section 2.4 we apply this to obtain structural duality theorems for k-
blocks and k-profiles, and deduce Theorems 2.1.1–2.1.3 as corollaries. In Section 2.5 we derive
some bounds for the above width-parameters in terms of tree-width and branch-width.

Any terms or notation left undefined in this paper are explained in [43].

2.2 Background Material

2.2.1 Separation systems

A separation of a graph G is a set {A,B} of subsets of V (G) such that A ∪ B = V , and there
is no edge of G between A \ B and B \ A. There are two oriented separations associated with
a separation, (A,B) and (B,A). Informally we think of (A,B) as pointing towards B and away
from A. We can define a partial ordering on the set of oriented separations of G by

(A,B) 6 (C,D) if and only if A ⊆ C and B ⊇ D.

The inverse of an oriented separation (A,B) is the separation (B,A), and we note that mapping
every oriented separation to its inverse is an involution which reverses the partial ordering.

In [51] Diestel and Oum generalised these properties of separations of graphs and worked in
a more abstract setting. They defined a separation system (

−→
S ,6, ∗) to be a partially ordered

set
−→
S with an order-reversing involution ∗. The elements of

−→
S are called oriented separations.

Often a given element of
−→
S is denoted by −→s , in which case its inverse −→s ∗ will be denoted by

←−s , and vice versa. Since ∗ is ordering reversing we have that, for all −→r ,−→s ∈ S,

−→r 6 −→s if and only if ←−r >←−s .

A separation is a set of the form {−→s ,←−s }, and will be denoted by simply s. The two elements −→s
and ←−s are the orientations of s. The set of all such pairs {−→s ,←−s } ⊆ −→S will be denoted by S. If
−→s =←−s we say s is degenerate. Conversely, given a set S′ ⊆ S of separations we write

−→
S′ :=

⋃
S′

for the set of all orientations of its elements. With the ordering and involution induced from
−→
S ,

this will form a separation system.
Given a separation of a graph {A,B} we can identify it with the pair {(A,B), (B,A)} and

in this way any set of oriented separations in a graph which is closed under taking inverses
forms a separation system. When we refer to an oriented separation in a context where the
notation explicitly indicates orientation, such as −→s or (A,B), we will usually suppress the prefix
“oriented” to improve the flow of the narrative.

The separator of a separation s = {A,B} in a graph, and of its orientations −→s , is the set
A ∩ B. The order of s and −→s , denoted as |s| or as |−→s |, is the cardinality of the separator,
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|A ∩ B|. Note that if −→r = (A,B) and −→s = (C,D) are separations then so are their corner
separations −→r ∨−→s := (A∪C,B ∩D) and −→r ∧−→s := (A∩C,B ∪D). Our function −→s 7→ |−→s | is
clearly symmetric in that |→s | = |←s |, and submodular in that

|−→r ∨ −→s |+ |−→r ∧ −→s | ≤ |−→r |+ |−→s |

(in fact, with equality).

→
r

→
rr

B

→s

→s∨

s

D

A

C

Figure 2.1: The corner separation
→
r ∨ →s = (A ∪ C,B ∩D)

If an abstract separation system (
→
S,≤, ∗) forms a lattice, i.e., if there exist binary operations

∨ and ∧ on
−→
S such that −→r ∨−→s is the supremum and −→r ∧−→s is the infimum of −→r and −→s , then

we call (
−→
S ,6, ∗,∨,∧) a universe of (oriented) separations. By (2.2.1), it satisfies De Morgan’s

law:
(
→
r ∨ →s )∗ =

←
r ∧ ←s . (2.2.1)

Any real, non-negative, symmetric and submodular function on a universe of separations, usually
denoted as →s 7→ |→s |, will be called an order function.

Two separations r and s are nested if they have 6-comparable orientations. Two oriented
separations −→r and −→s are nested if r and s are nested.1 We say that −→r points towards s (and
←−r points away from s) if −→r 6 −→s or −→r 6 ←−s . So two nested oriented separations are either
6-comparable, or they point towards each other, or they point away from each other. If −→r
and −→s are not nested we say that they cross. A set of separations S is nested if every pair of
separations in S is nested, and a separation s is nested with a nested set of separations S if
S ∪ {s} is nested.

A separation −→r ∈ −→S is trivial in
−→
S , and ←−r is co-trivial, if there exist an s ∈ S such that

−→r < −→s and −→r <←−s . Note that if −→r is trivial, witnessed by some s, then, since the involution
on
−→
S is order-reversing, we have −→r < −→s < ←−r . So, in particular, ←−r cannot also be trivial.

Separations −→s such that −→s 6←−s , trivial or not, will be called small.
In the case of separations of a graph (V,E), the small separations are precisely those of the

form (A, V ). The trivial separations are those of the form (A, V ) with A ⊆ C ∩ D for some
separation {C,D} 6= {A,B}. Finally we note that there is only one degenerate separation in a
graph, (V, V ).

2.2.2 Tangle-tree duality in separation systems

Let
−→
S be a separation system. An orientation of S is a subset O ⊆ −→S which for each s ∈ S

contains exactly one of its orientations −→s or ←−s . Given a universe
−→
U of separations with an

order function, such as all the oriented separations of a given graph, we denote by

−→
Sk = {−→s ∈ −→U : |−→s | < k}

1In general we will use terms defined for separations informally for oriented separations when the meaning is
clear, and vice versa.
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the set of all its separations of order less than k. Note that
−→
Sk is again a separation system. But

it is not necessarily a universe, since it may fail to be closed under the operations ∨ and ∧.

If we have some structure C in a graph that is ‘highly connected’ in some sense, we should
expect that no low order separation will divide it: that is, for every separation s of sufficiently
low order, C should lie on one side of s but not the other. Then C will orient s as −→s or ←−s ,
choosing the orientation that ‘points to where it lies’ according to some convention. For graphs,
our convention is that the orientated separation (A,B) points towards B. And that if C is a
Kn-minor of G with n > k, say, then C ‘lies on the side B’ if it has a branch set in B \A. (Note
that it cannot have a branch set in A \B then.) Then C orients {A,B} towards B by choosing
(A,B) rather than (B,A). In this way, C induces an orientation of all of Sk.

The idea of [51], now, following the idea of tangles, was to define ‘highly connected substruc-
tures’ in this way: as orientations of a given set S of separations.

Any concrete example of ‘highly-connected substructures’ in a graph, such as a Kn-minor or
a k-block, will not induce arbitrary orientations of Sk: these orientations will satisfy some con-
sistency rules. For example, consider two separations (A,B) < (C,D). If our ‘highly connected’
structure C orients {C,D} towards D then, since B ⊇ D it should not orient {A,B} towards A.

We call an orientation O of a set S of separations in some universe
−→
U consistent if whenever

we have distinct r and s such that −→r < −→s , the set O does not contain both ←−r and −→s . Note
that a consistent orientation of S must contain all separations −→r that are trivial in S since, if
−→r < −→s and −→r <←−s , then ←−r would be inconsistent with whichever orientation of s lies in O.

Given a set F , we say that an orientation O of S avoids F if there is no F ∈ F such
that F ⊆ O. So for example an orientation of S is consistent if it avoids F = {{←−r ,−→s } ⊆−→
S : r 6= s,−→r < −→s }. In general we will define the highly connected structures we consider by
the collection F of subsets they avoid. For example a tangle of order k, or k-tangle, in a graph
G is an orientation of Sk which avoids the set of triples

T = {{(A1, B1), (A2, B2), (A3, B3)} ⊆ −→U :
3⋃
i=1

G[Ai] = G}. (2.2.2)

Here, the three separations need not be distinct, so any T -avoiding orientation of Sk will be
consistent. More generally, we say that a consistent orientation of a set S of separations which
avoids some given set F is an F-tangle (of S).

Given a set S of separations, an S-tree is a pair (T, α), of a tree T and a function α :
−−−→
E(T )→−→

S from the set
−−−→
E(T ) of directed edges of T such that

• For each edge (t1, t2) ∈ −−−→E(T ), if α(t1, t2) = −→s then α(t2, t1) =←−s .

The S-tree is said to be over a set F if

• For each vertex t ∈ T , the set {α(t′, t) : (t′, t) ∈ −−−→E(T )} is in F .

Particularly interesting classes of S-trees are those over sets F of ‘stars’. A set σ of nonde-
generate oriented separations is a star if −→r 6←−s for all distinct −→r ,−→s ∈ σ. We say that a set F
forces a separation −→r if {←−r } ∈ F . And F is standard if it forces every trivial separation in

−→
S .

The main result of [51] asserts a duality between S-trees over F and F-tangles when F is a
standard set of stars satisfying a certain closure condition. Let us describe this next.

Suppose we have a separation −→r which is neither trivial nor degenerate. Let S>−→r be the set
of separations x ∈ S that have an orientation −→x > −→r . Given x ∈ S>−→r \ {r} we have, since −→r
is nontrivial, that only one of the two orientations of x, say −→x , is such that −→x > −→r and x is
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not degenerate. For every −→s > −→r we can define a function f↓−→r−→s on
−→
S >−→r \ {←−r } by2

f↓−→r−→s (−→x ) := −→x ∨ −→s and f↓−→r−→s (←−x ) := (−→x ∨ −→s )∗.

In general, the image in
−→
U of this function need not lie in

−→
S .

→
r

r

→x

→s

→
x

x →s∨

s

Figure 2.2: Shifting a separation −→x > −→r to f↓−→r−→s (−→x ) = −→x ∨ −→s .

We say that −→s ∈ →
S emulates −→r ∈ →

S in
→
S if −→r 6 −→s and the image of f ↓−→r−→s is contained

in
−→
S . Given a standard set F of stars, we say further that −→s emulates −→r in

→
S for F if −→s

emulates −→r in
→
S and the image under f↓−→r−→s of every star σ ⊆ −→S >−→r \ {←−r } that contains some

separation −→x with −→x > −→r is again in F .
We say that a separation system

−→
S is separable if for any two nontrivial and nondegenerate

separations −→r ,←−r′ ∈ −→S such that −→r 6 −→r′ there exists a separation s ∈ S such that −→s emu-
lates −→r in

→
S and ←−s emulates

←−
r′ in

→
S . We say that

−→
S is F-separable if for all nontrivial and

nondegenerate −→r ,←−r′ ∈ −→S that are not forced by F and such that −→r 6 −→r′ there exists a sepa-
ration s ∈ S with an orientation −→s that emulates −→r in

→
S for F and such that ←−s emulates

←−
r′

in
→
S for F . Often one proves that

−→
S is F-separable in two steps, by first showing that it is

separable, and then showing that F is closed under shifting : that whenever −→s emulates (in
→
S)

some nontrivial and nondegenerate −→r not forced by F , then it does so for F .
We are now in a position to state the Strong Duality Theorem from [51].

Theorem 2.2.1. Let
−→
S be a separation system in some universe of separations, and F a

standard set of stars. If
−→
S is F-separable, exactly one of the following assertions holds:

• There exists an S-tree over F ;

• There exists an F-tangle of S.

The property of being F-separable may seem a rather strong condition. However in [52] it
is shown that for every graph the set

−→
Sk is separable, and all the sets F of stars whose exclusion

describes classical notions of highly connected substructures are closed under shifting. Hence in
all these cases

−→
Sk is F-separable, and Theorem 2.2.1 applies.

One of our main tasks will be to extend the applicability of Theorem 2.2.1 to sets F of
separations that are not stars, by constructing a related set F∗ of stars whose exclusion is
tantamount to excluding F .

2.2.3 Blocks, tangles, and profiles

Suppose we have a graph G = (V,E) and are considering the set U of its separations. As
mentioned before, it is easy to see that the tangles of order k in G, as defined by Robertson and

2The exclusion of ←−r here is for a technical reason: if −→r < ←−r , we do not want to define f↓
−→r−→s (←−r ) explicitly,

but implicitly as the inverse of f↓
−→r−→s (−→r ).
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Seymour [110], are precisely the T -tangles of Sk = {s ∈ U : |s| < k}. In this case, if we just
consider the set of stars in T ,

T ∗ :=
{
{(A1, B1), (A2, B2), (A3, B3)} ⊆ −→S :

(Ai, Bi) 6 (Bj , Aj) for all i, j and
⋃3
i=1G[Ai] = G

}
,

then the T ∗-tangles of Sk are precisely its T -tangles [52]. That is, a consistent orientation of Sk
avoids T if and only if it avoids T ∗. It is a simple check that T ∗ is a standard set of stars which
is closed under shifting, and hence Theorem 2.2.1 tells us that every graph either has a tangle
of order k or an Sk-tree over T ∗, but not both.

Another highly connected substructure that has been considered recently in the literature
are k-blocks. Given k ∈ N we say a set I of at least k vertices in a graph G is (<k)-inseparable
if no set Z of fewer than k vertices separates any two vertices of I \ Z in G. A maximal (<k)-
inseparable set of vertices is called a k-block. These objects were first considered by Mader [99],
but have been the subject of recent research [34, 36, 37].

As indicated earlier, every k-block b of G defines an orientation O(b) of Sk:

O(b) := {(A,B) ∈ −→Sk : b ⊆ B}.

Indeed, for each separation {A,B} ∈ Sk exactly one of (A,B) and (B,A) will be in O(b), since
A ∩ B is too small to contain b and does not separate any two of its vertices. Hence, O(b) is
indeed an orientation of Sk. Note also that O(b) 6= O(b′) for distinct k-blocks b 6= b′: by their
maximality as k-indivisible sets of vertices there exists a separation {A,B} ∈ Sk such that A\B
contains a vertex of b and B \ A contains a vertex of b′, which implies that (A,B) ∈ O(b′) and
(B,A) ∈ O(b).

The orientations O(b) of Sk defined by a k-block b clearly avoid

Bk :=
{
{(Ai, Bi) : i ∈ I} ⊆ −→U : |

⋂
i∈I

Bi| < k
}
,

since b ⊆ Bi for every (Ai, Bi) ∈ O(b) and |b| > k. Also, it is easily seen that every O(b) is
consistent. Thus, every such orientation O(b) is an F-tangle of Sk for F = Bk. Conversely, if
O ⊆ Sk is a Bk-tangle of Sk, then b :=

⋂ {B | (A,B) ∈ O} is easily seen to be a k-block, and
O = O(b). The orientations of Sk that are defined by a k-block, therefore, are precisely its
Bk-tangles.

The Bk-tangles of Sk and its T -tangles (i.e., the ordinary k-tangles of G) share the property
that if they contain separations (A,B) and (C,D), then they cannot contain the separation
(B ∩ D,A ∪ C). Indeed, clearly this condition is satisfied by O(b) for any k-block b, since if
b ⊆ B and b ⊆ D then b ⊆ B ∩D and hence b 6⊆ A ∪ C if {B ∩D,A ∪ C} ∈ Sk. For tangles,
suppose that some tangle contains such a triple {(A,B), (C,D), (B ∩D,A ∪ C)}. Since {A,B}
and {C,D} are separations of G, every edge not contained in G[A] or G[C] must be in G[B] and
G[D], and hence in G[B ∩D]. Therefore G[A] ∪ G[C] ∪ G[B ∩D] = G, contradicting the fact
that the tangle avoids T .

Informally, if we think of the side of an oriented separation to which it points as ‘large’, then
the orientations of Sk that form a tangle or are induced by a k-block have the natural property
that if B is the large side of {A,B} and D is the large side of {C,D} then B ∩ D should be
the large side of {A ∪ C,B ∩D} – if this separation is also in Sk, and therefore oriented by O.
That is, the largeness of separation sides containing blocks or tangles is preserved by taking
intersections.

Consistent orientations with this property are known as ‘profiles’. Formally, a k-profile in G
is a P-tangle of Sk where

P :=
{
σ ⊆ −→U | ∃A,B,C,D ⊆ V : σ = {(A,B), (C,D), (B ∩D,A ∪ C)}

}
.
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As we have seen,

Lemma 2.2.2. All orientations of Sk that are tangles, or of the form O(b) for some k-block b
in G, are k-profiles in G.

We remark that, unlike in the case of T , the subset P ′ consisting of just the stars in P yields
a wider class of tangles: there are P ′-tangles of Sk that are not P-tangles, i.e., which are not
k-profiles.

More generally, if
−→
S is any separation system contained in some universe

−→
U , we can define

a profile of S to be any P-tangle of S where

P :=
{
σ ⊆ −→U | ∃−→r ,−→s ∈ −→U : σ = {−→r ,−→s ,←−r ∧←−s }

}
.

In particular, all F-tangles with F ⊇ P will be profiles.

The initial aim of Diestel and Oum in developing their duality theory [51] had been to find a
duality theorem broad enough to imply duality theorems for k-blocks and k-profiles. Although
their theory gave rise to a number of unexpected results [52], a duality theorem for blocks and
profiles was not among these; see [50] for a summary of their findings on this problem.

Our next goal is to show that their Strong Duality Theorem does implies duality theorems
for blocks and profiles after all.

2.3 A duality theorem for abstract profiles

In this section we will show that Theorem 2.2.1 can be applied to many more types of profiles
than originally thought. These will include both k-profiles and k-blocks in graphs.

We say that a separation system in some universe3 is submodular if for every two of its
elements −→r ,−→s it also contains at least one of −→r ∧ −→s and −→r ∨ −→s . Given any (submodular)
order function on a universe, the separation system

−→
Sk = {−→r ∈ −→U : |−→r | < k}

is submodular for each k. In particular, for any graph G, its universe
−→
U of separations and, for

any integer k > 1, the separation system
−→
Sk, is submodular.

We say that a subset O of U is strongly consistent if it does not contain both ←−r and −→s for
any −→r ,−→s ∈ →

S with
→
r < →s (but not necessarily r 6= s, as in the definition of ‘consistent’). An

orientation O of S, therefore, is strongly consistent if and only if for every →s ∈ O it also contains
every

→
r ≤ →s with r ∈ S. In particular, then, O cannot contain any →s such that ←s ≤ →s (i.e.,

with ←s is small).

Let us call an orientation O of S regular if it contains all the small separations in
→
S .

Lemma 2.3.1. An orientation O of a separation system
→
S is strongly consistent if and only if

it is consistent and regular.

Proof. Clearly every strongly consistent orientation O is also consistent. Suppose some small
−→s ∈ →

S is not in O. Then ←s ∈ O, since O is an orientation of S. Thus, −→s < ←−s ∈ O. But this
implies →s ∈ O, since O is strongly consistent, contradicting the choice of →s . Hence O contains
every small separation.

3Although submodular separation systems
−→
S have to lie in some universe

−→
U in order for ∧ and ∨ to be defined

on
−→
S (but with images that may lie in

−→
U \
−→
S ), the choice of

−→
U , given

−→
S , will not matter to us. We shall therefore

usually introduce submodular separation systems
−→
S without formally introducing such a universe

−→
U ⊇

−→
S .
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Conversely, suppose O is a consistent orientation of S that is not strongly consistent. Then
O contains two distinct oriented separations

←
r and −→s such that −→r < −→s and r = s.

Thus, ←s =
→
r < →s is small but not in O, as →s ∈ O. Hence O does not contain all small

separations in
→
S .

For example, the Bk-tangles of Sk in a graph, as well as its ordinary tangles of order k,
are regular by Lemma 2.3.1: they clearly contain all small separations in

−→
Sk, those of the form

(A, V ) with |A| < k, since they cannot contain their inverses (V,A). More generally:

Lemma 2.3.2. For k > 2, every k-profile in a graph G = (V,E) is regular.

Proof. We have to show that every k-profile O in G contains every small separation in
−→
Sk. Recall

that these are precisely the separations (A, V ) of G such that |A| < k.
Suppose first that |A| < k − 1. Let A′ be any set such that |A′| = k − 1 and A ⊂ A′.

Then {A′, V } ∈ Sk, and (A, V ) < (A′, V ) as well as (A, V ) < (V,A′). Since O contains (A′, V )
or (V,A′), its consistency implies that it also contains (A, V ).

If |A| = k − 1 then, since k > 2, we can pick two non-empty sets A′, A′′ ( A such that
A′ ∪ A′′ = A. Since |A′|, |A′′| < k − 1, by the preceding discussion both (A′, V ) and (A′′, V ) lie
in O. As (V,A) ∧ (V,A′′) = (V ∩ V,A′ ∪ A′′) = (V,A) and {(A′, V ), (A′′, V ), (V,A)} ∈ P, the
fact that O is a profile implies that (V,A) /∈ O, so again (A, V ) ∈ O as desired.

There can be exactly one irregular 1-profile in a graph G = (V,E), and only if G is connected:
the set {(V, ∅)}.

Graphs can also have irregular 2-profiles, but they are easy to characterise. Indeed, consider
a 2-profile O and small separation ({x}, V ). Suppose first that x is a cutvertex of G, in the sense
that there exists some {A,B} ∈ S2 such that A∩B = {x} and neither A nor B equals V . Then
({x}, V ) < (A,B) and ({x}, V ) < (B,A), so the consistency of O implies that ({x}, V ) ∈ O.

Therefore, if (V, {x}) ∈ O then x is not a cutvertex of G. Then, for every other separation
{A,B}, either x ∈ A \ B or x ∈ B \ A, and so either (B,A) < (V, {x}) or (A,B) < (V, {x}).
The consistency of O then determines that

O = Ox := {(A,B) ∈ −→S2 : x ∈ B and (A,B) 6= ({x}, V )},

which is indeed a profile.
We have shown that every graph contains, for each of its vertices x that is not a cutvertex,

a unique 2-profile Ox that is not strongly consistent. However, the orientation

O′x := {(A,B) ∈ −→S2 : x ∈ B and (A,B) 6= (V, {x})}

of S2 is also a 2-profile which does contain every small separation in
→
S2. (Indeed, O′x = O(b) for

the unique block b containing x.) Since every graph contains a vertex which is not a cutvertex,
it follows that

Lemma 2.3.3. Every graph G contains a regular 2-profile.

Lemma 2.3.3 means that our goal to find a duality theorem for k-profiles in graphs has
substance only for k > 2, for which Lemma 2.3.2 tells that all k-profiles are regular. In our pursuit
of Theorems 2.1.2 and 2.1.3 it will therefore suffice to study regular F-tangles of submodular
separation systems

→
S , such as

−→
Sk for F = P.

So, until further notice:

Let
→
S be any submodular separation system in some universe

−→
U , and let

F be a subset of 2
−→
S containing P ∩ 2

−→
S .
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Our aim will be to prove a duality theorem for the regular F-tangles of S.
It will be instructive to keep in mind, as an example, the case of k-blocks, where F =

Bk. In this case any triple {(A,B), (C,D), (D ∩ B,A ∪ C)} ∈ P ∩ 2
−→
Sk is contained in Bk, as

|B ∩D ∩ (A ∪ C)| < k since (D ∩B,A ∪ C) ∈ Sk.
For ease of notation, let us write PS := P ∩ 2

−→
S , and put Pk := PSk when U is the set of

separations of a given graph. Note that an orientation of S avoids P if and only if it avoids PS ,
and an S-tree is over P if and only if it is over PS .

Our first problem is that, in order to apply Theorem 2.2.1, we need F to be a set of stars.
Since our assumptions about F do not require this, our first aim is to turn F into a set F∗ of
stars such that the regular F-tangles of S are precisely its regular F∗-tangles.

Suppose we have some pair of separations −→x1 and −→x2 which are both contained in some set
σ ⊆ −→S . Since S, by assumption, is submodular, at least one of −→x1 ∧←−x2 and −→x2 ∧←−x1 must also be
in
−→
S . To uncross −→x1 and −→x2 in σ we replace {−→x1,

−→x2} with the pair {−→x1 ∧←−x2,
−→x2} in the first case

and {−→x1,
−→x2 ∧←−x1} in the second case. We note that, in both cases the new pair forms a star and

is pointwise 6 the old pair {−→x1,
−→x2}. Uncrossing every pair of separations in σ in turn, we can

thus turn σ into a star σ∗ of separations in at most
(|σ|

2

)
steps, since any star of two separations

remains a star if one of its elements is replaced by a smaller separation, and a set of oriented
separations is a star as soon as all its 2-subsets are stars. Note, however, that σ∗ will not in
general be unique, but will depend on the order in which we uncross the pair of separations in
σ. Let us say that F∗ is an uncrossing of a set F of sets σ ⊆ −→S if

• Every τ ∈ F∗ can be obtained by uncrossing a set σ ∈ F ;

• For every σ ∈ F there is some τ ∈ F∗ that can be obtained by uncrossing σ.

Note that F∗, like F , is a subset of 2
→
S . Also, F∗ contains all the stars from F , since these

have no uncrossings other than themselves. In particular, if F is standard, i.e. contains all the
singleton stars {←−r } with −→r trivial in

−→
S , then so is F∗.

We have shown the following:

Lemma 2.3.4. F has an uncrossing F∗. If F is standard, then so is F∗.

The smaller we can take F∗ to be, the smaller will be the class of S-trees over F∗. However,
to make F∗ as small as possible we would have to give it exactly one star τ for each σ ∈ F , which
would involve making a non-canonical choice with regards to the order in which we uncross σ,
and possibly which of the two potential uncrossings of a given pair of separations we select.

If we wish for a more canonical choice of family, we can take F∗ to consist of every star that
can be obtained by uncrossing a set in F in any order. Obviously, this will come at the expense
of increasing the class of S-trees over F , i.e. the class of dual objects in our desired duality
theorem.

Lemma 2.3.5. Let F∗ be an uncrossing of F . Then an orientation O of S is a regular F-tangle
if and only if it is a regular F∗-tangle.

Proof. Let us first show that if O is a regular F∗-tangle then it is a regular F-tangle. It
is sufficient to show that O avoids F . Suppose for a contradiction that there is some σ =
{−→x1,
−→x2, . . . ,

−→xn} ∈ F such that σ ⊆ O. Since F∗ is an uncrossing of F there is some τ =
{−→u1,
−→u2, . . . ,

−→un} ∈ F∗ that is an uncrossing of σ. Then, −→ui 6 −→xi ∈ O for all i. Since O is strongly
consistent, by Lemma 2.3.1, this implies −→ui ∈ O for each i. Therefore τ ⊆ O, contradicting the
fact that O avoids F∗.

Conversely suppose O is a regular F-tangle. We would like to show that O avoids F∗. To
do so, we will show that, if O avoids some set σ = {−→x1,

−→x2, . . . ,
−→xn} then it also avoids the set
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σ′ = {−→x1∧←−x2,
−→x2 . . . ,

−→xn} obtained by uncrossing the pair −→x1,
−→x2. Then by induction O must also

avoid every star obtained by uncrossing a set in F , and thus will avoid F∗.
Suppose then that O avoids σ but σ′ ⊆ O. Since x1 ∈ S either −→x1 or ←−x1 lies in O. As

σ \ {−→x1} = {−→x2,
−→x3, . . . ,

−→xn} ⊆ σ′ ⊆ O, but O avoids σ, we have −→x1 6∈ O and hence ←−x1 ∈ O. But
then O contains the triple {←−x1,

−→x2,
−→x1 ∧←−x2} ∈ PS ⊆ F . This contradicts the fact that O avoids

F .

Lemma 2.3.5 has an interesting corollary. Suppose, that, in a graph, every star of separations
in some given consistent orientation O of Sk points to some k-block. Is there one k-block to
which all these stars – and hence every separation in O – point? This is indeed the case:

Corollary 2.3.6. If every star of separations in some strongly consistent orientation of S is
contained in some profile of S, then there exists one profile of S that contains all these stars.

Proof. In Lemma 2.3.5, take F := PS . An orientation O of S whose stars each lie in a profile
of S cannot contain a star from P∗S . But if O is regular, consistent, and avoids P∗S , then by
Lemma 2.3.5 it also avoids PS and hence is a PS-tangle.

Before we can apply Theorem 2.2.1 to our newly found set F∗ of stars, we have to overcome
another problem:

−→
S may fail to be F∗-separable. To address this problem, let us briefly recall

what it means for a family to be closed under shifting. Suppose we have a a pair of separations
−→r 6 −→s such that −→r is nontrivial, nondegenerate, and not forced by F . Suppose further that
−→s emulates −→r in

→
S , and that we have a star τ = {−→x1,

−→x2, . . . ,
−→xn} ⊆

−→
S >−→r \ {←−r } that contains

some separation −→x1 >
−→r . Then the image τ ′ of τ under f↓−→r−→s is

τ ′ = {−→x1 ∨ −→s ,−→x2 ∧←−s , . . . ,−→xn ∧←−s },
where the fact that −→s emulates −→r guarantees that τ ′ ⊆ −→S . Let us call τ ′ a shift of τ , and more
specifically the shift of τ from −→r to −→s . (See [51] for why this is well defined.)

For a family F to be closed under shifting it is sufficient that it contains all shifts of its
elements: that for every τ ∈ F , every −→x1 ∈ τ , every nontrivial and nondegenerate −→r 6 −→x1 not
forced by F , and every −→s emulating −→r , the shift of τ from −→r to −→s is in F .

The idea for making Theorem 2.2.1 applicable to F∗ will be to close F∗ by adding any
missing shifts. Let us define a family F̂∗ as follows: Let G0 = F∗, define Gn+1 inductively as the
set of shifts of elements of Gn, and put F̂∗ :=

⋃
n Gn. Clearly F̂∗ is closed under shifting.

Next, let us show that a strongly consistent orientation of S avoids F∗ if and only if it avoids
F̂∗. We first note the following lemma.

Lemma 2.3.7. Let O be a regular P-tangle of S. Let σ ⊆ −→S be a star, and let σ′ be a shift of
σ from some −→r to some −→s ∈ −→S . Then σ′ ⊆ O implies that σ ⊆ O.

Proof. Let σ = {−→x1,
−→x2, . . . ,

−→xn}, with −→r 6 −→x1. Then −→x1 ∨ −→s ∈ σ′ ⊆ O. Since O is strongly
consistent, this implies that −→x1 and −→s lie in O. Also, for any i > 2, as xi ∈ S, either −→xi or ←−xi
lies in O. However, since −→s ∈ O and −→xi ∧←−s ∈ σ′ ⊆ O, and O avoids P, it cannot be the case
that ←−xi ∈ O. Hence −→xi ∈ O for all i > 2, and so σ ⊆ O.

Lemma 2.3.8. Let F∗ be an uncrossing of F . Then an orientation O of S is a regular F̂∗-tangle
if and only if it is a regular F-tangle.

Proof. Recall that O is a regular F-tangle if and only if it is a regular F∗ tangle (Lemma
2.3.5). Clearly every regular F̂∗-tangle also avoids F∗, and hence is also a regular F∗-tangle,
and F-tangle.

Conversely, every regular F-tangle avoids both F∗ = G0 (Lemma 2.3.5) and hence, by Lemma
2.3.7 and F ⊇ PS , also G1. Proceeding inductively we see that O avoids Gn for each n, and so
avoids

⋃
n Gn = F̂∗. Hence O is a regular F̂∗-tangle.
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Before we can, at last, apply Theorem 2.2.1 to our set F̂∗, we have to make one final
adjustment: Theorem 2.2.1 requires its set F of stars to be standard, i.e., to contain all singletons
stars {−→r } with←−r trivial in

−→
S . Since trivial separations are small, it will suffice to add to F̂∗ all

singleton stars {−→x } such that ←−x is small; we denote the resulting superset of F̂∗ by F∗. Then
F∗-tangles contain all small separations, so they are precisely the regular F̂∗-tangles.

Clearly, F∗ is a standard set of stars. Also, the shift of any singleton star {−→x } is again a
singleton star {−→y } such that −→x 6 −→y . Moreover, if ←−x is small then so is ←−y 6←−x , so if {−→x } lies
in F∗ then so does {−→y }. Therefore, since F̂∗ is closed under shifting, F∗ too is closed under
shifting. Hence, we get the following duality theorem for abstract profiles:

Theorem 2.3.9. Let
−→
S be a submodular separation system in some universe of separations, let

F ⊆ 2
−→
S contain PS, and let F∗ be any uncrossing of F . Then the following are equivalent:

• There is no regular F-tangle of S;

• There is no F∗-tangle of S;

• There is an S-tree over F∗.

Proof. By Lemmas 2.3.5 to 2.3.8 the regular F-tangles of S are precisely its regular F̂∗-tangles,
and by Lemma 2.3.1 these are precisely its F∗-tangles. Hence the first two statements are
equivalent. Since F∗ is a standard set of stars which is closed under shifting, Theorem 2.2.1
implies that the second two statements are equivalent.

2.4 Duality for special tangles, blocks, and profiles

Let us now apply Theorem 2.3.9 to prove Theorems 2.1.1–2.1.3 from the Introduction. We
shall first state the latter two results by specifying F , and then deduce their tree-decomposition
formulations as in Theorems 2.1.2 and 2.1.3, along with Theorem 2.1.1.

Theorem 2.4.1. For every finite graph G and every integer k > 0 exactly one of the following
statements holds:

• G contains a k-block;

• G has an Sk-tree over B∗k, where B∗k is any uncrossing of Bk.

Proof. In Theorem 2.3.9, let S = Sk be the set of separations of order < k in G, and let
F := Bk ∩ 2

−→
Sk . Then

−→
Sk is a submodular separation system in the universe of all separations

of G, and the regular F-tangles in G are precisely the orientations O(b) of Sk for k-blocks b
in G. Hence G has a k-block if and only if it has a regular F-tangle for this F . The assertion
now follows from Theorem 2.3.9.

As for profiles, every graph G has a regular 1-profile – just orient every 0-separation towards
some fixed component –and a regular 2-profile (Lemma 2.3.3). So we need a duality theorem
only for k > 2. Recall that, for k > 2, all k-profiles of graphs are regular (Lemma 2.3.2).

Theorem 2.4.2. For every finite graph G and every integer k > 2 exactly one of the following
statements holds:

• G has a k-profile;

• G has an Sk-tree over P∗k , where P∗k is any uncrossing of Pk.
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Proof. In Theorem 2.3.9, let S = Sk be the set of separations of order < k in G, and let F := Pk.
Then

−→
Sk is a submodular separation system in the universe of all separations ofG, and the regular

F-tangles in G are precisely its k-profiles. The assertion now follows from Theorem 2.3.9, as
before.

Theorems 2.1.1–2.1.3 now follow easily: we just have to translate S-trees into tree-decom-
positions.

Proof of Theorems 2.1.1–2.1.3. Given a set S of separations of G and an S-tree (T, α), with
α(−→e ) =: (Aα(−→e ), Bα(−→e )) say, we obtain a tree-decomposition (T,Vα) of G with Vα = (Vt)t∈T
by letting

Vt :=
⋂
{Bα(−→e ) | −→e = (s, t) ∈ −−−→E(T ) }.

Note that (T, α) can be recovered from this tree-decomposition: given just T and V = (Vt)t∈T ,
we let α map each oriented edge −→e = (t1, t2) of T to the oriented separation of G it induces:
the separation

(⋃
t∈T1 Vt ,

⋃
t∈T2 Vt

)
where Ti is the component of T − e containing ti.

Recall that the set T defined in (2.2.2) contains P. Hence so does any F ⊇ T . For such F ,
therefore, every F-tangle of Sk is a k-profile, and hence is regular by Lemma 2.3.2 if k > 2. For
Fk := F ∩ 2

−→
Sk and

TF (k) := { (T,Vα) | (T, α) is an Sk-tree over F∗k }

we thus obtain Theorem 2.1.1 directly from Theorem 2.3.9. Similarly, letting

TB(k) := { (T,Vα) | (T, α) is an Sk-tree over B∗k }
TP(k) := { (T,Vα) | (T, α) is an Sk-tree over P∗k }

yields Theorems 2.1.2 and 2.1.3 as corollaries of Theorems 2.4.1 and 2.4.2.

2.5 Width parameters

In this section we derive some bounds for the block and profile width of a graph that follow
easily from our main results combined with those of [51, 52] and [110].

Given a star σ of separations in a graph, let us call the set
⋂{B | (A,B) ∈ σ} the interior

of σ in G. For example, every star in P∗k is of the form

{(A,B), (B ∩ C,A ∪D), (B ∩D,A ∪ C)} ⊆ Sk,

and hence every vertex of its interior lies in at least two of the separators A∩B, (B∩C)∩(A∪D)
and (B ∩D)∩ (A∪C). Since all these separations are in Sk, the interior of any star in P∗k thus
has size at most 3(k − 1)/2.

We can apply this observation to obtain the following upper bound on the profile-width
pw(G) of a graph G in terms of its tree-width tw(G):

Theorem 2.5.1. For every graph G,

pw(G) 6 tw(G) + 1 6 3
2pw(G). (2.5.1)

Proof. For the first inequality, note that tw(G) + 1 is the largest integer k such that G has no
tree-decomposition into parts of order < k. By the duality theorem for tree-width from [52],
having no such tree-decomposition is equivalent to admitting an Sk-tangle of Sk, where

Sn =
{
τ ⊆ −→U : τ is a star and

∣∣⋂{B : (A,B) ∈ τ }
∣∣ < n

}
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and
−→
U is the universe of all separations of G. But among the Sk-tangles of Sk are all the

k-profiles of G. (An easy induction on |τ | shows that a regular k-profile has no subset τ ∈ Sk;
cf. Lemma 2.3.2 and [48, Prop. 3.4].) Therefore G has no k-profile for k > tw(G) + 1, which
Corollary 2.1.4 translates into pw(G) 6 tw(G) + 1.

For the second inequality, recall that if k := pw(G) then G has a tree-decomposition in TP(k+
1). The parts of this tree-decomposition are interiors of stars in P∗k+1, so they have size at
most 3k/2.This tree-decomposition, therefore, has width at most (3k/2) − 1, which thus is an
upper bound for tw(G).

We can also relate the profile-width of a graph to its branch-width, as follows. In order to
avoid tedious exceptions for small k, let us define the adjusted branch-width of a graph G as

brw(G) := min{ k | G has no Sk+1-tree over T ∗}.

By [52, Theorem 4.4], this is equivalent to the tangle number of G, the greatest k such that
G has a k-tangle. For k ≥ 3 it coincides with the original branch-width of G as defined by
Robertson and Seymour [110].4

Robertson and Seymour [110] showed that the adjusted branch-width of a graph is related
to its tree-width in the same way as we found that the profile-width is:

brw(G) 6 tw(G) + 1 6 3
2brw(G). (2.5.2)

Together, these inequalities imply the following relationship between branch-width and
profile-width:

Corollary 2.5.2. For every graph G,

brw(G) 6 pw(G) 6 3
2brw(G). (2.5.3)

Proof. The first inequality follows from the fact that k-tangles are k-profiles, and that the largest
k for which G has a k-tangle equals the adjusted branch-width: thus,

brw(G) = k ≤ π(G) = pw(G)

by Corollary 2.1.4.
For the second inequality, notice that pw(G) 6

(2.5.1)
tw(G) + 1 6

(2.5.2)

3
2brw(G).

Since every k-block defines a k-profile, Corollary 2.1.4 implies that the block-width of a
graph is a lower bound for its profile-width, and hence by (2.5.1) also for it tree-width (plus 1).
Conversely, however, no function of the tree-width of a graph can be a lower bound for its block-
width. Indeed, the tree-width of the k × k-grid Hk is at least k (see [43]) but Hk contains no
5-block: in every set of > 5 vertices there are two non-adjacent vertices, and the neighbourhood
of either vertex is then a set of size 4 which separates the two vertices. Therefore there exist
graphs with bounded block-width and arbitrarily high tree-width.

Since large enough tree-width forces both large profile-width (2.5.1) and large branch-
width (2.5.2), the grid example shows further that making these latter parameters large cannot
force the block-width of a graph above 4.

4Our adjusted branch-width is the dual parameter to the tangle number for all k, while the original branch-
width from [110] achieves this only for k ≥ 3: it deviates from the tangle number for some graphs and k ≤ 2.
See [52, end of Section 4] for a discussion.
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Chapter 3

A unified treatment of linked and
lean tree-decompositions

3.1 Introduction

Given a tree T and vertices t1, t2 ∈ V (T ) let us denote by t1Tt2 the unique path in T between
t1 and t2. Given a graph G a tree-decomposition of G is a pair (T,V) consisting of a tree T ,
together with a collection of subsets of vertices V = {Vt ⊆ V (G) : t ∈ V (T )}, called bags, such
that:

• V (G) =
⋃
t∈T Vt;

• For every edge e ∈ E(G) there is a t such that e lies in Vt;

• Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 ∈ V (t1Tt3).

The width of this tree-decomposition is the quantity max{|Vt| − 1 : t ∈ V (T )} and its
adhesion is max{|Vt∩Vt′ | : (t, t′) ∈ E(T )}. Given a graph G its tree-width tw(G) is the smallest
k such that G has a tree-decomposition of width k.

Definition 3.1.1. A tree decomposition (T,V) of a graph G is called linked if for all k ∈ N and
every t, t′ ∈ V (T ), either G contains k disjoint Vt-Vt′ paths or there is an s ∈ V (tT t′) such that
|Vs| < k.

Robertson and Seymour showed the following:

Theorem 3.1.2 (Robertson and Seymour [113]). Every graph G admits a linked tree-decomposition
of width < 3 · 2tw(G).

This result was an essential part of their proof that for any k the set of graphs with tree-width
less than k is well-quasi-ordered by the minor relation. Thomas gave a new proof of Theorem
3.1.2, improving the bound on the tree-width of the linked tree-decomposition from 3 ·2tw(G)−1
to the best possible value of tw(G).

Theorem 3.1.3 (Thomas [124]). Every graph G admits a linked tree-decomposition of width
tw(G).

In fact he showed a stronger result.

Definition 3.1.4. A tree decomposition (T,V) of a graph G is called lean if for all k ∈ N,
t, t′ ∈ V (T ) and vertex sets Z1 ⊆ Vt and Z2 ⊆ Vt′ with |Z1| = |Z2| = k, either G contains k
disjoint Z1 − Z2 paths or there exists an edge {s, s′} ∈ E(tT t′) with |Vs ∩ Vs′ | < k.
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Thomas showed that every graph has a lean tree-decomposition of width tw(G). It is rela-
tively simple to make a lean tree-decomposition linked without increasing its width: we subdivide
each edge (s, s′) ∈ E(T ) by a new vertex u and add Vu := Vs ∩ Vs′ . The real strength of Defini-
tion 3.1.4 in comparison to Definition 3.1.1 is the case t = t′. Broadly, Definition 3.1.1 tells us
that the ‘branches’ in the tree-decomposition are no larger than the connectivity of the graph
requires, if the separators Vs ∩ Vs′ along a path in T are large, then G is highly connected along
this branch. The case t = t′ of Definition 3.1.4 tells us that the bags are also no larger than
their ‘external connectivity’ in G requires.

Bellenbaum and Diestel [17] used some of the ideas from Thomas’ paper to give short proofs
of two known results concerning tree-decompositions, the first Theorem 3.1.3 and the other
the tree-width duality theorem of Seymour and Thomas [118]. Very similar ideas appear in the
literature in multiple proofs of the existence of ‘linked’ or ‘lean’ tree-decompositions of minimum
width, for many different width parameters. For example θ-tree-width [34, 66], path-width [90]
and directed path-width [85]. Similar ideas also appear in the proof of Geelen, Gerards and
Whittle [68] that every matroid M admits a ‘linked’ branch-decomposition of width the branch
width of M .

The existence of linked decompositions has been used multiple times in the literature to prove
that collections of structures of bounded width are well-quasi-ordered. As mentioned before, the
result of Thomas was used by Robertson and Seymour [108] to show that the set of graphs with
bounded tree-width is well-quasi-ordered under the minor relation. Geelen, Gerards and Whittle
[68] used their aforementioned result to extend this to matroids with bounded branch-width,
and Oum [106] used the same result to show that the set of graphs with bounded rank-width
is well-quasi-ordered under the vertex-minor relation. Recently similar ideas have also been
applied to tournaments (see [38, 85]).

In this paper we will prove generalizations of Theorem 3.1.3 in a general framework in-
troduced by Diestel [44], which give unifying proofs of the existence of ‘linked’ or ‘lean’ tree-
decompositions for a broad variety of width parameters. In particular these theorems will imply
all the known results for undirected graphs and matroids from the introduction, as well as many
new results by applying them to other width parameters expressible in this framework. In
particular we prove a generalization of Theorem 3.1.3 to matroids1:

Theorem 3.5.14. Every matroid M admits a lean tree-decomposition of width tw(M).

In order to prove a result broad enough to cover both graph and matroid tree-width, it will
be necessary to combine some of the ideas from the proof of Bellenbaum and Diestel [17] with
that of Geelen, Gerards and Whittle [68]. In particular, we note that, when interpreted in terms
of tree-decompositions of graphs, our proof will give a slightly different proof of Theorem 3.1.3
than appears in [17].

In the next section we will introduce the necessary background material. In Sections 3.3
and 3.4 respectively we will give proofs of our theorems on the existence of linked and lean
tree-decompositions. Finally, in Section 3.5 we will use these theorems to deduce results about
different width parameters of graphs and matroids.

3.2 Background material

3.2.1 Notation

Recall that, given a tree T and vertices t1, t2 ∈ V (T ), t1Tt2 is the unique path in T between
t1 and t2. Similarly, given edges e1, e2 ∈ E(T ) we will denote by e1Te2 the unique path in T

1See Section 3.5.2 for the relevant definitions.
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which starts at e1 and ends at e2. If −→e is a oriented edge in T , say −→e = (x, y), then we will
write ←−e = (y, x), and we denote by T (−→e ) the subtree of T formed by taking the component
C of T − x which contains y, and adding the edge (x, y). We will write

−→
E (T ) for the set

{(x, y) : {x, y} ∈ E(T )} of oriented edges of T .
We will write N to mean the set of natural numbers, which for us will include 0. For general

graph theoretic notation we will follow [43].

3.2.2 Separation systems

Our objects of study will be the separation systems of Diestel and Oum [51]. A more detailed
introduction to these structures can be found in [44].

A separation system (
−→
S ,6, ∗) as defined in [44] consists of a partially ordered set

−→
S , whose

elements are called oriented separations, together with an order reversing involution ∗. One
particular example of a separation system is the following: Given a set V , the set of ordered
pairs

sep(V ) = {(A,B) : A ∪B = V }
together with the ordering

(A,B) 6 (C,D) if and only if A ⊆ C and B ⊇ D,

and the involution (A,B)∗ = (B,A) forms a separation system. Furthermore, any subset of
sep(V ) which is closed under involutions forms a separation system, and we call such a separation
system a set separation system (see [52]). We will use V to denote the ground set of a set
separation system unless otherwise specified. We will work with set separation systems rather
than in full generality since the existence of an underlying ground set will be necessary to define
our concept of ‘leaness’. Some of the results in the paper, in particular Theorem 3.3.3, will
carry over to the more abstract setting, but only with so many technical restrictions that little,
if anything, is lost by this restriction.

The elements (A,B) of
−→
S are called separations and the corresponding separation is {A,B}.

(A,B) and (B,A) are then the orientations of {A,B}2. The separation {V, V } is called degen-
erate.

Two separations {A,B} and {C,D} are nested if they have 6-comparable orientations. A
set of separations is nested if its elements are pairwise nested3. A (multi)-set {(Ai, Bi) : i ∈ I}
of non-degenerate separations is a multistar of separations if (Ai, Bi) 6 (Bj , Aj) for all i, j ∈ I.

There are binary operations on sep(V ) such that (A,B)∧ (C,D) is the infimum and (A,B)∨
(C,D) is the supremum of (A,B) and (C,D) in sep(V ) given by:

(A,B) ∧ (C,D) = (A ∩ C,B ∪D) and (A,B) ∨ (C,D) = (A ∪ C,B ∩D).

If a set separation system
−→
S is closed under ∧ and ∨ we say it is a universe of set separations.

The following lemma, whose elementary proof we omit, is often useful.

Lemma 3.2.1. If (A,B) is nested with (C,D) and (E,F ) then it is also nested with (C,D) ∨
(E,F ), (C,D) ∧ (E,F ), (C,D) ∨ (F,E) and (C,D) ∧ (F,E).

We call a function (A,B) 7→ |A,B| on a universe of set separations an order function if it
is non-negative, symmetric and submodular. That is, if 0 6 |A,B| = |B,A| for all (A,B) ∈ −→S
and

|A ∩ C,B ∪D|+ |A ∪ C,B ∩D| 6 |A,B|+ |C,D|
2When the context is clear we will often refer to both oriented and unoriented separations as merely ‘separa-

tions’ to improve the flow of the text.
3We will often use terms defined for separations in reference to its orientations, and vice versa.
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for all (A,B), (C,D) ∈ −→S . Given a universe of set separations
−→
S with any order function we

will often write
−→
Sk for the separation system

−→
Sk := {(A,B) ∈ −→S : |A,B| < k}.

If r : 2V → N is a non-negative submodular function then it is easy to verify that

|X,Y |r = r(X) + r(Y )− r(V )

is an order function on any universe contained in sep(V ). We note the following lemma, which
will be useful later.

Lemma 3.2.2. Let
−→
S be a universe of set separations with an order function | · |r for some

non-negative non-decreasing submodular function r : 2V → N. If (B,A) 6 (C,D), then |A ∪
C,B ∩D|r 6 |C,D|r.

Proof. Note that A ∪ C = V and B ∩D ⊂ C ∩D. Hence,

|A ∪ C,B ∩D|r = r(A ∪ C) + r(B ∩D)− r(V )

= r(B ∩D) 6 r(C ∩D)

6 r(C) + r(D)− r(C ∪D) = |C,D|r.

Our main application of separation systems will be to separations of graphs and matroids. If
G is a graph, we say that an ordered pair (A,B) of subsets of V (G) is an oriented separation if
A∪B = V (G) and there is no edge between A\B and B\A. It is not hard to show that the set of
oriented separations

−→
S of a graph G forms a universe of set separations as a subset of sep(V (G)),

and if we consider the non-negative non-decreasing submodular function r : 2V (G) → N given
by r(A) := |A|, then the order function given by r is |X,Y |r = |X| + |Y | − |V | = |X ∩ Y |.
Throughout this paper, whenever we consider separation systems of graph separations we will
use this order function.

Similarly, if M = (E, I) is a matroid with rank function r, we say that an ordered bipartition
(A,E \ A) of the ground set is an oriented separation. Note that r : 2E → N is a non-negative
non-decreasing submodular function. Again, the set of oriented separations

−→
S of a matroid M

forms a universe of set separations, with an order function given by |X,Y |r = r(X)+r(Y )−r(E).
Again, whenever we consider separations systems of matroid separations we will use this order
function.

3.2.3 S-trees over multistars

Given a tree T and t ∈ V (T ) we write

−→
Ft := {−→e : −→e = (x, t) ∈ −→E (T )}

Definition 3.2.3. Let
−→
S be a set separation system. An S-tree is a pair (T, α) where T is a

finite tree and

α :
−→
E (T )→ −→S \ {(V, V )}

is a map from the set of oriented edges of T to
−→
S \ {(V, V )} such that, for each edge e ∈ E(T ),

if α(−→e ) = (A,B) then α(←−e ) = (B,A).
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Given a finite set X we will write NX for the set of all finite submultisets of X. If F ⊆ N
−→
S

is a family of multistars we say that an S-tree (T, α) is over F if for all t ∈ V (T ), the multiset
σt := {α(−→e ) : −→e ∈ −→F t)} ∈ F . We will often write α(

−→
F t) to denote this multiset. Sometimes,

for notational convenience, we will refer to an S-tree over F when F 6⊆ N
−→
S , by which it should

be taken to mean an S-tree over F ∩N
−→
S . If (T, α) is an S-tree over a family of multistars, it is

easy to check that α preserves the natural ordering on
−→
E (T ).

It is observed in [52] that many existing ways of decomposing graphs can be expressed in
this framework if we take

−→
S to be the universe of separations of a graph. For example given a

multistar σ = {(A1, B1), (A2, B2), . . . , (An, Bn)} let us write 〈σ〉 := |⋂iBi|. If we let

Fk = {σ ∈ N
−→
S : σ a multistar, 〈σ〉 < k}

then it is shown in [52] that a graph G has a tree-decomposition of width < k− 1 if and only if
there exists an Sk-tree over Fk. More examples will be given later in Section 3.5 when we apply
Theorems 3.3.3 and 3.4.1 to existing types of tree-decompositions.

Given two separations (A,B) 6 (C,D) in a universe of set separations
−→
S with an order

function | · | let us define

λ ((A,B), (C,D)) = min{|X,Y | : (A,B) 6 (X,Y ) 6 (C,D)}.

We will think of λ as being a measure of connectivity, and indeed in the case of separation
systems of graphs and matroids it will coincide with the normal connectivity function.

Definition 3.2.4. Let
−→
S be a universe of set separations with an order function | · |, k ∈ N.

We say that an Sk-tree (T, α) over some family of multistars is linked if for every pair of edges
−→e 6 −→f in

−→
E (T ) the following holds:

min{|α(−→g )| : −→g ∈ −→E (eTf)} = λ
(
α(−→e ), α(

−→
f )
)
.

This definition more closely resembles the definition of linked from Geelen, Gerards and Whit-
tle [68] than Definition 3.1.1. However, as in the introduction, if we take a tree-decomposition
of a graph which is linked in this sense and add the adhesion sets as parts, it will be linked in
the sense of Thomas. For any family of multistars F we also introduce the following concept of
leanness.

Definition 3.2.5. Let
−→
S be a set separation system and let (T, α) be an S-tree over some

family of multistars F . Given a vertex t ∈ T we say that a separation (A,B) is addable at t if
σt ∪ {(A,B)} ∈ F .

Definition 3.2.6. Let
−→
S be a universe of set separations with an order function | · |r for some

non-negative non-decreasing submodular function r : 2V → N, k ∈ N. We say that an Sk-tree
(T, α) over a family of multistars F ⊆ N

−→
Sk is F-lean if for every pair of vertices t and t′ in T

and every pair of separations (A,B) 6 (B′, A′) such that (A,B) is addable at t and (A′, B′) is
addable at t′, either

λ
(
(A,B), (B′, A′)

)
> min{r(A), r(A′)}

or
min{|α(−→g )| : −→g ∈ −→E (tT t′)} = λ

(
(A,B), (B′, A′)

)
.

We note that, unlike in the case of Definitions 3.1.1 and 3.1.4, it is not true in general that
the existence of an F-lean Sk-tree over F will imply the existence of a linked Sk-tree over F .
Indeed, for many families F of multistars, the set of separations addable at any multistar may
be very limited, if not empty. In this case the property of being F-lean may be vacuously true
of any Sk-tree over F .
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3.2.4 Shifting S-trees

Let
−→
S be a universe of set separations. Our main tool will be a method for taking an S-tree

(T, α) and a separation (X,Y ) and building another S-tree (T ′, α′) which contains (X,Y ) as the
image of some edge.

Given an S-tree over some family of multistars (T, α), a separation (A,B) = α(−→e ) ∈
α(
−→
E (T )), and another, non-trivial separation (A,B) 6 (X,Y ) the shift of (T, α) onto (X,Y )

(with respect to −→e ) is the S-tree (T (−→e ), α′) where α′ is defined as follows:
For every edge f ∈ E(T (−→e )) there is a unique orientation of f such that −→e 6 −→f . We define

α′(
−→
f ) := α(

−→
f ) ∨ (X,Y ) and α′(

←−
f ) := α′(

−→
f )∗ = α(

←−
f ) ∧ (Y,X).

Note that, since (A,B) 6 (X,Y ) we have that α′(−→e ) = α(−→e ) ∨ (X,Y ) = (A,B) ∨ (X,Y ) =
(X,Y ), and so (X,Y ) ∈ α(

−→
E (T (−→e ))).

Our tool will be in essence [Lemma 4.2, [51]], however, for technical reasons we will take a
slightly different statement. Explicitly, for the results in [51] it is only ever necessary to use the
shifting operation when α(−→e ) is a non-trivial separation, whereas we may need to do so when
α(−→e ) is trivial. This allows the authors of [51] to assume that the S-trees they consider are of
a particularly simple kind, which we are not able to assume.

Lemma 3.2.7 (Lemma 4.1, [51]). Let S be a universe of set separations, (T, α) an S-tree over
some family of multistars, −→e ∈ −→E (T ) and (X,Y ) > α(−→e ) be a non-trivial separation. Then the
shift of (T, α) onto (X,Y ) with respect to −→e is an S-tree over some family of multistars.

In general, if
−→
S is not a universe but just a set separation system, it may not be true that

the shift of an S-tree is still an S-tree. However, when
−→
S =

−→
Sk for some universe there is a

natural condition on (X,Y ) which guarantees that the shift will still be an Sk-tree.

Definition 3.2.8. Let
−→
S be a set separation system living in some universe with an order

function |·| and let (A,B), (X,Y ) ∈ −→S . We say that (X,Y ) is linked to (A,B) if (A,B) 6 (X,Y )
and

|X,Y | = λ ((A,B), (X,Y )) .

Lemma 3.2.9. Let
−→
S be a universe of set separations with an order function | · |, k ∈ N, (T, α)

an Sk-tree over some family of multistars and (A,B) = α(−→e ) ∈ α(
−→
E (T )). Let (X,Y ) be a non-

trivial separation that is linked to (A,B) and let (T (−→e ), α′) be the shift of (T, α) onto (X,Y )
with respect to −→e . Then (T (−→e ), α′) is an Sk-tree over some family of multistars.

Proof. By Lemma 3.2.7 the shift is an S-tree over some family of multistars, so it will be sufficient
to show that α′(

−→
E (T (−→e ))) ⊆ −→Sk. Suppose that (C,D) = α′(

−→
f ) ∈ α′(−→E (T (−→e ))). By symmetry

we may assume that −→e 6 −→f , and so (C,D) = α(
−→
f ) ∨ (X,Y ) by definition.

Since −→e 6 −→f , α(−→e ) = (A,B) 6 α(
−→
f ) and also (A,B) 6 (X,Y ). Hence,

(A,B) 6 α(
−→
f ) ∧ (X,Y ) 6 (X,Y ).

Therefore, since (X,Y ) is linked to (A,B), it follows that

|α(
−→
f ) ∧ (X,Y )| > |X,Y |

and so by the submodularity of the order function

|C,D| = |α(
−→
f ) ∨ (X,Y )| 6 |α(

−→
f )| < k,

and so (C,D) ∈ −→Sk.
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Finally we will need a condition that guarantees that the shift of an Sk-tree over F is still
over F .

Definition 3.2.10. Let
−→
S be a set separation system living in some universe with an order

function | · | and let F ⊆ N
−→
S be a family of multistars. We say that F is fixed under shifting

if whenever σ ∈ F , (T, α) is an S-tree over some family of multistars with −→e = (t, t′) ∈ −→E (T ),
σ = α(

−→
Fs) for some s ∈ V (T (−→e )) \ {t}, and (X,Y ) is a non-trivial separation that is linked to

α(−→e ), then in the shift of (T, α) onto (X,Y ) with respect to −→e , σ′ = α′(
−→
Fs) ∈ F .

It is essentially this property of a family of multistars F that is used in [52] to prove a duality
theorem for Sk-trees over F . It may seem like a strong property to hold, but in fact it is seen
to hold in a large number of cases corresponding to known width-parameters of graphs such as
branch-width, tree-width (see Corollary 3.2.16), and path-width.

Lemma 3.2.11. Let
−→
S be a universe of set separations with an order function | · |, k ∈ N and

let F ⊂ N
−→
S be a family of multistars which is fixed under shifting. Let (T, α) be an Sk-tree over

some family of multistars and −→e = (t, t′) ∈ −→E (T ) be such that

for every s ∈ V (T (−→e )) \ {t}, α
(−→
Fs

)
∈ F .

Let (X,Y ) be a non-trivial separation that is linked to α(−→e ) and let (T (−→e ), α′) be the shift
of (T, α) onto (X,Y ) with respect to −→e . Then (T (−→e ), α′) is an Sk-tree over F ∪ {(Y,X)}.
Furthermore, if {(Y,X)} 6∈ F then t is the unique vertex of T (−→e ) such that α′

(−→
Ft

)
= {(Y,X)}.

Proof. By Lemma 3.2.9 the shift is an Sk-tree, it remains to show that it is over F ∪ {(Y,X)}.
Firstly, we note that by definition α′(−→e ) = (X,Y ) and so α′(

−→
Ft) = {α′(←−e )} = {(Y,X)} ∈

F ∪ {(Y,X)}.
Suppose then that s ∈ V (T (−→e )) \ {t}. By assumption, α

(−→
Fs

)
∈ F and so, since F is fixed

under shifting, α′(
−→
Fs) ∈ F .

Let
−→
S be a universe of set separations with an order function | · |r for some non-decreasing

submodular function r : 2V → N. For any multistar

σ = {(A0, B0), (A1, B1), . . . , (An, Bn)}

let us define the size of σ

〈σ〉r =

n∑
i=0

r(Bi)− n · r(V ).

Note that, when r(·) = | · | is the cardinality function then 〈σ〉r = |⋂n
i=0Bi|. We define

Fp = {σ ⊂ N
−→
S : σ a multistar, 〈σ〉r < p}.

We will collect a few properties of 〈·〉r that we will need. The following lemma will be useful for
these proofs and later.

Lemma 3.2.12. Let r : 2V → N be a non-negative non-decreasing submodular function, X ⊆ V
and let {(A0, B0), (A1, B1), . . . , (An, Bn)} be a multistar of separations in sep(V ). If we write
B∗i =

⋂i
j=0Bj, then

n∑
i=0

r(Bi ∩X) > r(B∗n ∩X) + n · r(X).
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Proof. Note that, since Aj ⊆ Bi for each i 6= j it follows that B∗i ∪Bi+1 ⊇ Ai+1 ∪Bi+1 = V for
each i. Hence, by submodularity

r(B∗i ∩X) + r(Bi+1 ∩X) > r(B∗i+1 ∩X) + r(X).

Since B∗0 = B0, if we add these inequalities for i = 0, . . . , n− 1, we get

n∑
i=0

r(Bi ∩X) > r(
n⋂
i=0

Bi ∩X) + n · r(X).

Lemma 3.2.13. Let
−→
S be a universe of set separations with an order function | · |r for some

non-negative non-decreasing submodular function r : 2V → N. If σ is a multistar and (A,B) ∈ σ
then 〈σ〉r > |A,B|r.

Proof. Let us write σ = {(A,B), (A1, B1), . . . , (An, Bn)}. Since σ is a multistar, (A,B) 6
(Bi, Ai) for all i and so A ⊂ ⋂n

i=1Bi. Hence r(A) 6 r(
⋂n
i=1Bi). Therefore, applying Lemma

3.2.12 to the multistar σ \ {(A,B)} with X = V , we see that

〈σ〉r = r(B) +

n∑
i=1

r(Bi)− n · r(V )

> r(B) + r(

n⋂
i=1

Bi)− r(V )

> r(B) + r(A)− r(V )

= |A,B|r

Lemma 3.2.14. Let
−→
S be a universe of set separations with an order function |·|r for some non-

negative non-decreasing submodular function r : 2V → N. If σ is a multistar and σ ∪ {(A,B)}
is a multistar then 〈σ〉r > r(A).

Proof. Let us write σ = {(A0, B0), (A1, B1), . . . , (An, Bn)}. If σ ∪ {(A,B)} is a multistar then
(A,B) 6 (Bi, Ai) and so A ⊂ Bi for all i. Hence, by Lemma 3.2.12 applied to the multistar σ
with X = V ,

〈σ〉r =

n∑
i=0

r(Bi)− n · r(V )

> r(
n⋂
i=0

Bi)

> r(A).

The following lemma can be seen as an analogue of [Lemma 2, [17]], in that it gives a
condition for when the shifting operation does not increase the ‘size’ of any part in the tree-
decomposition, when interpreted as 〈σt〉r. The proof of this lemma follows closely the proofs of
[Lemmas 6.1 and 8.3, [52]].
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Lemma 3.2.15. Let
−→
S be a universe of set separations with an order function | · |r for some

non-negative non-decreasing submodular function r : 2V → N and let p ∈ N. Let (T, α) be
an S-tree over a set of multistars and let −→e = (t, t′) ∈ −→E (T ), s ∈ V (T (−→e )) \ {t} and σ =
{(A0, B0), (A1, B1), . . . , (An, Bn)} = α(

−→
Fs), with (A0, B0) = α(−→g ) where −→g is the unique −→g ∈−→

Fs with −→e 6 −→g . Let (X,Y ) be a non-trivial separation that is linked to α(−→e ), (T ′, α′) be the
shift of (T, α) onto (X,Y ) with respect to −→e and write σ′ = α′(

−→
Fs). Then 〈σ′〉r 6 〈σ〉r and if

equality holds, then

|
(⋂
i 6=0

Bi

)
∩X,

(⋃
i 6=0

Ai

)
∪ Y |r = |X,Y |r

Proof. By definition of α′,

σ′ = α′(
−→
Fs) = {(A0 ∪X,B0 ∩ Y ), (A1 ∩ Y,B1 ∪X), . . . , (An ∩ Y,Bn ∪X)}.

So, we wish to show that

〈σ′〉r = r(B0 ∩ Y ) +

n∑
i=1

r(Bi ∪X)− n · r(V ) 6
n∑
i=0

r(Bi)− n · r(V ) = 〈σ〉r. (3.2.1)

Since r is submodular, it follows that

r(B0 ∩ Y ) + r(B0 ∪ Y ) 6 r(B0) + r(Y )

and, for each i = 1, . . . , n,

r(Bi ∩X) + r(Bi ∪X) 6 r(Bi) + r(X).

By re-arranging these questions and adding them together, we see that

r(B0 ∪ Y ) +
n∑
i=1

r(Bi ∩X) 6
n∑
i=0

r(Bi)−
(
r(B0 ∩ Y ) +

n∑
i=1

r(Bi ∪X)

)
+ r(Y ) + n · r(X)

= (〈σ〉r − 〈σ′〉r) + r(Y ) + n · r(X).

Therefore, in order to show (3.2.1) it will be sufficient to show that

r(B0 ∪ Y ) +
n∑
i=1

r(Bi ∩X) > r(Y ) + n · r(X)

By Lemma 3.2.12 applied to the multistar σ \ {(A0, B0)} and X,

n∑
i=1

r(Bi ∩X) > r

(
n⋂
i=1

Bi ∩X
)

+ (n− 1) · r(X).

Let us write A∗ =
⋃n
j=1Aj and B∗ =

⋂n
j=1Bj . Note that A ⊆ A0 ⊆ B∗ and B ⊇ B0 ⊇ A∗.

Since (X,Y ) and (B∗, A∗) ∈ −→S , so is (X ∩B∗, Y ∪A∗) and (A,B) 6 (X ∩B∗, Y ∪A∗) 6 (X,Y ).
Hence, since (X,Y ) is linked to (A,B), it follows that |X ∩ B∗, Y ∪ A∗|r > |X,Y |r. Therefore
by definition of | · |r,

r(B∗ ∩X) + r(A∗ ∪ Y ) > r(X) + r(Y ).
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Since A∗ ⊂ B0 and r is non-decreasing, it follows that r(B0 ∪ Y ) > r(A∗ ∪ Y ) and so we can
conclude that

r(B0 ∪ Y ) +

n∑
i=1

r(Bi ∩X) > r(B0 ∪ Y ) + r(B∗ ∩X) + (n− 1) · r(X)

> r(A∗ ∪ Y ) + r(B∗ ∩X) + (n− 1) · r(X)

> r(Y ) + n · r(X).

Finally, if equality holds in (3.2.1) then it holds throughout the argument, and so in particular

|X ∩B∗, Y ∪A∗|r = |X,Y |r.

The following is a simple corollary of Lemma 3.2.15.

Corollary 3.2.16. Let
−→
S be a universe of set separations with an order function | · |r for some

non-negative non-decreasing submodular function r : 2V → N and let p ∈ N. Then Fp is fixed
under shifting.

3.3 Linked Sk-trees

In this section we will prove a general theorem on the existence of linked tree-decompositions.
The proof follows closely the proof of Geelen, Gerards and Whittle [68], extending their result to
a broader class of tree-decompositions. They consider branch decompositions of integer-valued
symmetric submodular functions. Given such a function λ on the subsets of a set V we can
consider λ as an order function on the universe

−→
S = {(A, V \A)} of bipartitions of V by taking

|A, V \ A| = λ(A), where by scaling by an additive factor we may assume λ is a non-negative
function. They defined a notion of ‘linkedness’ for these decompositions and showed the following
theorem:

Theorem 3.3.1. [[68], Theorem 2.1] An integer-valued symmetric submodular function with
branch-width n has a linked branch-decomposition of width n.

A direct application of Theorem 3.3.1 gives analogues of Theorem 3.1.3 for branch decom-
positions of matroids or graphs [68], and also rank-decompositions of graphs [106].

It can be shown that a branch-decomposition of λ is equivalent to an S-tree over a set T of
multistars which is fixed under shifting (See the proof of [52, Lemma 4.3], and that the width
of this branch-decomposition is the smallest k such that the S-tree is an Sk-tree. Furthermore,
in this way the definition of linkedness given in [68] coincides with Definition 3.2.4.

Let us say that a universe of set separations
−→
S with an order function | · | is grounded if it

satisfies the conclusion of Lemma 3.2.2, that is, if for every pair of separations (B,A) 6 (C,D)
we have that |A ∪ C,B ∩D| 6 |C,D|. We will need the following short lemma.

Lemma 3.3.2. Let
−→
S be a grounded universe of set separations with an order function | · |. If

(A,B), (X,Y ) ∈ −→S are such that (X,Y ) is linked to (A,B) and (X,Y ) is trivial, then |X,Y | =
|A,B|.
Proof. Since (A,B) 6 (X,Y ) and (X,Y ) is trivial, Y = B = V , where V is ground set of

−→
S .

Furthermore, since (A,B) 6 (X,Y ) and
−→
S is grounded, it follows that

|A,B| = |V,A| = |B ∪X,A ∩ Y | 6 |X,Y |.

Since (X,Y ) is linked to (A,B), |X,Y | 6 |A,B| and hence |A,B| = |X,Y |.
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Lemma 3.2.2 says that
−→
S is grounded whenever | · | = | · |r for some non-negative non-

decreasing submodular function r : 2V → N. We note further that, if
−→
S is the universe of

bipartitions of a set then
−→
S is grounded for any order function | · |. Indeed, since | · | is symmetric

and submodular, it follows that for any bipartition (X,Y ),

2|X,Y | = |X,Y |+ |Y,X| > |X ∪ Y,X ∩ Y |+ |X ∩ Y,X ∪ Y | = 2|V, ∅|
and so, if (B,A) 6 (C,D) then |A ∪ C,B ∩D| = |V, ∅| 6 |C,D|.

In this way the following theorem implies, and generalises Theorem 3.3.1.

Theorem 3.3.3. Let
−→
S be a grounded universe of set separations with an order function | · |,

k ∈ N, and let F ⊂ N
−→
Sk be a family of multistars which is fixed under shifting. If there exists

an Sk-tree over F , then there exists a linked Sk-tree over F .

Proof. Let (T, α) be an Sk-tree over F . For an integer p, we write Tp for the subforest of T
where e ∈ E(Tp) if and only if |α(−→e )| > p for either orientation of e. Let us write e(Tp) for the
number of edges of Tp and c(Tp) for the number of components of Tp.

We define an order on the set

T = {(T, α) : (T, α) an Sk-tree over F}
as follows. We say that (T, α) ≺ (S, α′) if there exists a p ∈ N such that for all p′ > p,
e(Tp′) = e(Sp′) and c(Tp′) = c(Sp′) and either:

• e(Tp) < e(Sp), or

• e(Tp) = e(Sp) and c(Tp) > c(Sp).

Let (T, α) be a ≺-minimal element of T . We claim that (T, α) is linked.
Suppose not, that is, there are two edges −→e 6 −→f such that there is no −→g ∈ −→E (T ) with

−→e 6 −→g 6 −→f and
|α(−→g )| = λ

(
α(−→e ), α(

−→
f )
)
.

Let α(−→e ) := (A,B) and α(
−→
f ) := (D,C). Now, there is some separation (A,B) 6 (X,Y ) 6

(D,C) such that
|X,Y | = λ ((A,B), (D,C)) =: `.

Let us choose such an (X,Y ) which is nested with a maximum number of separations in
α
(−→
E (T )

)
. Note that (X,Y ) is linked to (A,B) and (Y,X) is linked to (C,D) and, since

−→
S is grounded and ` < min{|A,B|, |C,D|}, by Lemma 3.3.2 (X,Y ) is non-trivial.

−→e −→
f

Figure 3.1: The tree T .

Let (T1, α1) be the Sk-tree given by shifting (T, α) onto (X,Y ) with respect to −→e and let
(T2, α2) be the Sk-tree given by shifting (T, α) onto (Y,X) with respect to

←−
f . By Lemmas 3.2.9

and 3.2.11, (T1, α1) and (T2, α2) are Sk-trees over F ∪ {(Y,X)} and F ∪ {(X,Y )} respectively.
For each vertex and edge in T let us write v1 and v2 or e1 and e2 for the copy of v or e in T1

and T2 respectively, if it exists (Note that, since T1 = T (−→e ) and T2 = T (
←−
f ), not every vertex

or edge will appear in both trees). We let (T̂ , α̂) be the following Sk-tree:
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• T̂ is the tree formed by taking the disjoint union of T1 and T2, and identifying the edge
−→e1 with the edge

−→
f 2;

• α̂ is formed by taking the union of α1 and α2 on the domain
−→
E (T̂ ).

We remark that, since α1(−→e1) = (X,Y ) = α2(
−→
f 2), the map α′ is well defined. By Lemma 3.2.11

(T̂ , α̂) is an Sk-tree over F .

T (−→e )T (
←−
f )

−→
f 1

−→e2

Figure 3.2: The tree T̂ .

Note that, since (X,Y ) is linked to (A,B) and (Y,X) is linked to (C,D) it follows from
Lemma 3.2.9 that for every w ∈ E(T (−→e )) ∩ E(T (

←−
f ))

|α(−→w )| > max{|α̂(−→w1)|, |α̂(−→w2)|}.

Claim 3.3.4. If
|α̂(−→wi)| = |α(−→w )| > `

then,
|α̂(−→w2−i)| 6 `.

Remark. For ease of exposition, we consider this to be vacuously satisfied if −→w2−i does not
exist.

Proof. Indeed, suppose without loss of generality that |α(−→w )| = |α̂(−→w1)| and that −→e 6 −→w . Note
that, α(−→e ) = (A,B) 6 α(−→w ) =: (E,F ). Then,

α̂(−→w1) = (E,F ) ∨ (X,Y ).

Since |α̂(−→w1)| = |E,F |, by submodularity of the order function |(E,F ) ∧ (X,Y )| 6 |X,Y |.
However,

(A,B) 6 (E,F ) ∧ (X,Y ) 6 (D,C)

and so (E,F ) ∧ (X,Y ) was a candidate for (X,Y ). Moreover, since (E,F ) is nested with every
separation in α

(−→
E (T )

)
, it follows from Lemma 3.2.1 that (E,F ) ∧ (X,Y ) is nested with every

separation in α
(−→
E (T )

)
that (X,Y ) is, and also with (E,F ) itself. Hence, by our choice of

(X,Y ), it follows that (X,Y ) was already nested with (E,F ).
We may suppose that w ∈ E(T (−→e )) ∩ E(T (

←−
f )), since otherwise there is no −→w2. Hence,

since −→e 6 −→w , there are two cases to consider, either w is on the path in T from e to f or
not. Let us suppose we are in the first case, and so −→w 6 −→f . Then, by definition, α1(−→w1) =
(E,F ) ∨ (X,Y ) = (E ∪X,F ∩ Y ) and α2(←−w2) = (F,E) ∨ (Y,X) = (F ∪ Y,E ∩X).

There are now four cases as to how (E,F ) and (X,Y ) are nested. If (E,F ) 6 (X,Y ) then
α1(−→w1) = (X,Y ), contradicting our assumption that |α̂(−→w1)| > `. If (F,E) 6 (Y,X) then
α2(←−w2) = (Y,X), and so |α̂(−→w2)| = `.
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If (F,E) 6 (X,Y ) then, since
−→
S is grounded, |E ∪X,F ∩ Y | = |α1(−→w1)| 6 |X,Y | = `, again

a contradiction, and if (E,F ) 6 (Y,X) then |F ∪ Y,E ∩X| = |α2(←−w2)| 6 |X ∩ Y | = `.
Suppose then that w is not on the path in T from e to f , and so ←−w 6 −→f . Again, α1(−→w1) =

(E,F ) ∨ (X,Y ) = (E ∪X,F ∩ Y ) and in this case α2(−→w2) = (E,F ) ∨ (Y,X) = (E ∪ Y, F ∩X).
As before, there are four cases as to how (E,F ) and (X,Y ) are nested. If (E,F ) 6 (X,Y )

then α1(−→w1) = (X,Y ), a contradiction, and if (E,F ) 6 (Y,X) then α2(−→w2) = (Y,X), and
|α̂(−→w2)| = `.

If (F,E) 6 (X,Y ) then, since
−→
S is grounded, |E ∪X,F ∩ Y | = |α1(−→w1)| 6 |X ∩ Y | = `, a

contradiction, and finally if (F,E) 6 (Y,X) then |E ∪ Y, F ∩X| = |α2(−→w2)| 6 |X,Y | = `.

Claim 3.3.5. For every p > ` and every −→w ∈ −→E (T ) with |α(−→w )| = p exactly one of α̂(−→w1), α̂(−→w2)
has order p, and the other has order 6 `. Furthermore, for each component C of Tp if |α̂(−→wi)| =
|α(−→w )| for some −→w ∈ −→E (C), then |α̂(

−→
w′i)| = |α(

−→
w′)| for every

−→
w′ ∈ −→E (C).

Proof of Claim. Suppose for contradiction that p > ` is the largest integer where the claim fails
to hold. It follows that e(T̂p′) = e(Tp′) and c(T̂p′) = c(Tp′) for all p′ > p. Hence, by ≺-minimality
of T , e(T̂p) > e(Tp). However, by assumption, for every separation α(−→w ) of order > p exactly
one of α̂(−→w1), α̂(−→w2) has the same order, and the other has order 6 `. Also, if |α(−→w )| = p > `,
then |α(−→w )| > max{|α̂(−→w1)|, |α̂(−→w2)|} and by Claim 3.3.4 if one of α̂(−→w1), α̂(−→w2) has the same
order as α(−→w ) then the other has order 6 `.

Hence, e(T̂p) 6 e(Tp), and so by ≺-minimality of T it follows that e(T̂p) = e(Tp), and for
every −→w with |α(−→w )| = p exactly one of α̂(−→w1), α̂(−→w2) is of order p, and the other has order 6 `.

Recall that T̂ was formed by joining a copy of T (−→e ) and T (
←−
f ) along a separation (X,Y ) of

order ` < p. It follows from the first part of the claim that c(T̂p) > c(Tp), and so by ≺-minimality
of T , c(T̂p) = c(Tp). Hence, for each component C of Tp if |α̂(−→wi)| = |α(−→w )| for some −→w ∈ −→E (C),
then |α̂(

−→
w′i)| = |α(

−→
w′)| for every

−→
w′ ∈ −→E (C). Therefore the claim holds for p, contradicting our

assumption.

By assumption, −→e and
−→
f lie in the same component of T`+1, since for every −→e 6 −→g 6 −→f

|α(−→g )| > |X,Y | = `.

However, α2(−→e2) = (A,B) and α1(
←−
f 1) = (C,D), contradicting Claim 3.3.5.

3.4 F-lean Sk-trees

Theorem 3.4.1. Let
−→
S be a universe of set separations with an order function | · |r for some

non-negative non-decreasing submodular function r : 2V → N, k ∈ N, and let F ⊂ N
−→
Sk be a

family of multistars which is fixed under shifting. If there exists an Sk-tree over F , then there
exists an F-lean Sk-tree over F .

Proof. Let (T, α) be an Sk-tree over F . We write T p for the induced subforest of T on the set
of vertices

V (T p) = {t ∈ V (T ) : 〈σt〉r > p}.
Let us write v(T p) for the number of vertices of T p and c(T p) for the number of components.

We define an order on the set

T = {(T, α) : (T, α) an Sk-tree over F}

as follows. We say that (T, α) ≺ (S, α′) if there exists an p ∈ N such that for all p′ > p,
v(T p

′
) = v(Sp

′
) and c(T p

′
) = c(Sp

′
) and either:
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• v(T p) < v(Sp), or

• v(T p) = v(Sp) and c(T p) > c(Sp).

Let (T, α) be a ≺-minimal element of T . We claim that (T, α) is F-lean.

Suppose not. Then there is some pair of vertices t, t′ ∈ V (T ) and a pair of separations
(A,B) 6 (B′, A′) such that (A,B) is addable at t and (A′, B′) is addable at t′, with

λ
(
(A,B), (B′, A′)

)
< min{r(A), r(A′)}

and

|α(−→g )| > λ
(
(A,B), (B′, A′)

)
for all −→g ∈ −→E (tT t′).

t t′
` `′

e1 f2

Figure 3.3: The tree T .

Let (T1, α1) be the Sk-tree formed in the following way:

• T1 is the tree formed by adding an extra leaf ` to T at t;

• The restriction of α1 to
−→
E (T ) is α and α1(`, t) = (A,B).

Similarly let (T2, α2) be the Sk-tree formed in the following way:

• T2 is the tree formed by adding an extra leaf `′ to T at t′;

• The restriction of α2 to
−→
E (T ) is α and α2(`′, t′) = (A′, B′).

Note that, since (A,B) and (A′, B′) were addable at t and t′, (T1, α1) and (T2, α2) are Sk-trees
over F ∪ {(B,A)} and F ∪ {(B′, A′)} respectively. Let us denote by −→e1 the edge (`, t) ∈ −→E (T1)
and
←−
f2 the edge (`′, t′) ∈ −→E (T2). For each vertex v and edge g in T let us write v1 and v2 or

g1 and g2 for the copy of v or g in T1 and T2 respectively, and similarly σivi for the multistars
αi(
−→
Fvi). Note that, for every v 6= t, t′ we have σivi = σv, however σ1

t1 = σt ∪ {(A,B)} and
σ2
t′2

= σt′ ∪ {(A′, B′)}.
Over all separations (X,Y ) such that (A,B) 6 (X,Y ) 6 (B′, A′) and |X,Y |r = λ

(
(A,B), (B′, A′)

)
=:

` we pick (X,Y ) which is nested with a maximum number of separations in α(
−→
E (T )). Note that

(X,Y ) is linked to (A,B) and (Y,X) is linked to (A′, B′). Furthermore, if (X,Y ) is trivial, then
Y = B = V and by Lemma 3.3.2 |X,Y |r = r(X) = r(A) = |A,B|r contradicting our assumption
on `. Hence (X,Y ) is non-trivial.

Let (T1, β1) be the Sk-tree given by shifting (T1, α1) onto (X,Y ) with respect to −→e1 and let
(T2, β2) be the Sk-tree given by shifting (T2, α2) onto (Y,X) with respect to

←−
f 2. Note that, since

F is fixed under shifting, by Lemmas 3.2.9 and 3.2.11, (T1, α1) and (T2, β2) are Sk-trees over
F ∪{(X,Y )} and F ∪{(Y,X)} respectively and that, since ` and `′ were leaves, these are indeed
Sk-trees with underlying trees T1 and T2 respectively. We let (T̂ , α̂) be the following Sk-tree:

• T̂ is the tree formed by taking the disjoint union of T1 and T2 and identifying the edge −→e1

with the edge
−→
f 2;
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• α̂ is formed by taking the union of β1 and β2 on the domain
−→
E (T̂ ).

We remark that, since β1(−→e1) = (X,Y ) = β2(
−→
f 2), the map α̂ is well defined and furthermore,

by Lemma 3.2.11, (T̂ , α̂) is an Sk-tree over F . For each vertex in v ∈ V (T ) there are now two
copies v1 and v2 in T̂ . We will write σ̂vi for the multistars α̂(

−→
Fvi).

t′2t2 t1 t′1

T1T2

Figure 3.4: The tree T̂ .

Note that, since (X,Y ) is linked to (A,B) and (Y,X) is linked to (A′, B′) it follows from
Lemma 3.2.15 that for every si ∈ V (Ti)

〈σ̂si〉r 6 〈σisi〉r 6 〈σs〉r, (3.4.1)

where the final inequality holds trivially for all s 6= t, t′, and for s = t, t′ since adding a separation
to a multistar only decreases the size.

Claim 3.4.2. If
〈σ̂si〉r = 〈σs〉r > `

then
〈σ̂si−2〉r 6 `.

Proof. Indeed, let us assume without loss of generality that

〈σ̂s1〉r = 〈σ1
s1〉r,

and suppose first that s 6= t, t′, and so σisi = σs. Let us write

σs = {(A0, B0), . . . , (An, Bn)}.

For each s ∈ V (T ) \ {t, t′} there is a unique edge −→g ∈ −→Fs such that −→e1 6
−→g1, and similarly

a unique edge
−→
h ∈ −→Fs such that

←−
f 2 6

−→
h2. Let us suppose without loss of generality that

α(−→g ) = (A0, B0) and α(
−→
h ) = (Aj , Bj), where perhaps j = 0. Then

σ̂s1 = {(A0 ∪X,B0 ∩ Y ), . . . , (An ∩ Y,Bn ∪X)}

and
σ̂s2 = {(Aj ∪ Y,Bj ∩X), . . . , (An ∩X,Bn ∪ Y )}

Now, since 〈σ̂s1〉r = 〈σs〉r, by Lemma 3.2.15

|B∗ ∩X,A∗ ∪ Y |r = |X,Y |r,

where B∗ =
⋂
i 6=0Bi and A∗ =

⋃
i 6=0Ai.
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However, (A,B) 6 (B∗ ∩ X,A∗ ∪ Y ) 6 (B′, A′) and so, by our choice of (X,Y ), (X,Y )
is nested with at least as many separations in α(

−→
E (T )) as (B∗ ∩ X,A∗ ∪ Y ). However, since

(B∗, A∗) is nested with α(
−→
E (T )) and (B∗ ∩X,A∗ ∪ Y ) 6 (Bi, Ai) for each i 6= 0, it follows by

Lemma 3.2.1 that (X,Y ) was already nested with (Bi, Ai) for each i 6= 0.
We note that if (Bi, Ai) 6 (Y,X) for any i 6= 0, then (A,B) 6 (Bi, Ai) 6 (Y,X) and

(A,B) 6 (X,Y ). Hence A ⊂ X ∩ Y and so r(A) 6 r(X ∩ Y ) 6 |X,Y |r, contradicting our
assumption on A. Similarly if (Bi, Ai) 6 (X,Y ) for i 6= j, then it contradicts our assumption.

Therefore, for each i 6= j, 0, either (X,Y ) 6 (Bi, Ai) or (Y,X) 6 (Bi, Ai). Note that, for
each i 6= j, 0, {Bi ∪X,Bi ∪ Y } = {Bi, V }. Hence,

〈σ̂s1〉r + 〈σ̂s2〉r = r(B0 ∩ Y ) + r(Bj ∩X) +
∑
i 6=0

r(Bi ∪X) +
∑
i 6=j

r(Bi ∪ Y )− 2n · r(V )

= r(B0 ∩ Y ) + r(Bj ∩X) + r(B0 ∪ Y ) + r(Bj ∪X) +
∑
i 6=0,j

r(Bi)− (n+ 1) · r(V )

= 〈σs〉r + r(B0 ∩ Y ) + r(Bj ∩X) + r(B0 ∪ Y )− r(B0)− r(Bj)− r(V )

6 〈σs〉r + r(Y ) + r(X)− r(V )

= 〈σs〉r + |X,Y |r.

From which is follows that, if 〈σ̂s1〉r = 〈σs〉r, then 〈σ̂s2〉r 6 |X,Y |r. If s = t or t′, then a
similar calculation holds.

Claim 3.4.3.
〈σ̂t1〉r < 〈σt〉r.

and
〈σ̂t′2〉r < 〈σt′〉r.

Proof. Let us write
σt = {(A1, B1), . . . , (An, Bn)},

and so

〈σ̂t1〉r = r(Y ) +
n∑
i=1

r(Bi ∪X)− n · r(V ).

Suppose for contradiction that 〈σ̂t1〉r = 〈σt〉r. As before it follows that we can split (Ai, Bi) into
sets I and I ′ such that (X,Y ) 6 (Bj , Aj) for j ∈ I and (Y,X) 6 (Bj , Aj) for j ∈ I ′. It follows
that

〈σ̂t1〉r = r(Y ) +
∑
j∈I

r(Bj)− |I| · r(V ).

However, since σt is a multistar it follows by Lemma 3.2.12 that∑
j∈I′

r(Bj) > r(
⋂
j∈I′

Bj) + (|I ′| − 1) · r(V ).

Now, A ⊂ ⋂i∈I′ Bi and also by definition of I ′, Y ⊂ ⋂j∈I′ Bj and hence r(Y ∪A) 6 r(
⋂
j∈I′ Bj).

However, by submodularity

r(X) + r(A ∪ Y ) > r(A) + r(V )

and by assumption r(A) > |X,Y |r = r(X) + r(Y )− r(V ), and so

r(A ∪ Y ) > r(Y ),
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from which we conclude that

r(Y ) < r(Y ∪A)

6 r(
⋂
j∈I′

Bj)

6
∑
j∈I′

r(Bj)− (|I ′| − 1) · r(V ).

Therefore,

〈σ̂t1〉r = r(Y ) +
∑
j∈I

r(Bj)− |I| · r(V )

<
n∑
i=1

r(Bi)− (n− 1) · r(V ) = 〈σt〉r.

A similar argument shows that 〈σ̂t′2〉r < 〈σt′〉r.

Claim 3.4.4. For every p > ` and every s ∈ V (T ) with 〈σs〉r = p exactly one of σ̂s1 , σ̂s2 has
size p, and the other has size 6 ` and further for each component C of T p, if 〈σ̂si〉r = 〈σs〉r for
some s ∈ V (C), then 〈σ̂s′i〉r = 〈σs′〉r for every s′ ∈ V (C).

Proof. Suppose for contradiction that p > ` is the largest integer where the claim fails to hold.
We split into three cases. First let us suppose p > max{〈σt〉r, 〈σt′〉r}.

By assumption, for all p′ > p, v(T̂ p) = v(T p) and c(T̂ p) = c(T p). Hence, by ≺-minimality of
T v(T̂ p) > v(T p). However, since p > 〈σt〉r > r(A) > `, for every s ∈ V (T ) with 〈σs〉r = p, by
Claim 3.4.2 if one of σ̂s1 , σ̂s2 has size 〈σs〉r, then the other has size 6 `.

Therefore, it follows that v(T̂ p) 6 v(T p), and so v(T̂ p) = v(T p), and for every s ∈ V (T )
with 〈σs〉r = p exactly one of σ̂s1 , σ̂s2 has size 〈σs〉r, and the other has size 6 `. Recall that T̂
is formed by joining two copies of T by an edge between t1 and t′2, and that by Claim 3.4.3 σ̂t1
and σ̂t′2 both have size < max{〈σt〉r, 〈σt′〉r} 6 p. It follows that c(T̂ p) > c(T p), and so again
by ≺-minimality of T , c(T̂ p) = c(T p). Further, for each component C of T p, if 〈σ̂si〉r = 〈σs〉r
for some s ∈ V (C), then 〈σ̂s′i〉r = 〈σs′〉r for every s′ ∈ V (C). Therefore the claim holds for p,
contradicting our assumption.

Suppose then that p = max{〈σt〉r, 〈σt′〉r}, say without loss of generality p = 〈σt〉r. As before
we conclude that for every s ∈ V (T ) with 〈σs〉r = p exactly one of σ̂s1 , σ̂s2 has size 〈σs〉r, and the
other has size 6 `. In this case, since by Claim 3.4.3 〈σ̂t1〉r < 〈σt〉r = p, it follows that 〈σ̂t1〉r 6 `.
This allows us to conclude that the copies of each component of T p in T̂ p are separated by the
vertex t1, and thus c(T̂ p) > c(T p). So, as before we can conclude that for each component C of
T p, if 〈σ̂si〉r = 〈σs〉r for some s ∈ V (C), then 〈σ̂s′i〉r = 〈σs′〉r for every s′ ∈ V (C). Therefore the
claim holds for p, contradicting our assumption.

Finally, when ` < p < max{〈σt〉r, 〈σt′〉r} the same argument will hold, since one of 〈σ̂t1〉r or
〈σ̂t2〉r has size 6 `.

Suppose that t = t′. Since (A,B) and (A′, B′) are addable at σt it follows by Lemma 3.2.14
that 〈σt〉r > r(A) > min{r(A), r(A′)} > `, and so by Claim 3.4.4

〈σt〉r = max{〈σ̂t1〉r, 〈σ̂t2〉r},

contradicting Claim 3.4.3.
Suppose that t 6= t′. Then, since

|α(−→g )| > ` for all −→g ∈ tT t,
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it follows by Lemma 3.2.13 that 〈σs〉r > ` for all s ∈ V (tT t′), and so t and t′ are in the same
component of T (`+1). However, 〈σ̂t1〉r < ` and 〈σ̂t′2〉r < `, contradicting Claim 3.4.4.

Remark. Unlike in the case of tree-width for graphs it is not true in general that the existence
of a F-lean Sk-tree over F implies the existence of a linked Sk-tree over F . It seems likely
that similar methods should prove the existence of an Sk-tree which is both linked and F-lean.
However, since Theorem 3.3.3 could be stated in slightly more generality, and to avoid lengthening
an already quite technical proof, we have stated the results separately. Explicitly, one should
consider a minimal element of the following order on the set of Sk-trees over F : we let T < S
if there is some p ∈ N such that:

• e(Tp) < e(Sp); or

• e(Tp) = e(Sp) and c(Tp) > c(Sp); or

• e(Tp) = e(Sp), c(Tp) = c(Sp) and v(T p) < v(Sp); or

• e(Tp) = e(Sp), c(Tp) = c(Sp), v(T p)v(Sp) and c(T p) > c(Sp),

and for all p′ > p, all four quantities are equal.

3.5 Applications

3.5.1 Graphs

Throughout this subsection
−→
S will be the universe of separations of some graph G. Given a

multistar
σ = {(A0, B0), (A1, B1), . . . , (An, Bn)}

we define int(σ) :=
⋂n
i=0Bi. Given an S-tree (T, α) we can construct an associated tree-

decompositon (T,V)α by letting

Vt = int(σt) for each t ∈ T.

Lemma 3.5.1. If (T, α) is an
−→
S -tree over some family of multistars then (T,V)α is a tree-

decompositon. Furthermore, if α(t, t′) = (A,B) then Vt ∩ Vt′ = A ∩B.

Proof. Given an edge e ∈ E(G) we can define an orientation on E(T ) as follows. For each edge
f ∈ E(T ) let us pick one of the orientations

−→
f such that α(

−→
f ) = (A,B) with e ∈ E(G[B]). Note

that, since α(
−→
f ) = (A,B) is a separation, either e ∈ E(G[A]) or e ∈ E(G[B]). Any orientation

has a sink t, and it is a simple check that e ∈ Vt. This proves that (T,V) satisfies the first two
properties of a tree-decomposition.

Finally suppose that t2 ∈ V (t1Tt3) and x ∈ Vt1 ∩ Vt3 . There is a unique edge −→e ∈ −→F t2

such that t1 ∈ V (T (←−e )) and similarly a unique edge
−→
f ∈ −→F t2 such that t3 ∈ V (T (

←−
f )). Let

α(−→e ) = (A,B) and α(
−→
f ) = (C,D) and let us write

σt2 = {(A,B), (C,D), (A1, B1), . . . , (An, Bn)}.

Since x ∈ Vt1 and α preserves the tree-ordering, it follows that x ∈ A and hence x ∈ D∩⋂n
i=1Bi.

Similarly, since x ∈ Vt3 , x ∈ C and hence x ∈ B ∩⋂n
i=1Bi and so

x ∈ B ∩D ∩
n⋂
i=1

Bi = int(σt2) = Vt2 .
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Finally, suppose that α(t, t′) = (A,B). Since Vt = int(σt) ⊆ A and Vt′ = int(σt′) ⊆ B it
follows that Vt∩Vt′ ⊆ A∩B. Conversely it is a simple check that, since σt and σt′ are multistars,
A ∩B ⊂ int(σt) and A ∩B ⊂ int(σt′). It follows that Vt ∩ Vt′ = A ∩B

We note that, conversely, given a tree-decomposition (T,V) we can build an Sk-tree over
some family of multistars (T, α)V by letting

α(−→e ) = α(t, t′) =

 ⋃
s : t∈V (sT t′)

Vs,
⋃

s : t′∈V (sT t)

Vs

 ,

and in this way the two notions are equivalent.
In this way, by applying Theorems 3.3.3 and 3.4.1 to appropriate families F of multistars we

can prove a number of results about tree-decompositions of graphs, some known and some new.
Since the notion of linked from Definition 3.1.1 will not be appropriate for talking about every
type of tree-decomposition we consider, we make the following definition:

Definition 3.5.2. A tree decomposition (T,V) is called
−→
S -linked if for all k ∈ N and every

t, t′ ∈ V (T ), either G contains k disjoint Vt-Vt′ paths or there is an edge {s, s′} ∈ E(tT t′) such
that |Vs ∩ Vs′ | < k.

As in the introduction, it is easy to see that given an
−→
S -linked tree-decomposition, by

subdividing each edge and adding as a bag the separating set Vt ∩ Vt′ we obtain a linked tree-
decomposition in the sense of Definition 3.1.1.

Lemma 3.5.3. Let
−→
S be the universe of graph separations for some graph G. If (T, α) is a

linked Sk-tree over some family of multistars then (T,V)α is
−→
S -linked.

Proof. Suppose that (T, α) is a linked Sk-tree over some family of multistars. Given r ∈ N and
t, t′ ∈ V (T ) such that G does not contain r disjoint Vt-Vt′ paths, we wish to show that there is
an edge {s, s′} ∈ E(tT t′) such that |Vs ∩ Vs′ | < r. Let −→e be the unique edge adjacent to t such
that t′ ∈ V (T (−→e )) and similarly let

←−
f be the unique edge adjacent to t′ such that t ∈ V (T (

←−
f )).

Note that −→e 6 −→f .
Let us write α(−→e ) = (A,B) and α(

−→
f ) = (C,D). Since A ∩B ⊂ Vt and C ∩D ⊂ Vt′ , and G

does not contain r disjoint Vt−Vt′ paths, it follows by Menger’s theorem that λ ((A,B), (C,D)) <
r. Hence, since (T, α) is linked, there is some edge −→e 6 −→g 6 −→f such that |α(−→g )| =: |X,Y | < r.
Let us write −→g = (s, s′). Note that, {s, s′} ∈ E(tT t′) by construction, and by Lemma 3.5.1
|Vs ∩ Vs′ | = |X ∩ Y | < r, as claimed.

For many families of multistars, being F-lean will not tell us much about the tree-decomposition.
Indeed, if F only contains multi-sets of size 3 or 1 (as in the case of branch decompositions),
then there is never an addable separation for any multistar in F . However, for certain families
of multistars being F-lean will imply leaness in the traditional sense.

Definition 3.5.4. Let
−→
S be a separation system. A family of multistars F ⊂ 2

−→
S is S-stable if

whenever σ ∈ F and (A,B) ∈ −→S is such that σ∪{(A,B)} is a multistar then σ∪{(A,B)} ∈ F .

Lemma 3.5.5. Let
−→
S be a universe of separations with an order function | · |r for some non-

decreasing submodular function r : 2V → N, and let p ∈ N. Then Fp is S-stable.

Proof. If (A,B) ∈ −→S is such that σ ∪ {(A,B)} is a multistar then,

〈σ ∪ {(A,B)}〉r = 〈σ〉r + r(B)− r(V ) 6 〈σ〉r < p,

and so σ ∪ {(A,B)} ∈ Fp.
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Lemma 3.5.6. Let
−→
S be the universe of graph separations for some graph G and let F ⊂ N

−→
S

be an S-stable family of multistars. If (T, α) is an F-lean S-tree over F then (T,V)α is lean.

Proof. Given k ∈ N, t, t′ ∈ V (T ) and vertex sets Z1 ⊆ Vt and Z2 ⊆ Vt′ with |Z1| = |Z2| = k,
such that G does not contain k disjoint Z1-Z2 paths, we wish to show that there exists an edge
{s, s′} ∈ E(tT t′) with |Vs ∩ Vs′ | < k.

Since (T, α) is over F , both σt and σt′ ∈ F . Furthermore, since Z1 ⊂ Vt it follows that
{(Z1, V )} ∪ σt forms a multistar, and similarly so does {(Z2, V )} ∪ σt′ . Hence, since F is

−→
S -

stable, both of these multistars are in F , and so (Z1, V ) is addable at σt and (Z2, V ) is addable
at σt′ . Since G does not contain k disjoint Z1-Z2 paths, it follows that λ ((Z1, V ), (V,Z2)) < k.
Hence, since (T, α) is F-lean, there exists an edge −→g ∈ −→E (tT t′) such that |α(−→g )| := |X,Y | =
λ ((Z1, V ), (V,Z2)). As before let us write −→g = (s, s′). Then {s, s′} ∈ E(tT t′) and |Vs ∩ Vs′ | =
|X ∩ Y | < k, as claimed.

Given a multistar σ ∈ N
−→
S let us write n(σ) for the cardinality of the multiset σ. Diestel and

Oum [52] showed that for the families of multistars

Fk := {σ ∈ N
−→
Sk : σ a multistar, 〈σ〉r < k},

Pk := {σ ⊂ Fk : n(σ) 6 2}
and

Tk :={σ ∈ N
−→
Sk : σ a multistar, σ = {(A1, B1), (A2, B2), (A3, B3)} and

3⋃
i=1

G[Ai] = G}

∪ {σ ∈ Fk : n(σ) = 1},

the following statements are true:

• G admits a tree-decomposition of width < k− 1 if and only if there is an Sk-tree over Fk,

• G admits a path-decomposition of width < k− 1 if and only if there is an Sk-tree over Pk,

• G admits a branch-decomposition of width < k if and only if there is an Sk-tree over Tk4.

Furthermore, they showed that in every case the family of multistars was fixed under shifting5.
Also, they showed that if θ 6 p then Fθp := Fp ∩ N

−→
Sθ is fixed under shifting, and that

• G has θ-tree-width < p− 1 if and only if there is an Sθ-tree over Fθp ,

where the θ-tree-width of G θ-tw(G) is defined, as in [66], to be the smallest p such that G
admits a tree-decomposition of width p and adhesion < θ.

Definition 3.5.7. A tree decomposition (T,V) is called θ-lean if for all k < θ, t, t′ ∈ V (T ) and
vertex sets Z1 ⊆ Vt1 and Z2 ⊆ Vt2 with |Z1| = |Z2| = k, either G contains k disjoint Z1-Z2 paths
or there exists an edge {s, s′} ∈ E(tT t′) with |Vs ∩ Vs′ | < k.

We note that by the same arguments as Lemmas 3.5.5 and 3.5.6, if an Sθ-tree over Fθp is
Fθp -lean, then the corresponding tree-decomposition is θ-lean. Let us write pw(G), bw(G), and
θ-tw(G) for the path-, branch-, and θ-tree-width of G respectively. Applying Theorem 3.3.3 to
these families of multistars gives the following theorem:

4Due to a quirk in how branch-width is defined, this is only true for k > 3, see the comment in [52] after
Theorem 4.4.

5Strictly they showed that a slightly weaker condition, which they called closed under shifting, holds (see the
comment at the start of section 3.2.4). However the same proof shows they are also fixed under shifting.
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Theorem 3.5.8. Let G be a graph then the following statements are true:

• G admits an
−→
S -linked path-decomposition of width pw(G);

• G admits an
−→
S -linked branch-decomposition of width bw(G);

• G admits a lean tree-decomposition of width tw(G);

• G admits a θ-lean tree-decomposition of width θ-tw(G).

We note that none of these results are in essence new. The first result appears in a paper of
Lagergren [90], where it is attributed to Seymour and Thomas. The second result is implied by
a broader theorem [[68], Theorem 2.1] on linked branch decompositions of submodular functions
and the third is Thomas’ theorem, Theorem 3.1.3 in this paper. The fourth is stated without
proof in [[34], Theorem 2.3], and a slightly weaker result is claimed in [[66], Theorem 3.1]
although the proof in fact shows the stronger statement.

As mentioned before, there is never an addable separation for any multistar σ ∈ Tk, and so
Theorem 3.4.1 gives us no insight into branch decompositions. However, for path-decompositions
it tells us something about the bags at the two leaves.

Lemma 3.5.9. Let (T, α) be an Pk-lean Sk-tree over Pk and let T be a path t0, t1, . . . , tn. Then
(T,V)α has the following properties:

• For all Z1, Z2 ⊂ Vt0 or Z1, Z2 ⊂ Vtn with |Z1| = |Z2| = r there are r-disjoint Z1−Z2 paths
in G.

• For all Z1 ⊂ Vt0 and Z2 ⊂ Vtn with |Z1| = |Z2| = r either there are r disjoint Z1 − Z2

paths in G or there is an edge {ti, ti+1} ∈ E(T ) with |Vti ∩ Vti+1 | < r.

Proof. Let us show the first statement, the proof of the second is similar. Suppose without loss
of generality that Z1, Z2 ⊂ Vt0 . Since Zi ⊂ Vt0 it follows that |Zi| = r < k and so (Zi, V ) ∈ −→Sk.
Let α(t1, t0) = (A,B). Since {(A,B)} ∈ Pk, |B| < k and since B = Vt0 and Zi ⊆ Vt0 both
(Zi, V ) are addable at {(A,B)}.

Therefore, since (T, α) is Pk-lean, it follows that λ ((Z0, V ), (V,Z1)) > min{|Zi|} = r. Hence
G contains r disjoint Z1-Z2 paths.

Not only is this result broad enough to imply many known theorems, the framework is also
flexible enough to encompass many other types of tree-decompositions. For example, more
recently, Diestel, Eberenz and Erde [46] showed that there exist families of multistars Bk and
Pk ⊂ N

−→
Sk , which are fixed under shifting, such that the existence of Sk-trees over Bk or Pk

is dual to the existence of a k-block or a k-profile in the graph respectively (k-blocks and k-
profiles are examples of what Diestel and Oum call “highly cohesive structures” which represent
obstructions to low width, see [51]). They defined the profile-width and block-width of a graph G,
which we denote by blw(G) and prw(G), to be the smallest k such that there is an Sk-tree over
Bk or Pk respectively. Again, applying Theorems 3.3.3 and 3.4.1 to these families of multistars
we get the following theorem:

Theorem 3.5.10. Let G be a graph, then the following statements are true:

• G admits an
−→
S -linked profile-decomposition of width prw(G);

• G admits an
−→
S -linked block-decomposition of width blw(G).

The family Bk of multistars is built from a family B∗k of multistars by iteratively taking all
possible multistars that appear as shifts of multistars in B∗k, in order to guarantee that Bk is
fixed under shifting. The set B∗k can be taken to be stable, but it is not clear if this property is
maintained when moving to Bk. It would be interesting to know if a lean block-decomposition
of width blw(G) always exists.
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3.5.2 Matroid tree-width

Hliněný and Whittle [78, 79] generalized the notion of tree-width from graphs to matroids.
Let M = (E, I) be a matroid with rank function r. Hliněný and Whittle defined a tree-
decomposition of M to be a pair (T, τ) where τ : E → V (T ) is an arbitrary map. Every vertex
v ∈ V (T ) separates the tree into a number of components T1, T2, . . . , Td and we define the width
of the bag 〈τ−1(v)〉 to be

d∑
i=1

r(E \ τ−1(Ti))− (d− 1) · r(E).

The width of a tree-decomposition is max{〈τ−1(v)〉 : v ∈ V (T )} and the tree-width of M is
the smallest k such that M has a tree-decomposition of width k. This is a generalisation of the
tree-width of graphs, and in particular Hliněný and Whittle showed that for any graph G with
at least one edge, if M(G) is the cycle matroid of G then the tree-width of G is the tree width
of M(G).

We can express their notion of a tree-decomposition of a matroid in the language of Sk-trees
in the following way. Given any X ⊂ E the connectivity of X is given by

λ(X) := r(X) + r(E \X)− r(M),

where r is the rank function of M . If we consider the universe of separations
−→
S given by the

bipartitions of E, that is, pairs of the form (X,E \X), it follows that |X,E \X|r = λ(X) is an
order function on

−→
S .

Let us define, as before

Fk = {σ ∈ N
−→
Sk : σ a multistar with 〈σ〉 < k}.

Diestel and Oum [Lemma 8.4 [52]] showed that M has tree-width < k in the sense of Hliněný
and Whittle if and only if there is an Sk-tree over Fk. Explicitly given an Sk-tree (T, α) there is
a natural map τ : E → T where τ(e) = v if and only if e ∈ B for all (A,B) ∈ α(

−→
Fv). Conversely

given a tree-decomposition (T, τ) and an edge
−→
f = (t1, t2) consider the two subtrees T1 and T2

consisting of the component of T − t2 containing t1 and the component of T − t1 containing t2
respectively. We can then define α(

−→
f ) =

(
τ−1 (V (T1)) , τ−1 (V (T2))

)
. In this way we get an

equivalence between Sk-trees and matroid tree-decompositions, and it is easy to check that the
width of a bag 〈τ−1(v)〉 = 〈σv〉r. Let us say that a matroid tree-decomposition is linked if the
corresponding Sk-tree is linked.

We first note that Azzato [15] showed that Theorem 3.3.1 implies the following theorem:

Theorem 3.5.11. Every matroid has a linked tree-decomposition of width at most 2tw(M).

It is a simple corollary of Theorem 3.3.3 that this bound can be improved to the best possible
bound.

Corollary 3.5.12. Every matroid has a linked tree-decomposition of width at most tw(M).

However we can also apply Theorem 3.4.1 to give us a generalization of Theorem 3.1.3 to
matroids. If we wish to express this in the framework of Hliněný and Whittle we could make
the following definition. Given disjoint subsets Z1, Z2 ⊆ E let us write

λ(Z1, Z2) := min{λ(X) : Z1 ⊆ X,Z2 ⊆ E \X}.
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Definition 3.5.13. A matroid tree decomposition (T, τ) is called lean if for all k ∈ N, t, t′ ∈ T
and subsets Z1 ⊆ τ−1(t) and Z2 ⊆ τ−1(t′) with r(Z1) = r(Z2) = k, either λ(Z1, Z2) > k
or there exists an edge {s, s′} ∈ E(tT t′) such that, if we let T1 be the component of T − s′

containing s and T2 be the component of T − s containing s′, then
(
τ−1 (V (T1)) , τ−1 (V (T2))

)
is a (< k)-separation.

It is a simple argument in the vein of Lemmas 3.5.5 and 3.5.6 that if an Sk-tree over Fk is
Fk-lean then the associated matroid tree-decomposition is lean. Then, Theorem 3.4.1 applied
to Fk gives us the following generalization of Theorem 3.1.3 to matroids, the main new result
in this paper.

Theorem 3.5.14. Every matroid M admits a lean tree-decomposition of width tw(M).

We note that a non-negative non-decreasing submodular function r : 2V → N is, if normalised
such that r(∅) = 0, a polymatroid set function. So, in the broadest generality our results can
be interpreted in terms of tree-decompositions of polymatroidal set functions. However, we are
not aware of any references in the literature to such tree-decompositions.
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Chapter 4

Structural submodularity and
tangles in abstract separation
systems

4.1 Introduction

This paper is, in a sense, the capstone of a comprehensive project [35, 33, 36, 37, 44, 45, 46,
48, 51, 52, 58, 59] whose aim has been to utilize the idea of tangles familiar from Robertson
and Seymour’s graph minors project as a way of capturing clusters in other contexts, such as
image analysis [54], genetics [39], or the social sciences [40]. The idea is to use tangles, which
in graphs are certain consistent ways of orienting their low-order separations, as an indirect
way of capturing ‘fuzzy’ clusters – ones that cannot easily be described by simply listing their
elements – by instead orienting all those low-order separations towards them. We can then
think of these as a collection of signposts all pointing to that cluster, and of clusters as collective
targets of such consistent pointers.

Once clusters have been captured by ‘abstract tangles’ in this way, one can hope to generalize
to such clusters Robertson and Seymour’s two fundamental results about tangles in graphs [110].
One of these is the tree-of-tangles theorem. It says that any set of distinguishable tangles – ones
that pairwise do not contain each other – can in fact be distinguished pairwise by a small
and nested set of separations: for every pair of tangles there is a separation in this small and
nested collection that distinguishes them. Formally, this means that these two tangles orient
it differently; informally it means that one of its two orientations points to one of the tangles,
while its other orientation points to the other tangle. Since these separations are nested, they
split the underlying structure in a tree-like way, giving it a rough overall structure.

The other fundamental result from [110], the tangle-tree duality theorem, tells us that if
there are no tangles of a desired type then the entire underlying structure can be split in such a
tree-like way, i.e. by some nested set of separations, so that the regions corresponding to a node
of the structure tree are all small. (What exactly this means may depend on the type of tangle
considered.)

This research programme required a number of steps, of which this paper constitutes the
last.

The first step was to make the notion of tangles independent from their natural habitat
of graphs. In a graph, tangles are ways of consistently orienting all its separations {A,B} up
to some given order, either as (A,B) or as (B,A). If we want to do this for another kind of
underlying structure than a graph, this structure will have to come with a notion of ‘separation’,
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it must be possible to ‘orient’ these separations, and there must be a difference between doing this
‘consistently’ or ‘inconsistently’. If we wish to express, and perhaps prove, the two fundamental
tangle theorems in such an abstract context, we further need a notion of when two ‘separations’
are nested.

There are many structures that come with a natural notion of separation. For sets, for
example, we might simply take bipartitions. The notion of nestedness can then be borrowed
from the nestedness of sets and applied to the bipartition classes. Thinking of a bipartition
as an unordered pair of subsets, we can also naturally orient it ‘towards one or the other of
these subsets’ by ordering the pair. Finally, we have to come up with natural notions of when
orientations of different separations are consistent: we think of this as ‘roughly pointing the
same way’, and it is another prerequisite for defining tangles to make this formal. This is both
trickier to do in an abstract context and one of our main sources of freedom; we shall address
this question in Section 4.2.

The completion of the first step in our research programme thus consisted in abstracting
from the various notions of separation, and of consistently orienting separations, a minimum set
of requirements that might serve as axioms for an abstract notion of tangle applicable to all of
them. This resulted in the concept of separation systems and their (‘abstract’) tangles [44].

The second step, then, was to generalize the proofs of the tree-of-tangles theorem and the
tangle-tree duality theorem to the abstract setting of separation systems. This was done in [48]
and [51], respectively.

In order to prove these theorems, or to apply them to concrete cases of abstract separation
systems, e.g. as in [52, 54], one so far still needed a further ingredient of graph tangles: a
submodular order function on the separation system considered. Our aim in this paper is to
show that one can do without this: we shall prove that a structural consequence of the existence
of a submodular order function, a consequence that can be expressed in terms of abstract
separation systems, can replace the assumption that such a function exists in the proofs of the
above two theorems. We shall refer to separation systems that satisfy this structural condition
as submodular separation systems. 1

With this third step, then, the programme sketched above will be complete: we shall have a
notion of tangle for very general abstract separation systems, as well as a tree-of-tangles theorem
and a tangle-tree duality theorem for these tangles that can be expressed and proved without
the need for any submodulary order function on the separation systems considered.

Formally, our two main results read as follows:

Theorem 4.1.1. Every submodular separation system
→
S contains a tree set of separations that

distinguishes all the abstract tangles of S.

Theorem 4.1.2. Let
→
S be a submodular separation system without degenerate elements in a

distributive universe ~U . Then exactly one of the following holds:

(cl.1) S has an abstract tangle.

(cl.2) There exists an S-tree over T ∗ (witnessing that S has no abstract tangle).

(See Section 4.2 for definitions.) Three further theorems, which partly strengthen or generalize
the above two, will be stated in Section 4.2 (and proved later) when we have more terminology
available.

1There is also a notion of submodularity for separation universes. Separation universes are special separation
systems that are particularly large, and they are always submodular as separation systems. For separation
universes, therefore, submodularity is used with the narrower meaning of being endowed with a submodular order
function [44].

76



One may ask, of course, whether weakening the existence of a submodular order function to
‘structural submodularity’ in the premise of these two theorems is worth the effort. We believe
it is. For a start, the entire programme of developing abstract separation systems, and a theory
of tangles for them, served the purpose of identifying the few structural assumptions one has to
make of a set of objects called ‘separations’ in order to capture the essence of tangles in graphs,
and thereby make them applicable in much wider contexts. It would then seem oblivious of
these aims to stop just short of the goal: to continue to make unnecessarily strong assumptions
of an extraneous and non-structural kind when weaker structural assumptions can achieve the
same.

However, there is also a technical advantange. As we shall see in Sections 4.5.2 and 4.5.4,
there are interesting abstract separation systems that are structurally submodular but which do
not come with a natural submodular order function that implies this.

4.2 Abstract separation systems

Abstract separation systems were first introduced in [44]; see there for a gentle formal introduc-
tion and any terminology we forgot to define below. Motivation for why they are interesting can
be found in the introductory sections of [48, 51, 52] and in [54]. In what follows we provide a
self-contained account of just the definitions and basic facts about abstract separation systems
that we need in this paper.

A separation system (
→
S,6,∗) is a partially ordered set with an order-reversing involution

∗ :
→
S → →

S . The elements of
→
S are called (oriented) separations. The inverse of →s ∈ →

S is →s ∗,
which we usually denote by ←s . An (unoriented) separation is a set s = {→s , ←s } consisting of a
separation and its inverse and we then refer to →s and ←s as the two orientations of s. Note that
it may occur that →s = ←s , we then call →s degenerate. The set of all separations is denoted by S.
When the context is clear, we often refer to oriented separations simply as separations in order
to improve the flow of text.

If the partial order (
→
S,6) is a lattice with join ∨ and meet ∧, then we call (

→
S,6,∗,∨,∧) a

universe of (oriented) separations. It is distributive if it is distributive as a lattice. Typically,
the separation systems we are interested in are contained in a universe of separations. In most
applications, one starts with a universe (~U,6, ∗,∨,∧) and then defines

→
S as a set of separations

of low order with respect to some order function on ~U , a map | · |: ~U → [0,∞) that is symmetric
in that |→s | = |←s |, and submodular in that |→s ∨ →t | + |→s ∧ →t | 6 |→s | + |→t | for all →s ,

→
t ∈ ~U .

Submodularity of the order function in fact plays a crucial role in several arguments. One of its
most immediate consequences is that whenever both →s ,

→
t ∈ →

Sk := {→u ∈ ~U : |→u | < k}, then at
least one of →s ∨ →t and →s ∧ →t again lies in

→
Sk.

In order to avoid recourse to the external concept of an order function if possible, let us
turn this last property into a definition that uses only the language of lattices. Let us call a
subset M of a lattice (L,∨,∧) submodular if for all x, y ∈M at least one of x ∨ y and x ∧ y lies
in M . A separation system

→
S contained in a given universe ~U of separations is (structurally)

submodular if it is submodular as a subset of the lattice underlying ~U .

We say that →s ∈ →
S is small (and ←s is co-small) if →s 6 ←s . An element →s ∈ →

S is trivial
in

→
S (and ←s is co-trivial) if there exists t ∈ S whose orientations

→
t ,
←
t satisfy →s <

→
t as well as

→s <
←
t . Notice that trivial separations are small.

Two separations s, t ∈ S are nested if there exist orientations →s of s and
→
t of t such that

→s 6
→
t . Two oriented separations are nested if their underlying separations are. We say that

two separations cross if they are not nested. A set of (oriented) separations is nested if any two
of its elements are. A nested separation system without trivial or degenerate elements is a tree
set. A set σ of non-degenerate oriented separations is a star if for any two distinct →s ,

→
t ∈ σ we
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have →s 6
←
t . A family F ⊆ 2

~U of sets of separations is standard for
→
S if for any trivial →s ∈ →

S
we have {←s } ∈ F . Given F ⊆ 2

~U , we write F∗ for the set of all elements of F that are stars.
An orientation of S is a set O ⊆ →

S which contains for every s ∈ S, exactly one of ←s , →s . An
orientation O of S is consistent if whenever r, s ∈ S are distinct and

→
r 6 →s ∈ O, then

←
r /∈ O.

The idea behind this is that separations
←
r and →s are thought of as pointing away from each

other if
→
r ≤ →s . If we wish to orient r and s towards some common region of the structure which

they are assumed to ‘separate’, as is the idea behind tangles, we should therefore not orient
them as

←
r and →s .

Tangles in graphs also satisfy another, more subtle, consistency requirement: they never
orient three separations r, s, t so that the region to which they point collectively is ‘small’.2 This
can be mimicked in abstract separation systems by asking that three oriented separations in an
‘abstract tangle’ must never have a co-small supremum; see [44, Section 5]. So let us implement
this formally.

Given a family F ⊆ 2
~U , we say that O avoids F if there is no σ ⊆ O with σ ∈ F . A

consistent F-avoiding orientation of S is called an F-tangle of S. An F-tangle for F = T with

T := {{→r , →s , →t } ⊆ ~U :
→
r ∨ →s ∨ →t is co-small}

is an abstract tangle.
A separation s ∈ S distinguishes two orientations O1, O2 of S if O1 ∩ s 6= O2 ∩ s. Likewise,

a set N of separations distinguishes a set O of orientations if for any two O1, O2 ∈ O, there is
some s ∈ N which distinguishes them.

Let us restate our tree-of-tangles theorem for abstract tangles of submodular separation
systems:

Theorem 4.1.1. Every submodular separation system
→
S contains a tree set of separations that

distinguishes all the abstract tangles of S.

We now introduce the structural dual to the existence of abstract tangles. An S-tree is a
pair (T, α) consisting of a tree T and a map α : ~E(T )→ →

S from the set ~E(T ) of orientations of
edges of T to

→
S such that α(y, x) = α(x, y)∗ for all xy ∈ E(T ). Given F ⊆ 2

~U , we call (T, α) an
S-tree over F if α(Ft) ∈ F for every t ∈ T , where

Ft := {(s, t) : st ∈ E(T )}.

It is easy to see that if S has an abstract tangle, then there can be no S-tree over T .
Our tangle-tree duality theorem for abstract tangles of submodular separation systems, which

we now re-state, asserts a converse to this. Recall that T ∗ denotes the set of stars in T .

Theorem 4.1.2. Let
→
S be a submodular separation system without degenerate elements in a

distributive universe ~U . Then exactly one of the following holds:

(cl.1) S has an abstract tangle.

(cl.2) There exists an S-tree over T ∗ (witnessing that S has no abstract tangle).

Here, it really is necessary to exclude degenerate separations: a single degenerate separation
will make the existence of abstract tangles impossible, although there might still be T ∗-tangles
(and therefore no S-trees over T ∗). We will actually prove a duality theorem for T ∗-tangles
without this additional assumption and then observe that T ∗-tangles are in fact already abstract
tangles, unless

→
S contains a degenerate separation.

2Formally: so that the union of their sides to which they do not point is the entire graph.
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In applications, we do not always wish to consider all the abstract tangles of a given separa-
tion system. For example, if S consists of the bipartitions {A,B} of some finite set V (see [44]
for definitions), then every v ∈ V induces an abstract tangle

τv :=
{

(A,B) ∈ →
S : v ∈ B

}
,

the principal tangle induced by v. In particular, abstract tangles trivially exist in these situ-
ations. In order to exclude principal tangles, we could require that every tangle τ of S must
satisfy ({v}, V \ {v}) ∈ τ for every v ∈ V.

More generally, we might want to prescribe for some separations s of S that any tangle of S
we consider must contain a particular one of the two orientations of s rather than the other.
This can easily be done in our abstract setting, as follows. Given Q ⊆ ~U , let us say that an
abstract tangle τ of S extends Q if Q ∩ →

S ⊆ τ . It is easy to see that τ extends Q if and only
if τ is FQ-avoiding, where

FQ := {{←s } : →s ∈ Q non-degenerate}.

We call Q ⊆ ~U down-closed if
→
r ≤ →s ∈ Q implies

→
r ∈ Q for all

→
r , →s ∈ ~U .

Here, then, is our refined tangle-tree duality theorem for abstract tangles of submodular
separation systems.

Theorem 4.2.1. Let
→
S be a submodular separation system without degenerate elements in a dis-

tributive universe ~U and let Q ⊆ ~U be down-closed. Then exactly one of the following assertions
holds:

(cl.1) S has an abstract tangle extending Q.

(cl.2) There exists an S-tree over T ∗ ∪ FQ.

Observe that Theorem 4.2.1 implies Theorem 4.1.2 by taking Q = ∅.
The abstract tangles in Theorem 4.2.1 are not the only F-tangles for which such a statement

holds. In [52] the tangle-tree duality theorem of [51] is used to prove such a statement for a
broad class of F-tangles, albeit under a stronger assumption: one needs there that

→
S is not

just structurally submodular, as is our assumption here throughout our paper, but that ~U has
a submodular order function and

→
S is the set separations up to some fixed order (and therefore,

in particular, submodular).
In Section 4.4, however, we will show that the weaker assumption that

→
S itself is submodular

is in fact sufficient to establish the only property of S whose proof in [52] requires a submodular
order function: this is the fact that S is ‘separable’. (We shall repeat the definition of this in
Section 4.4.)

The other ingredient one needs for all those applications of the tangle-tree duality theorem
from [51] is a property of F : that F is ‘closed under shifting’. Sometimes, a submodular order
function on ~U is needed also to establish this property of F . But if it is not, we can now
prove the same application without a submodular order function, assuming only that S itself is
submodular:

Theorem 4.2.2. Let ~U be a universe of separations and
→
S ⊆ ~U a submodular separation system.

Let F ⊆ 2
~U be a set of stars which is standard for

→
S and closed under shifting. Then exactly

one of the following holds:

(cl.1) There exists an F-tangle of S.

(cl.2) There exists an S-tree over F .

We shall prove Theorem 4.2.2 in Section 4.4.
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Our last result is an example of Theorem 4.2.2 for a concrete F , a tangle-tree duality theorem
for F-tangles of bipartitions of a set that are used particularly often in applications [39, 40]. Let
~U be the universe of oriented bipartitions (A,B) of a set V (see [44] for definitions). Let m ≥ 1
and n ≥ 2 be integers, and define

Fm :=
{
F ⊆ ~U :

∣∣ ⋂
(A,B)∈F

B
∣∣ < m

}
and

Fnm := {F ∈ Fm : |F | < n }.
To subsume Fm under this latter notation we allow n = ∞, so that F∞m = Fm. Given any
collection F ⊆ 2

~U of sets of oriented separations, we write F∗ for its subcollection of those sets
F ∈ F that are stars (of oriented separations).

We shall prove in Section 4.4 that the set of stars in Fm is closed under shifting. Building
on Theorem 4.2.2, we then use this in Section 4.5 to prove the following:

Theorem 4.2.3. Let
→
S ⊆ ~U be a submodular separation system, let 1 ≤ m ∈ N and 2 ≤ n ∈

N ∪ {∞}, and let F = Fnm. Then exactly one of the following two statements holds:

(cl.1) S has an F-tangle;

(cl.2) There exists an S-tree over F∗.

The bound n on the size of the sets in F is often taken to be 4. In (i) we could replace F
with F∗, since for these F the F-tangles are precisely the F∗-tangles; see Section 4.5.3.

4.3 The tree-of-tangles theorem

In this section we will prove Theorem 4.1.1. In fact, we are going to prove a slightly more general
statement. Let P := {{→s , →t , (→s ∨ →t )∗} : →s ,

→
t ∈ ~U}. The P-tangles are known as H11. A profile

of S is regular if it contains all the small separations in
→
S .

Theorem 4.3.1. Let
→
S be a submodular separation system and Π a set of profiles of S. Then

→
S

contains a tree set that distinguishes Π.

This implies Theorem 4.1.1, by the following easy observation.

Lemma 4.3.2. Every abstract tangle is a profile.

Proof. Let →s ,
→
t ∈ ~U and

→
r := →s ∨ →t . Then

→s ∨ →t ∨ ←r =
→
r ∨ ←r

is co-small, so {→s , →t ,←r} ∈ T . Therefore P ⊆ T and every T -tangle is also a P-tangle.

We first recall a basic fact about nestedness of separations. For s, t ∈ S, we define the corners
→s ∧ →t , →s ∧ ←t , ←s ∧ →t and ←s ∧ ←t .

Lemma 4.3.3 ([44]). Let
→
S be a separation system in a universe ~U of separations. Let s, t be

two crossing separations and
→
r one of the corners. Then every separation that is nested with

both s and t is nested with r as well.

In the proof of Theorem 4.3.1, we take a nested set N of separations that distinguishes some
set Π0 of regular profiles and we want to exchange one element of N by some other separation
while maintaining that Π0 is still distinguished. The following lemma simplifies this exchange.
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Lemma 4.3.4. Let
→
S be a separation system, O a set of consistent orientations of S and N ⊆ S

an inclusion-minimal nested set of separations that distinguishes O. Then for every t ∈ N there
is a unique pair of orientations O1, O2 ∈ O that are distinguished by t and by no other element
of N.

Proof. It is clear that at least one such pair must exist, for otherwise N \ {t} would still distin-
guish O, thus violating the minimality of N.

Suppose there was another such pair, say O′1, O
′
2. After relabeling, we may assume that

→
t ∈ O1 ∩ O′1 and

←
t ∈ O2 ∩ O′2. By symmetry, we may further assume that O1 6= O′1. Since N

distinguishes O, there is some r ∈ N with
→
r ∈ O1,

←
r ∈ O′1.

As t is the only element of N distinguishing O1, O2, it must be that
→
r ∈ O2 as well, and sim-

ilarly
←
r ∈ O′2. We hence see that for any orientation τ of {r, t}, there is an O ∈ {O1, O2, O

′
1, O

′
2}

with τ ⊆ O. Since N is nested, there exist orientations of r and t pointing away from each other.
But then one of O1, O2, O

′
1, O

′
2 is inconsistent, which is a contradiction.

Proof of Theorem 4.3.1. Note that it suffices to show that there is a nested set N of separations
that distinguishes Π: Every consistent orientation contains every trivial and every degenerate
element, so any inclusion-minimal such set N gives rise to a tree-set.

We prove this by induction on |Π|, the case |Π| = 1 being trivial.

For the induction step, let P ∈ Π be arbitrary and Π0 := Π \ {P}. By the induction
hypothesis, there exists a nested set N of separations that distinguishes Π0. If some such
set N distinguishes Π, there is nothing left to show. Otherwise, for every nested N ⊆ S which
distinguishes Π0 there is a P ′ ∈ Π0 which N does not distinguish from P . Note that P ′ is unique.
For any s ∈ S that distinguishes P and P ′, let d(N, s) be the number of elements of N which are
not nested with s.

Choose a pair (N, s) so that d(N, s) is minimum. Clearly, we may assume N to be inclusion-
minimal with the property of distinguishing Π0. If d(N, s) = 0, then N ∪ {s} is a nested set
distinguishing Π and we are done, so we now assume for a contradiction that d(N, s) > 0.

Since N does not distinguish P and P ′, we can fix an orientation of each t ∈ N such that
→
t ∈ P ∩P ′. Choose a t ∈ N such that t and s cross and

→
t is minimal. Let (P1, P2) be the unique

pair of profiles in Π0 which are distinguished by t and by no other element of N, say
←
t ∈ P1,

→
t ∈ P2. Let us assume without loss of generality that ←s ∈ P1. The situation is depicted in
Figure 4.1. Note that we do not know whether →s ∈ P2 or ←s ∈ P2. Also, the roles of P and P ′

might be reversed, but this is insignificant.

←−r2

←−r1

−→s

−→
t

P P ′

P1

P2 P2

Figure 4.1: Crossing separations

Suppose first that
→
r1 := →s ∨ →t ∈ →

S . Let Q ∈ {P, P ′}. If →s ∈ Q, then
→
r1 ∈ Q, since

→
t ∈ P ∩P ′

and Q is a profile. If
→
r1 ∈ Q, then →s ∈ Q since Q is consistent and →s 6 →

r1 ∈ Q: it cannot be
that →s =

←
r1, since then s and t would be nested. Hence each Q ∈ {P, P ′} contains

→
r1 if and

only if it contains →s . In particular, r1 distinguishes P and P ′. By Lemma 4.3.3, every u ∈ N
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that is nested with s is also nested with r1. Moreover, t is nested with r1, but not with s, so
that d(N, r1) < d(N, s). This contradicts our choice of s.

Therefore →s ∨ →t /∈ →
S . Since

→
S is submodular, it follows that

→
r2 := →s ∧ →t ∈ →

S . Moreover,
r2 is nested with every u ∈ N \ {t}. This is clear if

→
t 6 →

u or
→
t 6 ←

u, since
→
r2 6

→
t . It cannot

be that
←
u 6

→
t , because

→
u,
→
t ∈ P and P is consistent. Since N is nested, only the case

→
u <

→
t

remains. Then, by our choice of
→
t , u and s are nested and it follows from Lemma 4.3.3 that u

and r2 are also nested. Hence N′ := (N \ {t}) ∪ {r2} is a nested set of separations.
To see that N′ distinguishes Π0, it suffices to check that r2 distinguishes P1 and P2. We have

→
r2 ∈ P2 since P2 is consistent and

→
r2 6

→
t ∈ P2: if

→
r2 =

←
t , then s and t would be nested. Since

←
r2 = ←s ∨ ←t and ←s ,

←
t ∈ P1, we find

←
r2 ∈ P1. Any element of N′ which is not nested with s lies

in N. Since t ∈ N \ N′ is not nested with s, it follows that d(N′, s) < d(N, s), contrary to our
choice of N and s.

4.4 Tangle-tree duality

Our agenda for this section is first to prove Theorem 4.2.2, and then to derive from it Theo-
rem 4.2.1, which as we have seen implies Theorem 4.1.2. Our proof will be an application of the
basic tangle-tree duality theorem from [51].

For this we need to introduce the notion of separability, and then prove that submodular
separation systems are separable (Lemma 4.4.4). This lemma not only lies at the heart of our
proof of Theorem 4.2.2: it will also be central to any other result that asserts a tangle-tree type
duality for separation systems (

→
S,6,∗) that are structurally submodular, but are not so simply

as a corollary of the existence of a submodular order function on
→
S .

A separation →s ∈ →
S emulates

→
r in

→
S if →s > →

r and for every
→
t ∈ →

S \ {←r} with
→
t > →

r we
have →s ∨ →t ∈ →

S . For →s ∈ →
S , σ ⊆ →

S and →x ∈ σ, define

σ
→s
→x := {→x ∨ →s } ∪ {→y ∧ ←s : →y ∈ σ \ {→x}}.

Lemma 4.4.1. Suppose →s ∈ →
S emulates a non-trivial

→
r in

→
S , and let σ ⊆ →

S be a star such
that

→
r 6 →x ∈ σ. Then σ

→s
→x
⊆ →
S is a star.

Proof. Note that for every →y ∈ σ\{→x} we have
→
r 6 ←y . It is clear that for any two distinct

→
u,
→
v ∈

σ
→s
→x

we have
→
u 6 ←

v , so we only need to show that every element of σ
→s
→x

is non-degenerate and
lies in

→
S . For every

→
u ∈ σ

→s
→x

there is a non-degenerate
→
t ∈ →

S with
→
r 6

→
t such that either

→
u =

→
t ∨ →s or

←
u =

→
t ∨ →s .

Let
→
t ∈ →

S be non-degenerate with
→
r 6

→
t . Since →s emulates

→
r in

→
S , we find

→
t ∨ →s ∈ →

S .
Assume for a contradiction that

→
t ∨ →s was degenerate. Since

→
t is non-degenerate, we find

that
→
t <

→
t ∨ →s , so that

→
t is trivial. But then so is

→
r , because

→
r 6

→
t . This contradicts our

assumption on
→
r .

The separation system
→
S is separable if for all non-trivial and non-degenerate

→
r1,

←
r2 ∈

→
S with

→
r1 6

→
r2 there exists an →s ∈ →

S which emulates
→
r1 in

→
S while simultaneously ←s emulates

←
r2 in

→
S .

Given some F ⊆ 2
~U , we say that →s emulates

→
r in

→
S for F if →s emulates

→
r in

→
S and for

every star σ ⊆ →
S \ {←r} with σ ∈ F and every →x ∈ σ with →x > →

r we have σ
→s
→x
∈ F .

The separation system
→
S is F-separable if for all non-trivial and non-degenerate

→
r1,

←
r2 ∈

→
S

with
→
r1 6

→
r2 and {←r1}, {→r2} /∈ F there exists an →s ∈ →

S which emulates
→
r1 in

→
S for F while

simultaneously ←s emulates
←
r2 in

→
S for F .

Theorem 4.4.2 ([51, Theorem 4.3]). Let ~U be a universe of separations and
→
S ⊆ ~U a separation

system. Let F ⊆ 2
~U be a set of stars, standard for

→
S . If

→
S is F-separable, then exactly one of

the following holds:
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(cl.1) There exists an F-tangle of S.

(cl.2) There exists an S-tree over F .

In applications of Theorem 4.4.2 it is often easier to split the proof of the main premise,
that

→
S is F-separable, into two parts: a proof that

→
S is separable and one that F is closed under

shifting in
→
S : that whenever →s ∈ →

S emulates (in
→
S) some nontrivial and nondegenerate

→
r 6 →s

not forced by F , then it does so for F . Indeed, the following is immediate from the definitions:

Lemma 4.4.3. Let ~U be a universe of separations,
→
S ⊆ ~U a separation system, and F ⊆ 2

~U a
set of stars. If

→
S is separable and F is closed under shifting, then

→
S is F-separable.

It is shown in [52] that if ~U is a universe of separations with an order function, then the sets
→
Sk of all separations of order less than some fixed positive integer k are separable for all k, and
virtually all the applications of Theorem 4.4.2 that are given in [51] involve a separation system
of the form

→
Sk.

While many applications of the submodularity of an order function use only its structural
consequence that motivated our abstract notion of submodularity, the use of submodularity in
the proof that

→
Sk is separable – see [52, Lemma 3.4] – uses it in a more subtle way. There, the

orders of opposite corners of two crossing separations →s and
→
t are compared not with any fixed

value of k but with the (possibly distinct) orders of s and t directly. This kind of argument is
naturally difficult, if not impossible, to mimic in our set-up.

However, we can prove this nevertheless, choosing a different route. The following lemma is,
in essence, the main result of this section:

Lemma 4.4.4. Let ~U be a universe of separations and
→
S ⊆ ~U a submodular separation system.

Then
→
S is separable.

We will actually prove a slightly more general statement about submodular lattices. Let
(L,∨,∧) be a lattice and let M ⊆ L. Given x, y ∈ M , we say that x pushes y if x 6 y and for
any z ∈ M with z 6 y we have x ∧ z ∈ M . Similarly, we say that x lifts y if x > y and for
any z ∈ M with z > y we have x ∨ z ∈ M . Observe that both of these relations are reflexive
and transitive: Every x ∈M pushes (lifts) itself and if x pushes (lifts) y and y pushes (lifts) z,
then x pushes (lifts) z. We say that M is strongly separable if for all x, y ∈M with x 6 y there
exists a z ∈M that lifts x and pushes y.

The definitions of lifting, pushing and separable extend verbatim to a separation system
within a universe of separations when regarded as a subset of the underlying lattice. These
notions are strengthenings of the notions of emulating and separable: If →s ∈ →

S lifts
→
r ∈ →

S ,
then →s emulates

→
r in

→
S , and →s pushes

→
r if and only if ←s lifts

←
r . Similarly, if

→
S is strongly

separable, then
→
S is separable. Lemma 4.4.4 is then an immediate consequence of the following:

Lemma 4.4.5. Let L be a finite lattice and M ⊆ L submodular. Then M is strongly separable.

Proof. Call a pair (a, b) ∈M ×M bad if a 6 b and there is no x ∈M that lifts a and pushes b.
Assume for a contradiction that there was a bad pair and choose one, say (a, b), such that
I(a, b) := {u ∈M : a 6 u 6 b} is minimal.

We claim that a pushes every z ∈ I(a, b) \ {b}. Indeed, assume for a contradiction a did not
push some such z. By minimality of (a, b), the pair (a, z) is not bad, so there is some x ∈ M
which lifts a and pushes z. By assumption, x 6= a and so by minimality, the pair (x, b) is not
bad, yielding a y ∈ M which lifts x and pushes b. By transitivity, it follows that y lifts a. But
then (a, b) is not a bad pair, which is a contradiction. An analogous argument establishes that b
lifts every z ∈ I(a, b) \ {a}.
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Since (a, b) is bad, a does not push b, so there is some x ∈M with x 6 b for which a∧x /∈M .
Similarly, there is a y ∈ M with y > a for which b ∨ y /∈ M . Since M is submodular, it follows
that a ∨ x, b ∧ y ∈ M . Note that a ∨ x, b ∧ y ∈ I(a, b). Furthermore, x 6 a ∨ x and a ∧ x /∈ M ,
so a does not push a ∨ x. We showed that a pushes every z ∈ I(a, b) \ {b}, so it follows that
a ∨ x = b. Similarly, we find that b ∧ y = a. But then

x ∨ y = x ∨ (a ∨ y) = b ∨ y /∈M,

x ∧ y = (x ∧ b) ∧ y = x ∧ a /∈M.

This contradicts the submodularity of M .

As a result we obtain our tangle-tree duality theorem for F-tangles of submodular separation
systems, Theorem 4.2.2.

Proof of Theorem 4.2.2. Since
→
S is submodular, Lemma 4.4.4 implies that

→
S is separable. Since F

is closed under shifting, it follows from Lemma 4.4.3 that
→
S is F-separable. The result then

follows by Theorem 4.4.2.

We will now use Theorem 4.2.2 to prove Theorem 4.2.1, which in turn implies Theorem 4.1.2.
Recall that we are considering a downclosed subset Q ⊆ ~U of a distributive universe of separa-
tions, and a submodular separation system

→
S without degenerate elements in ⊆ ~U , and we wish

to prove a tangle-tree duality theorem for abstract tangles of
→
S extending Q. Note that these are

precisely the (T ∪ FQ)-tangles of
→
S . However, since the family F in Theorem 4.2.2 is assumed

to be a set of stars, we cannot work directly with T . Instead we will work with T ∗, the set of
stars in T . It will turn out that, since

→
S has no degenerate elements, this will not change the

set of T -tangles (cf. Lemma 4.4.8). So, we will first show that we can apply Theorem 4.2.2 with
F = TQ, where TQ := T ∗ ∪ FQ, and then show that the T ∗-tangles are precisely the T -tangles.
Theorem 4.2.1 will then follow.

Let us first prove the following simple fact, which will be useful in a few different situations.

Lemma 4.4.6. Let ~U be a distributive universe of separations. Let
→
u,
→
v ,
→
w ∈ ~U . If

→
u 6 →

v and
→
v ∨ →w is co-small, then

→
v ∨ (

→
w ∧ ←u) is co-small.

Proof. Let →x :=
→
v ∨ (

→
w ∧ ←u). By distributivity of ~U

→x = (
→
v ∨ →w) ∧ (

→
v ∨ ←u) > (

→
v ∨ →w) ∧ (

→
u ∨ ←u).

Let →s :=
→
v ∨ →

w and
→
t :=

→
u ∨ ←u. Then ←s 6 →s by assumption and ←s 6 ←v 6

→
t . Further

←
t 6 →

u 6
→
t and

←
t 6 →

u 6 →
v . Therefore

←x 6 ←s ∨ ←t 6 →s ∧ →t 6 →x.

In order to apply Theorem 4.2.2 with F = TQ, we need to show that TQ is closed under
shifting.

Lemma 4.4.7. If Q ⊆ ~U is down-closed and ~U is distributive, then TQ is closed under shifting.

Proof. Let
→
r ∈ →

S non-trivial and non-degenerate with {←r} /∈ F . Let →s ∈ →
S emulate

→
r in

→
S ,

let TQ 3 σ ⊆
→
S \ {←r} and

→
r 6 →x ∈ σ. We have to show that σ

→s
→x
∈ TQ. From Lemma 4.4.1 we

know that σ
→s
→x

is a star, so we only need to verify that σ
→s
→x
∈ T ∗ ∪ FQ.

Suppose first that σ ∈ T ∗. Let
→
w :=

∨
(σ \ {→x}). Applying Lemma 4.4.6 with

→
u = →s and

→
v = →x ∨ →s , we see that ∨

σ
→s
→x = (→x ∨ →s ) ∨ (

→
w ∧ ←s )

is co-small. Since σ
→s
→x

has at most three elements, it follows that σ
→s
→x
∈ T .
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Suppose now that σ ∈ FQ. Then σ = {→x} and ←x ∈ Q. As Q is down-closed, we have
←x ∧ ←s ∈ Q. Since σ

→s
→x

is a star, ←x ∧ ←s is non-degenerate and therefore

σ
→s
→x = {→x ∨ →s } = {(←x ∧ ←s )∗} ∈ FQ.

Lemma 4.4.8. Let ~U be a distributive universe of separations and let
→
S ⊆ ~U be a submodular

separation system without degenerate elements. Then the T ∗-tangles are precisely the abstract
tangles.

Proof. Since T ∗ ⊆ T , every abstract tangle is also a T ∗-tangle. We only need to show that,
conversely, every T ∗-tangle in fact avoids T .

For σ ∈ T , let d(σ) be the number of pairs →s ,
→
t ∈ σ which are not nested. Let O be a

consistent orientation of S and suppose O was not an abstract tangle. Choose T 3 σ ⊆ O such
that d(σ) is minimum and, subject to this, σ is inclusion-minimal. We will show that σ is indeed
a star, thus showing that O is not a T ∗-tangle.

If σ contained two comparable elements, say →s 6
→
t , then σ′ := σ \ {→s } satisfies σ′ ∈ T ,

σ′ ⊆ O and d(σ′) 6 d(σ), violating the fact that σ is inclusion-minimal. Hence σ is an antichain.
Since

→
S has no degenerate elements, it follows from the consistency of O that any two nested

→s ,
→
t ∈ σ satisfy →s 6

←
t . To show that σ is a star, it thus suffices to prove that any two elements

are nested.

Suppose that σ contained two crossing separations, say →s ,
→
t ∈ σ. By submodularity of

→
S ,

at least one of →s ∧ ←t and ←s ∧ →t lies in
→
S . By symmetry we may assume that

→
r := →s ∧ ←t ∈ →

S .
Let σ′ := (σ \ {→s }) ∪ {→r }. Since O is consistent,

→
r 6 →s and r 6= s, it follows that

→
r ∈ O and

so σ′ ⊆ O as well.

Let
→
w =

∨
(σ\{→t }). As

→
t ∨→w =

∨
σ is co-small, we can apply Lemma 4.4.6 with

→
u =

→
v =

→
t

to deduce that
→
t ∨ (

→
w ∧ ←t ) is co-small as well. But

→
t ∨ (

→
w ∧ ←t ) =

→
t ∨

∨
→x ∈σ\{→t }

(→x ∧ ←t ) 6
∨
σ′,

so
∨
σ′ is also co-small and σ′ ∈ T .

We now show that d(σ′) < d(σ). Since s and t cross, while r and t do not, it suffices to show
that every →x ∈ σ \ {→s } which is nested with →s is also nested with

→
r . But for every such →x we

have →s 6 ←x . Since
→
r 6 →s , we get

→
r 6 ←x as well, showing that r and x are nested. So in fact

d(σ′) < d(σ), which is a contradiction. This completes the proof that σ is nested and therefore
a star.

We are now in a position to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. By Lemma 4.4.4,
→
S is separable, and by Lemma 4.4.7, TQ is closed

under shifting. Therefore, by Theorem 4.2.2, there is no S-tree over T ∗ ∪ FQ, if and only if S
has a TQ-tangle, that is, a T ∗-tangle extending Q.

However, since ~U is distributive and
→
S contains no degenerate elements, Lemma 4.4.8 implies

that S has a T ∗-tangle extending Q if and only if S has an abstract tangle extending Q.
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4.5 Special cases and applications

4.5.1 Tangles in graphs and matroids

We briefly indicate how tangles in graphs and matroids can be seen as special cases of abstract
tangles in separation systems. Tangles in graphs and hypergraphs were introduced by Robertson
and Seymour in [110], but a good deal of the work is done in the setting of connectivity systems.
Geelen, Gerards and Whittle [67] made this more explicit and defined tangles as well as the dual
notion of branch-decompositions for connectivity systems, an approach that we will follow.

Let X be a finite set and λ : 2X → Z a map assigning integers to the subsets of X such that
λ(X \A) = λ(A) for all A ⊆ X and

λ(A ∪B) + λ(A ∩B) 6 λ(A) + λ(B)

for all A,B ⊆ X. The pair (X,λ) is then called a connectivity system.

Both graphs and matroids give rise to connectivity systems. For a given graph G, we can
take X := E(G) and define λ(F ) as the number of vertices of G incident with edges in both F
and E \ F . Given a matroid M with ground-set X and rank-function r, we take λ to be the
connectivity function λ(A) := r(A) + r(X \A)− r(X).

Now consider 2X as a universe of separations with set-inclusion as the partial order and
A∗ = X \ A as involution. For an integer k, the set

→
Sk of all sets A with λ(A) < k is then a

submodular separation system. Let Q := {∅} ∪ {{x} : x ∈ X} consist of the empty-set and all
singletons of X and note that Q is down-closed.

A tangle of order k of (X,λ), as defined in [67], is then precisely an abstract tangle extend-
ing Q. It is easy to see that (X,λ) has a branch-decomposition of width <k if and only if there
exists an Sk-tree over T ∗∪FQ. Theorem 4.2.1 then yields the classic duality theorem for tangles
and branch-decompositions in connectivity systems, see [110, 67].

4.5.2 Clique separations

We now describe a submodular separation system that is not derived from a submodular order
function, and provide a natural set of stars for which Theorem 4.2.2 applies.

Let G = (V,E) be a finite graph and ~U the universe of all separations of G, that is, pairs
(A,B) of subsets of V with V = A ∪ B such that there is no edge between A \ B and B \ A.
Here the partial order is given by (A,B) 6 (C,D) if and only if A ⊆ C and B ⊇ D, and the
involution is simply (A,B)∗ = (B,A). For (A,B) ∈ ~U , we call A ∩ B the separator of (A,B).
It is an a-b-separator if a ∈ A \ B and b ∈ B \ A. We call A ∩ B a minimal separator if there
exist a ∈ A \B and b ∈ B \A for which A ∩B is an inclusion-minimal a-b-separator.

Recall that a hole in a graph is an induced cycle on more than three vertices. A graph is
chordal if it has no holes.

Theorem 4.5.1 (Dirac [55]). A graph is chordal if and only if every minimal separator is a
clique.

Let
→
S be the set of all (A,B) ∈ ~U for which G[A ∩ B] is a clique. We call these the clique

separations. Note that
→
S is closed under involution and therefore a separation system. To avoid

trivialities, we will assume that the graph G is not itself a clique. In particular, this implies
that

→
S contains no degenerate elements.

Lemma 4.5.2. Let s, t ∈ S. At least three of the four corners of s and t are again in
→
S . In

particular,
→
S is submodular.
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Proof. Let →s = (A,B) and
→
t = (C,D). Since G[A ∩ B] is a clique and (C,D) is a separation,

we must have A ∩ B ⊆ C or A ∩ B ⊆ D, without loss of generality A ∩ B ⊆ C. Similarly, it
follows that C ∩D ⊆ A or C ∩D ⊆ B; we assume the former holds. For each corner other than
→s ∧ →t = (A ∩ C,B ∪D), the separator is a subset of either A ∩ B or C ∩D and therefore the
subgraph it induces is a clique. This proves our claim.

Suppose that the graph G contains a hole H. Then for every (A,B) ∈ →
S , either H ⊆ A or

H ⊆ B. In this way, every hole H induces an orientation

OH := {(A,B) ∈ →
S : H ⊆ B}

of
→
S . We now describe these orientations as tangles over a suitable set of stars.

Let F ⊆ 2
~U be the set of all sets {(A1, B1), . . . (An, Bn)} ⊆ ~U for which G[

⋂
Bi] is a clique

(note that the graph without any vertices is a clique). As usual, we denote by F∗ the set of all
elements of F which are stars.

Theorem 4.5.3. Let O be an orientation of S. Then the following are equivalent:

(cl.1) O is an F∗-tangle.

(cl.2) O is an F-tangle.

(cl.3) There exists a hole H with O = OH .

It is easy to see that every orientation OH induced by a hole H is an F-tangle. To prove that,
conversely, every F-tangle is induced by a hole, we use Theorem 4.5.1 and an easy observation
about clique-separators, Lemma 4.5.4 below. The proof that every F∗-tangle is already an
F-tangle, the main content of Lemma 4.5.5 below, is similar to the proof of Lemma 4.4.8, but
some care is needed to keep track of the separators of two crossing separations.

For a set τ ⊆ ~U , let J(τ) :=
⋂

(A,B)∈τ B be the intersection of all the right sides of separations
in τ , where J(∅) := V (G).

Lemma 4.5.4. Let τ be a set of clique separations, J = J(τ) and K ⊆ J . Let a, b ∈ J \ K.
If K separates a and b in G[J ], then it separates them in G.

Proof. We prove this by induction on |τ |, the case τ = ∅ being trivial. Suppose now |τ | > 1 and
let (X,Y ) ∈ τ arbitrary. Put τ ′ := τ \ {(X,Y )} and J ′ := J(τ ′). Note that J = J ′ ∩ Y . Let
G′ := G[J ′] and (X ′, Y ′) := (X ∩ J ′, Y ∩ J ′).

Then K ⊆ J ′ and a, b ∈ J ′ \K. Suppose K did not separate a and b in G′ and let P ⊆ J ′

be an induced a-b-path avoiding K. Since G′[X ′ ∩ Y ′] is a clique, P has at most two vertices
in X ′ ∩ Y ′ and they are consecutive vertices along P . As a, b ∈ Y ′ and (X ′, Y ′) is a separation
of G′, it follows that P ⊆ Y ′. But then K does not separate a and b in J = J ′ ∩ Y , contrary to
our assumption.

Hence K separates a and b in G′. By inductive hypothesis applied to τ ′, it follows that K
separates a and b in G.

Lemma 4.5.5. Every F∗-tangle is an F-tangle and a regular profile.

Proof. Let P be an F∗-tangle. It is clear that P contains no co-small separation, since {(V,A)} ∈
F∗ for every co-small (V,A) ∈ →

S . Since P is consistent, it follows that P is in fact down-closed.

We now show that P is a profile. Let (A,B), (C,D) ∈ P and assume for a contradiction that
(E,F ) := ((A,B) ∨ (C,D))∗ ∈ P . Recall that either C ∩D ⊆ A or C ∩D ⊆ B.
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Figure 4.2: The case C ∩D ⊆ B

Suppose first that C∩D ⊆ B; this case is depicted in Figure 4.2. Let (X,Y ) := (A,B)∧(D,C)
and note that X ∩ Y ⊆ A ∩ B, so that (X,Y ) ∈ →

S . It follows from the consistency of P that
(X,Y ) ∈ P . Let τ := {(C,D), (E,F ), (X,Y )} and observe that τ ⊆ P is a star. However

J(τ) = D ∩ (A ∪ C) ∩ (B ∪ C) = (D ∩B) ∩ (A ∪ C),

which is the separator of (E,F ). Since (E,F ) ∈ →
S , G[J(τ)] is a clique, thereby contradicting

the fact that P is an F∗-tangle.

Suppose now that C ∩ D ⊆ A. Let (X,Y ) := (B,A) ∧ (C,D) and note that X ∩ Y ⊆
A ∩ B, so that (X,Y ) ∈ →

S . Since P is down-closed, it follows that (X,Y ) ∈ P . Therefore
τ := {(A,B), (E,F ), (X,Y )} ⊆ P . But τ is a star and

J(τ) = B ∩ (A ∪ C) ∩ (A ∪D) = B ∩ (A ∪ (C ∩D)) = B ∩A,

and so G[J(τ)] is a clique, which again contradicts our assumption that P is an F∗-tangle. This
contradiction shows that P is indeed a profile.

We now prove that for any τ ⊆ P there exists a star σ ⊆ P with J(σ) = J(τ). It follows
then, in particular, that P is an F-tangle.

Given τ ⊆ P , choose σ ⊆ P with J(σ) = J(τ) so that d(σ), the number of crossing pairs of
elements of σ, is minimum and, subject to this, σ is inclusion-minimal. Then σ is an antichain:
If (A,B) 6 (C,D) and both (A,B), (C,D) ∈ σ, then σ′ := σ \ {(A,B)} satisfies J(σ′) = J(σ),
thus violating the minimality of σ. Since σ ⊆ P and P is consistent, no two elements of σ point
away from each other. Therefore, any two nested elements of σ point towards each other. To
verify that σ is a star, it suffices to check that σ is nested.

Assume for a contradiction that σ contained two crossing separations (A,B) and (C,D).
If (E,F ) := (A,B) ∨ (C,D) ∈ →

S , obtain σ′ from σ by deleting (A,B) and (C,D) and adding
(E,F ). We have seen above that P is a profile, so σ′ ⊆ P . By Lemma 4.3.3, every element
of σ \ {(A,B), (C,D)} that is nested with both (A,B) and (C,D) is also nested with (E,F ).
Since σ′ misses the crossing pair {(A,B), (C,D)}, it follows that d(σ′) < d(σ). But J(σ′) = J(σ),
contradicting the minimality of σ.

Hence it must be that (E,F ) /∈ →
S , so A ∩ B 6⊆ C and C ∩ D 6⊆ A. Therefore (X,Y ) :=

(A,B) ∧ (D,C) ∈ →
S . Let σ′ := (σ \ {(A,B)}) ∪ {(X,Y )}. Note that (X,Y ) 6 (A,B) ∈ P , so

σ′ ⊆ P . Moreover Y ∩D = (B∪C)∩D = B∩D, since C ∩D ⊆ B. Therefore J(σ′) = J(σ). As
mentioned above, any (U,W ) ∈ σ\{(A,B)} that is nested with (A,B) satisfies (A,B) 6 (W,U).
Therefore (X,Y ) 6 (A,B) 6 (W,U), so (X,Y ) is also nested with (U,W ). It follows that
d(σ′) < d(σ), which is a contradiction. This completes the proof that σ is nested and therefore
a star.
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Proof of Theorem 4.5.3. (i) → (ii): See Lemma 4.5.5.
(ii) → (iii): Let O be an F-tangle and J := J(O). We claim that there is a hole H of G

with H ⊆ J . Such a hole then trivially satisfies OH = O.
Assume there was no such hole, so that G[J ] is a chordal graph. Since O is F-avoiding, G[J ]

itself cannot be a clique, so there exists a minimal set K ⊆ J separating two vertices a, b ∈ J \K
in G[J ]. By Theorem 4.5.1, K induces a clique in G. By Lemma 4.5.4, K separates a and b
in G, so there exists a separation (A,B) ∈ →

S with A ∩B = K, a ∈ A \B and b ∈ B \ A. As O
orients

→
S , it must contain one of (A,B), (B,A), say without loss of generality (A,B) ∈ O. But

then J ⊆ B, contrary to a ∈ J . This proves our claim.
(iii) → (i): We have H ⊆ J(OH), so J(O) does not induce a clique. Since every star σ ⊆ O

has J(O) ⊆ J(σ) there is no star σ ⊆ O such that G[J(σ)] is a clique, and so O is F∗-avoiding.
Furthermore, OH is clearly consistent, and so O is an F∗-tangle.

The upshot of Theorem 4.5.3 is that a hole in a graph, although a very concrete substructure,
can be regarded as a tangle. This is in line with our general narrative, set forth e.g. in [52, 39, 40],
that tangles arise naturally in very different contexts, and underlines the expressive strength of
abstract separation systems and tangles.

What does our abstract theory then tell us about the holes in a graph? The results we will
derive are well-known and not particularly deep, but it is nonetheless remarkable that the theory
of abstract separation systems, emanating from the theory of highly connected substructures of
a graph or matroid, is able to express such natural facts about holes.

Firstly, by Lemma 4.5.5, every hole induces a profile of S. Hence Theorem 4.3.1 applies
and yields a nested set N of clique-separations distinguishing all holes which can be separated
by a clique. This is similar to, but not the same as, the decomposition by clique separators
of Tarjan [121]: the algorithm in [121] essentially produces a maximal nested set of clique
separations and leaves ‘atoms’ that do not have any clique separations, whereas our tree set
merely distinguishes the holes and leaves larger pieces that might allow further decomposition.

Secondly, we can apply Theorem 4.2.2 to find the structure dual to the existence of holes. It
is clear that F∗ is standard, since F∗ contains {(V,A)} for every (V,A) ∈ →

S .

Lemma 4.5.6. F∗ is closed under shifting.

Proof. Let (X,Y ) ∈ →
S emulate a non-trivial (U,W ) ∈ →

S with {(W,U)} /∈ F∗, let σ =
{(Ai, Bi) : 0 6 i 6 n} ⊆ →

S with σ ∈ F∗ and (U,W ) 6 (A0, B0). Then

σ′ := σ
(X,Y )
(A0,B0) = {(A0 ∪X,B0 ∩ Y )} ∪ {(Ai ∩ Y,Bi ∪X) : 1 6 i 6 n}.

By Lemma 4.4.1, σ′ ⊆ →
S is a star. We need to show that G[J(σ′)] is a clique. Let (A,B) :=∨

i>1(Ai, Bi) and note that (A,B) 6 (B0, A0), since σ is a star. Then

(B,A) ∧ (V,B0) = (B,B0) ∈ ~U.

But G[B ∩B0] = G[J(σ)] is a clique, so in fact (B,B0) ∈ →
S . Since (U,W ) 6 (A0, B0) 6 (B,A),

we see that (U,W ) 6 (B,B0). As (X,Y ) emulates (U,W ) in
→
S , we find that (E,F ) := (X,Y )∨

(B,B0) ∈ →
S . It thus follows that

J(σ′) = (X ∪B) ∩ (Y ∩B0) = E ∩ F

and so G[J(σ′)] is indeed a clique. Therefore σ′ ∈ F∗.

Theorem 4.5.7. Let G be a graph. Then the following are equivalent:

(cl.1) G has a tree-decomposition in which every part is a clique.
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(cl.2) There exists an S-tree over F∗.

(cl.3) S has no F∗-tangle.

(cl.4) G is chordal.

Proof. (i) → (ii): Let (T,V) be a tree-decomposition of G in which every part is a clique. For
adjacent s, t ∈ T , let Ts,t be the component of T − st containing t and let Vs,t be the union of
all Vu with u ∈ Ts,t. Define α : ~E(T )→ ~U as α(s, t) := (Vt,s, Vs,t). Then α(s, t) = α(t, s)∗. The
separator of α(s, t) is Vs ∩Vt, which is a clique by assumption. Hence (T, α) is in fact an S-tree.
It is easy to see that α(Ft) is a star for every t ∈ T and that J(α(Ft)) = Vt. Therefore (T, α) is
an S-tree over F∗.

(ii) → (i): Given an S-tree (T, α) over F∗, define Vt := J(α(Ft)) for t ∈ T . It is easily
verified that (T,V) is a tree-decomposition of G. Each Vt is then a clique, since α(Ft) ∈ F .

(ii)↔ (iii): Follows from Theorem 4.2.2, since F∗ is standard for
→
S and closed under shifting

by Lemma 4.5.6.

(iii) ↔ (iv): Follows from Theorem 4.5.3.

The equivalence of (i) and (iv) is a well-known characterization of chordal graphs that goes
back to a theorem Gavril [65] which identifies chordal graphs as the intersection graphs of
subtrees of a tree.

4.5.3 Tangle-tree duality in cluster analysis

Let us now apply Theorem 4.2.2 to a generic scenario in cluster analysis [39, 40], where V is
thought of as a data set, S is a set of certain ‘natural’ bipartitions of V, and we are interested in
certain F-tangles as ‘clusters’. The idea is that clusters should be described by these F-tangles
in the same way as the vertex set of a large grid in a graph is captured by the graph tangle τ
it induces: although every oriented separation →s in τ points to most of the vertices of the grid,
the cluster can be ‘fuzzy’ in that these are not the same points for every →s ∈ τ . Indeed, there
need not be a single vertex to which all the →s ∈ τ point.

To mimic this idea, we want to choose F so that, whenever we consider just a few separations
in S, any F-tangle τ of S must orient these so that they all point to at least some m (say) points
in V, while we do not require that the intersection of all the sets B for (A,B) ∈ τ must be large
(or even non-empty).

Formally, then, let ~U be the universe of all oriented bipartitions (A,B) of some non-empty
set V, including (∅, V ) and (V, ∅), with ←s = (B,A) for →s = (A,B) and (A,B) ∧ (C,D) :=
(A ∩C,B ∪D), and let

→
S ⊆ ~U be any submodular separation system in ~U . Let 1 ≤ m ∈ N and

2 ≤ n ∈ N ∪ {∞}. For these m and n, define

Fm :=
{
F ⊆ ~U :

∣∣ ⋂
(A,B)∈F

B
∣∣ < m

}
and

Fnm := {F ∈ Fm : |F | < n }.
There is only one small separation in ~U , the separation (∅, V ). Hence regardless of what S

may be, it has no trivial separation other than (∅, V ). Since {(V, ∅)} ∈ Fnm for all m and n, this
makes Fnm standard for S.

Recall that, for any F ⊆ 2
→
S, we write F∗ for the set of stars in F .

Lemma 4.5.8. Let 1 ≤ m ∈ N and 2 ≤ n ∈ N ∪ {∞}. For F = Fnm, the F∗-tangles of S are
precisely its F-tangles.
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Proof. Since F∗ ⊆ F , it is clear that F-tangles are F∗-tangles. To show the converse, suppose
there is an F∗-tangle τ that fails to be an F-tangle, because it contains some F ∈ F as a subset.

Clearly F ∈ F \F∗, so F contains two crossing separations
→
r and →s . Since

→
S is submodular,

one of their opposite corners
→
r ∧ ←s and →s ∧ ←r lies in

→
S ; let us assume

→
r′ :=

→
r ∧ ←s does. Since

→
r′ ≤ →

r ∈ τ , the consistency of τ implies that
→
r′ lies in τ (rather than its inverse

←
r′). Indeed,

this follows from the definition of consistency if r′ 6= r. But if r′ = r then by
→
r′ ≤ →

r either
→
r′ =

→
r ∈ τ as desired, or

→
r′ <

→
r =

←
r′ with

→
r′ small but

←
r′ ∈ τ . Since (∅, V ) is the only small

separation in
→
S and is in fact trivial, the consistency of τ once more implies that

→
r′ ∈ τ .

Let F ′ be obtained from F by replacing
→
r with

→
r′. Note that

⋂
(A,B)∈F B =

⋂
(A′,B′)∈F ′ B

′

has remained unchanged: although we replaced the set B from
→
r = (A,B) in the first in-

tersection with the bigger set B′ from
→
r′ = (A′, B′) in the second, the additional B′ \ B has

empty intersection with the set D from →s = (C,D), and therefore does not increase the second
intersection. Hence our assumption of F ∈ F = Fnm implies that also F ′ ∈ Fnm = F .

Note that while
→
r and →s crossed,

→
r′ and →s are nested; indeed, {→r′, →s } is a star. Moreover,

replacing an element of this star by a smaller separation will yield another star; in particular,
it cannot result in another pair of crossing separations. This means that iterating the above
uncrossing procedure of replacing in F an element

→
r ∈ τ with a smaller separation

→
r′ ∈ τ in a

way that keeps F in F will end after at most
(|F |

2

)
steps: for every 2-set {→r , →s } ⊆ F we will

consider only once in this iterated process a pair {→r′,→s′} where
→
r′ is either

→
r or a replacement

of
→
r , and

→
s′ is either →s or a replacement of →s .

Since the above process turns every pair of crossing separations from F into a 2-star of
separations, and a set of separations is a star as soon as all its 2-subsets are stars, the set we
turn F into will be a star in F , an element of F∗. As it will also still be a subset of τ , this
contradicts our assumption that τ is an F∗-tangle.

Lemma 4.5.9. Let 1 ≤ m ∈ N and 2 ≤ n ∈ N ∪ {∞}. The set F∗ of stars in F = Fnm is closed
under shifting.

Proof. Suppose that →s ∈ →
S emulates in

→
S some nontrivial

→
r not forced by F . We have to

show that for every star σ ⊆ →
S \ {←r} with σ ∈ F∗ and every →x ∈ σ with →x > →

r we have
σ′ := σ

→s
→x
∈ F∗.

Let →s = (U,W ), and for (A,B) ∈ σ write (A′, B′) ∈ σ′ for the separation that (A,B)
shifts to: if (A,B) = →x then (A′, B′) := (A ∪ U,B ∩ W ), while if (A,B) ∈ σ \ {→x} then
(A′, B′) := (A ∩W,B ∪ U). From these explicit representations of the elements of σ′ it is clear
that ⋂

(A′,B′)∈σ′
B′ =

⋂
(A,B)∈σ

B′ ⊆
⋂

(A,B)∈σ

B ,

since B′ \ B ⊆ U for every (A,B) ∈ σ \ {→x} while U ∩ B′ = ∅ for (A,B) = →x , so that the
overall intersection of all the B′ equals that of all the B. And since these sets did not change,
nor did their cardinality: as σ ∈ F = Fnm we also have σ′ ∈ Fnm = F . By Lemma 4.4.1, this
implies σ′ ∈ F∗ as desired.

Together with Lemmas 4.5.8 and 4.5.9, Theorem 4.2.2 implies our last main theorem:

Theorem 4.5.10. Let
→
S ⊆ ~U be a submodular separation system, let 1 ≤ m ∈ N and 2 ≤ n ∈

N ∪ {∞}, and let F = Fnm. Then exactly one of the following two statements holds:

(cl.1) S has an F-tangle;

(cl.2) There exists an S-tree over F∗.
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4.5.4 Phylogenetic trees from tangles of circle separations

Finally, let us describe an application of Theorem 4.1.1 and Theorem 4.2.3 in biology. Let V
be a set, which we think of as a set of species, or of (possibly unknown) organisms, or of DNA
samples. Our aim is to find their Darwinian ‘tree of life’: a way of dividing V recursively into
ever-smaller subsets so that the leaves of this division tree correspond to the individual elements
of V.

This tree can be formalized by starting with a root node labelled ∅ at level 0, a unique node
labelled V at level 1, and then recursively adding children to each node, labelled A ⊆ V, say,
corresponding to the subsets of A into which A is divided and labelling these children with the
subsets to which they correspond. Furthermore, let us label the edges from level k−1 to k by k.

Every edge e of this tree naturally defines a bipartition of V, to which we assign the label k
of e as it ‘order’. Species that are fundamentally different are then separated by a bipartition of
low order, while closely related but distinct species are only separated by bipartitions of higher
order.

If we draw that tree in the plane, the leaves – and hence V – will be arranged in a circle, C say.
The bipartitions {A,B} of V defined by the edges of the tree are given by circle separations:
A and B are covered by disjoint half-open segments of C whose union is C.

The way in which this tree is found in practice is roughly as follows. One first defines a
metric on V in which species u, v are far apart if they differ in many respects. Then one applies
some clustering algorithm, such as starting with the singletons {v} for v ∈ V as tiny clusters
and then successively amalgamating close clusters (in terms of this distance function) into bigger
ones. The bipartitions of V corresponding to pitching a single cluster against the rest of V will
be nested and can therefore be represented as edge-separations of a tree as above, which is then
output by the algorithm. If we draw the tree in the plane, the bipartitions then become circle
separations of V as earlier.

A known problem with this approach is that, since every cluster found in this process defines
a bipartition of V that ends up corresponding to an edge of the final tree, inaccuracies in the
clustering process immediately affect this tree in an irreversible way. Bryant and Moulton [31]
have suggested a more careful clustering process which produces not necessarily a tree but an
outerplanar graph G on V, together with a set of particularly important bipartitions of V that
are not necessarily nested but are still circle separations of V with respect to the outer face
boundary of G. The task then is to select from the set S of these bipartition a nested subset
that defines the desired phylogenetic tree, or perhaps to generate such a set from S in some
other suitable way such as adding corners of crossing separations already selected.

This is where tangles can help: in a general way, but also in a rather specific way that finds
the desired nested set from a set of circular separations of V.

Let us just briefly indicate the general way in which tangles can be used for finding phyloge-
netic trees in a novel way [39], without the need for any distance-based clustering. As input we
need a collection of subsets of V to be used as similarity criteria, such as the set of species v ∈ V
that can fly or lay eggs, the set of DNA molecules that have base T in position 137, or the set of
those organisms that respond to some test in a certain way. Then we define an order function
on all the bipartitions of V, assigning low order to those bipartitions that do not cut accross
many of our criteria sets so as to split them nearly in half. For example, we might count for
s = {A,B} the number of triples (a, b, c) such that a ∈ A and b ∈ B and both a and b satisfy
(are elements of) the criterion c.

This order function is easily seen to be submodular on the universe ~U of all oriented bi-
partitions of V [40]. For suitable F whose F-tangles are profiles, e.g. the F = Fnm with n > 3
considered in Section 4.5.3, we can then compute the (canonical) tree of tangles as in [48], or an
S-tree over F as in [52, 51] if there are no tangles. In the first case, the tree of tangles for Fn2

92



has a good claim to be the phylogenetic tree for the species in V, see [39].
In the concrete scenario of [31], we further have the following specific application of tangles

as studied in this paper. Let S be the set of circle separations of V, taken with respect to its
circular ordering found by the current algorithm of [31]. We can now define F-tangles on this S
just as we did earlier on the set of all bipartitions of V, and consider the same order function as
earlier.

This order function is not, however, submodular on our restricted set S : this would require
that S is not just a separation system but a universe of separations, i.e., that corner separations
of elements of S are again in S – which is not always the case. In particular, we do not get a
tree-of-tangles theorem for S from [48], or a tangle-tree duality theorem from [52, 51]. 3

However, we do get a tree-of-tangles theorem for S as a corollary of Theorem 4.1.1, and a
tangle-tree duality theorem as a corollary of Theorem 4.2.3. For this we need the following easy
lemma. Let ~U be the universe of all oriented bipartitions of V (see Section 4.5.3), equipped with
any submodular order function under which {∅, V } has order 0. Let S be the set of all circle
separations of V with respect to some fixed cyclic ordering of V.

Lemma 4.5.11. For every k > 0, the set Sk of all circle separations of order < k is submodular.

Proof. Consider two oriented circle separations
→
r = (A,B) and →s = (C,D) of V. Clearly,

→
r ∨ →s

is again a circle separation unless the circle segments representing A and C are disjoint and both
segments that join them on the circle meet V. In that case, however, the union of the segments
representing B and D is the entire circle, so

→
r ∧ →s = (∅, V ), which is a circle separation.

As (∅, V ) has order 0 < k by assumption, and our order function is submodular on the set of
all bipartitions of V, this implies that Sk is submodular: given

→
r , →s ∈ →

Sk, either both
→
r ∨ →s and

→
r ∧ →r are in

→
S and hence one of them is in

→
Sk, or one of them is (∅, V ) or (V, ∅) and therefore

in
→
Sk.

Consider any 1 ≤ m ∈ N and 3 < n ∈ N ∪ {∞}. Let F = Fnm be as defined in Section 4.5.3.
Here is our first tree-of-tangles theorem for circle separations:

Theorem 4.5.12. For every k > 0, the set Sk of circle separations of V of order < k contains
a tree set of separations that distinguishes all the F-tangles of Sk.

Proof. In order to apply Theorem 4.1.1, we have to show that all F-tangles of Sk are abstract
tangles, i.e., that they contain no triple (

→
r , →s ,

→
t ) with

→
r ∨ →s ∨ →t = (V, ∅) (which is the unique

co-small separation in ~U). But any such triple lies in F for the values of m and n we specified,
so no F-tangle of Sk contains it.

Lemma 4.5.11 and Theorem 4.1.1 thus imply the result.

Applying very recent work of Elbracht, Kneip and Teegen [57], we can unify the assertions
of Theorem 4.5.12 over all k, as follows. Let us say that an element s of S distinguishes two
orientations %, τ of subsets of S if these orient s differently, i.e., if s has orientations →s ∈ %
and ←s ∈ τ . If s has minimum order amongst the separations in S that distinguish % from τ ,
we say that s distinguishes % and τ efficiently . Similarly, a set T ⊆ S distinguishes a set T of
orientations of subsets of S efficiently if for every pair of distinct %, τ ∈ T there exists an s ∈ T
that distinguishes % from τ efficiently.

Orientations % and τ as above are called distinguishable if they are distinguished by some
s ∈ S. Note that orientations % of Sk and τ of S` for k ≤ ` are indistinguishable if and only if
% = τ ∩ →

Sk.
Here is our tree-of-tangles theorem for circle separations of mixed order:

3This is not to say that no submodular order function on S exists that returns the sets Sk we are interested
in as sets Sk′ for some other k′. One can indeed construct such a function, but it is neither obvious nor natural.
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Theorem 4.5.13. [57] The set S of all circle separations of V contains a tree set that efficiently
distinguishes all the distinguishable F-tangles of subsets Sk of S.

Elbracht, Kneip and Teegen [57] showed that the tree set in Theorem 4.5.13 can in fact be
chosen canonical , i.e., so that every separation system automorphism (see [44]) of

→
S acts on

→
T

as a set of automorphisms of T .
Finally, our tangle-tree duality theorem for circle separations:

Theorem 4.5.14. For every k > 0, the set Sk of circle separations of V of order < k satisfies
exactly one of the following two assertions:

(cl.1) Sk has an F-tangle;

(cl.2) There exists an Sk-tree over F∗.

Proof. Apply Lemma 4.5.11 and Theorem 4.2.3.
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Chapter 5

Directed path-decompositions

5.1 Introduction

Given a tree T and vertices t1, t2 ∈ V (T ) let us denote by t1Tt2 the unique path in T between
t1 and t2. Given a graph G = (V,E) a tree-decomposition is a pair (T,V) consisting of a tree T ,
together with a collection of subsets of vertices V = {Vt ⊆ V (G) : t ∈ V (T )}, called bags, such
that:

• V (G) =
⋃
t∈T Vt;

• For every edge e ∈ E(G) there is a t such that e lies in Vt;

• Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 ∈ V (t1Tt3).

The width of this tree-decomposition is the quantity max{|Vt| − 1 : t ∈ V (T )} and its
adhesion is max{|Vt∩Vt′ | : (t, t′) ∈ E(T )}. Given a graph G its tree-width tw(G) is the smallest
k such that G has a tree-decomposition of width k. A haven of order k in a graph G is a function
β which maps each set X ⊆ V (G) of fewer than k vertices to some connected component of
G−X such that, for each such X and Y , β(X) and β(Y ) touch. That is, either β(X) and β(Y )
share a vertex, or there is an edge between β(X) and β(Y ). Seymour and Thomas [118] showed
that these two notions are dual to each other, in the following sense:

Theorem 5.1.1 (Seymour and Thomas). A graph has tree-width > k − 1 if and only if it has
a haven of order > k.

When T is a path we say that (T,V) is a path-decomposition and the path-width pw(G) of a
graph G is the smallest k such that G has a path-decomposition of width k. Whilst the path-
width of a graph is clearly an upper bound for its tree-width, these parameters can be arbitrarily
far apart. Bienstock, Robertson, Seymour and Thomas [21] showed that, as for tree-width, there
is a structure like a haven, called a blockage of order k, such that the path-width of a graph is
equal to the order of the largest blockage.

Explicitly, for any subset X of vertices in a graph G let us write ∂(X) for the set of v ∈ X
which have a neighbour in V (G) − X. Two subsets X1, X2 ⊆ V (G) are complementary if
X1 ∪X2 = V (G) and ∂(X1) ⊆ X2 (or, equivalently, ∂(X2) ⊆ X1). A blockage of order k is a set
B such that:

• each X ∈ B is a subset of V (G) with |∂(X)| 6 k;

• if X ∈ B, Y ⊆ X and |∂(Y )| 6 k, then Y ∈ B;
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• if X1 and X2 are complementary and |X1 ∩ X2| 6 k, then B contains exactly one of X1

and X2.

Theorem 5.1.2 (Bienstock, Robertson, Seymour and Thomas). A graph has path-width > k if
and only if it has a blockage of order > k.

The authors used the theorem to show the following result.

Theorem 5.1.3 (Bienstock, Robertson, Seymour and Thomas). For every forest F , every graph
with pathwidth > |V (F )| − 1 has a minor isomorphic to F .

In particular, since large binary trees have large path-width, it is a simple corollary of this
result that if X is a graph, then the tree-width of graphs in

Forb4(X) := {G : X is not a minor of G}

is bounded if and only if X is a forest. A more direct proof of this fact, without reference to
blockages, was later given by Diestel [41].

There have been numerous suggestions as to the best way to extend the concept of tree-width
to digraphs. For example, directed tree-width [83, 82, 107], D-width [116], Kelly width [81] or
DAG-width [105, 20]. In some of these cases generalizations of Theorem 5.1.1 have been studied,
the hope being to find some structure in the graph whose existence is equivalent to having large
‘width’. However these results have either not given an exact equivalence [83, Theorem 3.3], or
only apply to certain classes of digraphs [116, Corollary 3].

In contrast, if we wish to decompose a digraph in a way that the model digraph is a directed
path, it is perhaps clearer what a sensible notion of a ‘directed path-decomposition’ should be.
The following definition appears in Barát [16] and is attributed to Robertson, Seymour and
Thomas. We note that it agrees with the definition of a DAG-decomposition, in the case where
the DAG is a directed path.

Given a digraph D a directed path-decomposition is a pair (P,V) consisting of a path P , say
with V (P ) = {t1, t2, . . . , tn}, together with a collection of subsets of vertices V = {Vi ⊆ V (D) :
i ∈ [n]} such that:

• V (D) =
⋃
t∈V (P ) Vt;

• if i < j < k, then Vi ∩ Vk ⊆ Vj ;

• for every edge e = (x, y) ∈ E(D) there exists i 6 j such x ∈ Vi and y ∈ Vj .

The width of a directed path-decomposition is max{|Vi| − 1 : i ∈ [n]} and its adhesion is
max{|Vi∩Vi+1| : i ∈ [n− 1]}. Given a digraph D its directed path-width dpw(D) is the smallest
k such that D has a directed path-decomposition of width k.

Motivated by Theorem 5.1.2, Barát [16] defined a notion of a blockage in a digraph and
showed that if the directed path width is at most k − 1 then there is no ‘blockage of order k’.
However he suggested that it was unlikely that the existence of such a ‘blockage of order k’
was equivalent to having directed path-width at least k, at least for this particular notion of a
blockage.

One of the problems with working with digraphs is that many of the tools developed for
the theory of tree-decompositions of graphs do not work for digraphs. However, we noticed
that in the case of directed path-decompositions some of the most fundamental tools do work
almost exactly as in the undirected case. More precisely, Bellenbaum and Diestel [17] explicitly
extracted a lemma from the work of Thomas [124], and used it to give short proofs of two
theorems: The first, Theorem 5.1.1, and the second a theorem of Thomas on the existence of
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linked tree-decompositions. In [85] Kim and Seymour prove a similar theorem on the existence
of linked directed path-decompositions for semi-complete digraphs. Their proof uses a tool
analogous to the key lemma of Bellenbaum and Diestel.

This suggested that perhaps a proof of Theorem 5.1.2 could be adapted, to give an analogue
for directed path-width. Indeed, in this paper we show that this is the case. Influenced by ideas
from [51, 52] and [6] we will define a notion of diblockage1 in terms of orientations of the set of
directed separations of a digraph. We will use generalizations of ideas and tools developed by
Diestel and Oum [51, 52] to prove the following.

Theorem 5.1.4. A digraph has directed path-width > k− 1 if and only if it has a diblockage of
order > k.

We also use these ideas to give a result in the spirit of Theorem 5.1.3. An arborescence is a
digraph in which there is a unique vertex u, called the root, such that for every other vertex v
there is exactly one directed walk from u to v. Equivalently, an arborescence is formed by taking
a rooted tree T and orienting each edge in the tree away from the root. A forest of arborescences
is a digraph in which each component is an arborescence. There is a generalisation of the notion
of a minor to digraphs called a butterfly minor, whose precise definition we will defer until
Section 5.4.

Theorem 5.1.5. For every forest of arborescences F , every digraph D with directed path-width
> |V (F )| − 1 has a butterfly minor isomorphic to F .

Kim and Seymour [85] considered the following property of a directed path-decomposition
(P,V):

If |Vk| > t for every i 6 k 6 j, then there exists a collection of t

vertex-disjoint directed paths from Vj to Vi.

A directed path-decomposition (P,V) satisfying this condition is said to be linked. Kim and
Seymour showed that every semi-complete digraph D has a linked directed path-decomposition
of width dpw(D) satisfying the above condition. We prove a slight generalisation of this, which
in particular extends the result of Kim and Seymour to arbitrary digraphs.

Theorem 5.1.6. Every digraph D has a linked directed path-decomposition of width dpw(D).

The paper is structured as follows. In Section 5.2 we define directed path-decompositions
and introduce our main tool of shifting. In section 5.3 we define our notion of a directed blockage
and prove Theorem 5.1.4. In Section 5.4 we prove Theorem 5.1.5. Finally, in Section 5.5 we
discuss linked directed path-decompositions and prove Theorem 5.1.6.

5.2 Directed path-decompositions

Following the ideas of Diestel and Oum [51] it will be more convenient for us to rephrase the
definition of a directed path-decomposition in terms of directed separations. Given a digraph
D = (V,E), a pair (A,B) of subsets of V is a directed separation if A ∪ B = V and there is no
edge (x, y) ∈ E with x ∈ B \ A and y ∈ A \ B. Equivalently, every directed path which starts
in B and ends in A must meet A ∩B.

For brevity, since in this paper we usually be considering digraphs, when the context is clear
we will refer to directed separations simply as separations. The order of a separation (A,B),

1A precise definition will be given in Section 5.2.
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which we will denote by |A,B|, is |A ∩ B| and we will write
−→
S k for the set of separations of

order < k and define
−→
S :=

⋃
k

−→
S k.

We define a partial order on
−→
S by

(A,B) 6 (C,D) if and only if A ⊆ C and B ⊇ D.
We will also define two operations ∧ and ∨ such that, for (A,B), (C,D) ∈ −→S

(A,B) ∧ (C,D) = (A ∩ C,B ∪D) and (A,B) ∨ (C,D) = (A ∪ C,B ∩D).

Lemma 5.2.1. If (A,B) and (C,D) are separations then so are (A,B) ∧ (C,D) and (A,B) ∨
(C,D).

Proof. Let us prove the claim for (A,B)∧(C,D), the proof for (A,B)∨(C,D) is similar. Firstly,
since A ∪B = V and C ∪D = V it follows that

(A ∩ C) ∪ (B ∪D) = (A ∪B ∪D) ∩ (C ∪B ∪D) = V ∩ V = V.

Secondly, let (x, y) ∈ E with y ∈ (A ∩ C) \ (B ∪D). Then, y ∈ A \ B and y ∈ C \D and
so, since (A,B) and (C,D) are separations, it follows that x 6∈ B \ A and x 6∈ D \ C. Hence,
x 6∈ (B ∪D) \ (A ∩ C) and so (A ∩ C,B ∪D) is a separation.

Given some subset
−→
S ′ ⊆ −→S , we define an

−→
S ′-path to be a pair (P, α) where P is a path with

vertex set V (P ) = {t1, t2, . . . tn} and α : E(P ) → −→S ′ is such that if 1 6 i < j 6 n − 1 then
α(ti, ti+1) 6 α(tj , tj+1). Note that, if we consider P as a directed path, with edges (ti, ti+1) for
each i, then α preserves the natural order on the edges of P . In this way we can view this notion
as a generalisation of the S-trees of Diestel and Oum [51].

We claim that, if (P,V) is a directed path-decomposition then for every 1 6 i 6 n − 1 the
following is a separation

(
⋃
j6i

Vj ,
⋃

j>i+1

Vj).

Indeed, by definition
⋃
` V` = V (D) and if (x, y) were an edge from

⋃
j>i+1 Vj \

⋃
j6i Vj to⋃

j6i Vj \
⋃
j>i+1 Vj then clearly there could be no ` < `′ with x ∈ V` and y ∈ V`′ . In this way

(P,V) gives an
−→
S -path by letting

α(ti, ti+1) = (
⋃
j6i

Vj ,
⋃

j>i+1

Vj).

Conversely, if (P, α) is an
−→
S -path let us write (Ai, Bi) := α(ti, ti+1), and let B0 = V = An+1.

Note that, if i < j then (Ai, Bi) 6 (Aj , Bj) and so Ai ⊆ Aj and Bi ⊇ Bj .
Lemma 5.2.2. Let (P, α) be an

−→
S -path and Ai, Bi be as above. For 1 6 i 6 n let Vi = Ai∩Bi−1.

Then (P,V) is a directed path-decomposition.

Proof. Firstly, we claim that for 1 6 j 6 n− 1,
⋃j
i=1 Vi = Aj . Indeed, V1 = A1 ∩B0 = A1 and,

if the claim holds for j − 1 then

j⋃
i=1

Vi = Ai−1 ∪ Vi = Ai−1 ∪ (Ai ∩Bi−1) = Ai,

since Ai−1 ∪Bi−1 = V and Ai−1 ⊆ Ai. As we will use it later, we note that a similar argument
shows that

⋃n
i=j Vi = Bj−1. Hence,

n⋃
i=1

Vi = An−1 ∪ Vn = An−1 ∪ (An ∩Bn−1) = An−1 ∪Bn−1 = V.
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Next, suppose that i < j < k. We can write

Vi ∩ Vk = (Ai ∩Bi−1) ∩ (Ak ∩Bk−1).

Since (Ai, Bi) 6 (Aj , Bj), it follows that Ai ⊆ Aj and since (Aj−1, Bj−1) 6 (Ak−1, Bk−1) and so
Bk−1 ⊆ Bj−1. Hence

Vi ∩ Vk = (Ai ∩Bi−1) ∩ (Ak ∩Bk−1) ⊆ Aj ∩Bj−1 = Vj .

Finally, suppose for a contradiction there is some edge (x, y) such that there is no i 6 j with
x ∈ Vi and y ∈ Vj . Since

⋃
Vi = V there must be i > j with x ∈ Vi and y ∈ Vj . Pick such a

pair with i minimal. It follows that x ∈ Vi \
⋃i−1
k=1 Vk = (Ai ∩Bi−1) \Ai−1 ⊆ Bi−1 \Ai−1 by the

previous claim. Also, y ∈ Vj \
⋃
k>i Vk = (Aj ∩ Bj−1) \ Bi−1 ⊆ Ai−1 \ Bi−1 since Aj ⊆ Ai−1.

However, this contradicts the fact that (Ai−1, Bi−1) is a separation.

In this way the two notions are equivalent. We say that the width of an
−→
S -path (P, α) is

the width of the path-decomposition (P,V) given by Vi = Ai ∩Bi−1. The following observation
will be useful.

Lemma 5.2.3. If (P, α) is an
−→
S -path of width < k − 1 with α(ti, ti+1) = (Ai, Bi) and B0 =

V = An, then

• (P, α) is an
−→
S k-path;

• (Ai, Bi−1) ∈ −→S k for each 1 6 i 6 n.

Proof. For the first we note that, since (Ai−1, Bi−1) 6 (Ai, Bi), it follows that Bi−1 ⊇ Bi and
hence

|Ai, Bi| = |Ai ∩Bi| 6 |Ai ∩Bi−1| < k.

For the second, note that, since Ai−1 ⊆ Ai, Bi−1\Ai ⊆ Bi−1\Ai−1, and since Ai−1∪Bi−1 = V ,
Ai\Bi−1 ⊆ Ai−1\Bi−1. Hence, there is no edge from Bi−1\Ai to Ai\Bi−1 and so (Ai, Bi−1) ∈ −→S .
Finally, since |Ai ∩Bi−1| < k, (Ai, Bi−1) ∈ −→S k.

5.2.1 Shifting an
−→
S k-path

One of the benefits of thinking of a directed path-decomposition in terms of the separations it
induces, rather than the bags, is that it allows one to easily describe some of the operations that
one normally performs on tree-decompositions.

Given an
−→
S -path (P, α) with V (P ) = {t1, . . . , tn}, let us write α(ti, ti+1) = (Ai, Bi). We call

(A1, B1) the initial leaf separation of (P, α) and (An−1, Bn−1) the terminal leaf separation. It will
be useful to have an operation which transforms an

−→
S -path into one with a given initial/terminal

leaf separation.

Let (P, α) be as above and let (Ai, Bi) 6 (X,Y ) ∈ −→S . The up-shift of (P, α) onto (X,Y )
with respect to (Ai, Bi) is the

−→
S -path (P ′, α′) where V (P ′) = {t′i, t′i+1, . . . , t

′
n} and α′ is given by

α′(t′j , t
′
j+1) := (Aj , Bj) ∨ (X,Y ) = (Aj ∪X,Bj ∩ Y ).

It is simple to check that, if i 6 j < k 6 n− 1 then α′(t′j , t
′
j + 1) 6 α′(t′k, t

′
k+1), and so (P ′, α′) is

an
−→
S -path. We note that the initial leaf separation of (P ′, α′) is α′(t′i, t

′
i+1) = (Ai, Bi)∨(X,Y ) =

(X,Y )
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Similarly if (X,Y ) 6 (Ai, Bi) the down-shift of (P, α) onto (X,Y ) with respect to (Ai, Bi) is
the
−→
S -path (P ′, α′) where V (P ′) = {t′1, t′2, . . . , t′i+1} and α′ is given by

α′(t′j , t
′
j+1) := (Aj , Bj) ∧ (X,Y ) = (Aj ∩X,Bj ∪ Y ).

We note that the terminal leaf separation of (P ′, α′) is α′(t′i, t
′
i+1) = (Ai, Bi)∧ (X,Y ) = (X,Y ).

If (P, α) is an
−→
S k-path and (P ′, α′) is an up/down-shift of (P, α) then, whilst (P ′, α′) is an−→

S -path, it is not always the case that it will also be an
−→
S k-path, since the order of some of

the separations could increase. We note that if (A,B) and (C,D) are separations then ∧ and ∨
satisfy the following equality

|A,B|+ |C,D| = |A ∪ C,B ∩D|+ |A ∩ C,B ∪D|. (5.2.1)

Given a pair of separations (A,B) 6 (C,D) ∈ −→S let us denote by

λ
(
(A,B), (C,D)

)
:= min{|X,Y | : (X,Y ) ∈ −→S and (A,B) 6 (X,Y ) 6 (C,D)}.

We say that (X,Y ) is up-linked to (A,B) if (A,B) 6 (X,Y ) and |X,Y | = λ
(
(A,B), (X,Y )

)
.

Similarly (X,Y ) is down-linked to (A,B) if (X,Y ) 6 (A,B) and |X,Y | = λ
(
(X,Y ), (A,B)

)
.

Lemma 5.2.4. Let (P, α) be an
−→
S k-path with V (P ) = {t1, t2, . . . , tn}, with α(tj , tj+1) = (Aj , Bj)

for each j. If (X,Y ) is up-linked to (Ai, Bi) then the up-shift of (P, α) onto (X,Y ) with respect
to (Ai, Bi) is an

−→
S k-path and if (X,Y ) is down-linked to (Ai, Bi) then the down-shift of (P, α)

onto (X,Y ) with respect to (Ai, Bi) is an
−→
S k-path.

Proof. By the discussion above it is clear that both are
−→
S -paths, so it remains to show that the

set of separations in the paths lie in
−→
S k. We will show the first claim, the proof of the second

follows along similar lines. Let (P ′, α′) be the up-shift of (P, α) onto (X,Y ) with respect to
(Ai, Bi), with P ′ = {t′i, t′i+1, . . . , t

′
n}.

Let i 6 j 6 n− 1. We wish to show that α′(t′j , t
′
j+1) = (Aj ∪X,Bj ∩ Y ) is in

−→
S k. We note

that since (Ai, Bi) 6 (Aj , Bj) and (Ai, Bi) 6 (X,Y ), it follows that

(Ai, Bi) 6 (Aj ∩X,Bj ∪ Y ) 6 (X,Y )

and so, since (X,Y ) is up-linked to (Ai, Bi),

|Aj ∩X,Bj ∪ Y | > |X,Y |.

Therefore, by (5.2.1),

|Aj ∪X,Bj ∩ Y | 6 |Aj , Bj | < k.

Hence α′(t′j , t
′
j+1) = (Aj ∪X,Bj ∩ Y ) ∈ −→S k.

Recall that the width of an
−→
S -path (P, α) is max16i6n |Ai ∩ Bi−1| − 1. We would like to

claim that, apart from the bag at the initial leaf in an up-shift, or the bag at the terminal leaf
in a down-shift, shifting does not increase the size of the bags.

Again, this will not be true for general shifts however, if the assumptions of Lemma 5.2.4
hold, then it will hold. The proof of the fact follows the proof of [52, Lemma 6.1], which itself
plays the role of the key lemma of Thomas from [17]. The fact that this lemma remains true for
directed path decompositions is what allows us to prove our Theorems 5.1.4 and 5.1.6.
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Lemma 5.2.5. Let (P, α) be an
−→
S k-path with V (P ) = {t1, t2, . . . , tn}, let α(tj , tj+1) = (Aj , Bj)

for each j, and let B0 = V = An. Let ωj = |Aj ∩Bj−1| be the size of the bags for each j, and let
i ∈ [n] be fixed. Suppose that (X,Y ) is up-linked to (Ai, Bi) and (P ′, α′) is the up-shift of (P, α)
onto (X,Y ) with respect to (Ai, Bi), with α′(t′j , t

′
j+1) = (A′j , B

′
j) for each j, and B′i−1 = V = A′n.

If ω′j = |A′j ∩B′j−1|, then for each i+ 1 6 j 6 n, ω′j 6 ωj.
Similarly, suppose that (X,Y ) is down-linked to (Ai, Bi) and (P ′, α′) is the down-shift of

(P, α) onto (X,Y ) with respect to (Ai, Bi), with α′(t′j , t
′
j+1) = (A′j , B

′
j) for each j, and B′0 =

V = A′i+1. If ω′j = |A′j ∩B′j−1|, then for each 1 6 j 6 i, ω′j 6 ωj.

Proof. Again, we will just prove the first statement, as the proof of the second is analogous.
Recall that (A′j , B

′
j) = (Aj ∪X,Bj ∩ Y ) for each i 6 j 6 n. Hence, for i+ 1 6 j 6 n

ω′j = |(Aj ∪X) ∩ (Bj−1 ∩ Y )| = |Aj ∪X,Bj−1 ∩ Y |.

Here we have used the fact that (Aj , Bj−1) is a separation, by Lemma 5.2.3, to deduce that
(Aj ∪X,Bj−1 ∩ Y ) is also a separation.

Now, since (Ai, Bi) 6 (Aj−1, Bj−1) 6 (Aj , Bj), it follows that (Ai, Bi) 6 (Aj , Bj−1). There-
fore, since also (Ai, Bi) 6 (X,Y ),

(Ai, Bi) 6 (Aj ∩X,Bj−1 ∪ Y ) 6 (X,Y ).

Hence, since (X,Y ) is up-linked to (Ai, Bi),

|Aj ∩X,Bj−1 ∪ Y | > |X,Y |.

Therefore, by (5.2.1),

ω′j = |Aj ∪X,Bj−1 ∩ Y | 6 |Aj , Bj−1| = ωj .

5.3 ω-Diblockages

In [52] the structures which are dual to the existence of S-trees are defined as orientations of
the set of separations in a graph. That is a subset of the separations which, for each separation
given by an unordered pair {A,B}, contains exactly one of (A,B) or (B,A). Heuristically, one
can think of these orientations as choosing, for each separation {A,B} one of the two sides A
or B to designate as ‘large’. This idea generalises in some way the concept of tangles introduce
by Robertson and Seymour [110].

In our case, since the directed separations we consider already have a defined ‘direction’, we
will define an orientation of the set of directed separations to be just a bipartition of the set of
directed separations. However we will still think of a bipartition

−→
S k = O+∪̇O− as designating

for each directed separation (A,B) ∈ −→S k one side as being ‘large‘, the side B when (A,B) ∈ O+

and the side A when (A,B) ∈ O−. Our notion of a directed blockage will then be defined as
some way to make these choices for each (A,B) ∈ −→S k in a consistent manner.

Let us make the preceding discussion more explicit. We define a partial orientation of
−→
S k

to be a pair of disjoint subsets O = (O+,O−) such that O+,O− ⊆ −→S k. A partial orientation is
an orientation if O+∪̇O− =

−→
S k. Given a partial orientation P of

−→
S k let us write

−→
S P =

−→
S k \ (P+ ∪ P−).

We say a partial orientation P = (P+,P−) is consistent if

101



• if (A,B) ∈ P+, (A,B) > (C,D) ∈ −→S k then (C,D) ∈ P+;

• if (A,B) ∈ P−, (A,B) 6 (C,D) ∈ −→S k then (C,D) ∈ P−.

In the language of the preceeding discussion this formalises the intuitive idea that if B is the
large side of (A,B) and B ⊆ D then D should be the large side of (C,D) and similarly if A is
the large side of (A,B) and A ⊇ C then C should be the large side of (C,D).

An orientation O extends a partial orientation P if P+ ⊆ O+ and P− ⊆ O−. Given ω > k,
let us define Pω = (P+

ω ,P−ω ) by

P+
ω = {(A,B) ∈ −→S k : |A| < ω} and P−ω = {(A,B) ∈ −→S k : |B| < ω}.

In order to ensure that P+
ω ∩ P−ω = ∅, and so Pω is a partial orientation, we will insist that the

digraph D we are considering has at least 2ω − k many vertices.

An ω-diblockage (of
−→
S k) is an orientation O = (O+ ∪ O−) of

−→
S k such that:

• O extends Pω;

• O is consistent;

• if (A,B) ∈ O+ and (A,B) 6 (C,D) ∈ O− then |B ∩ C| > ω.

We will show, for ω > k, a duality between the existence of an
−→
S k-path of width < ω−1 and

that of an ω-diblockage of
−→
S k. In the language of tree-decompositions, an

−→
S k-path of width

< ω − 1 is a directed path-decomposition of width < ω − 1 in which all the adhesion sets have
size < k, where the adhesion sets in a tree-decomposition (T,V) are the sets {Vt ∩ Vt′ : (t, t′) ∈
E(T )}. Tree-decompositions of undirected graphs with adhesion sets of bounded size have been
considered by Diestel and Oum [52] and Geelen and Joeris [66].

We require one more definition for the proof. Given a partial orientation P of
−→
S k and ω > k,

we say that an
−→
S k-path (P, α) with V (P ) = {t1, . . . , tn} and α(tj , tj+1) = (Aj , Bj) for each j is

(ω,P)-admissable if

• for each 2 6 i 6 n− 1, ωi := |Ai ∩Bi−1| < ω;

• (A1, B1) ∈ P+ ∪ P+
ω ;

• (An−1, Bn−1) ∈ P− ∪ P−ω ;

When ω = k we call an ω-diblockage of
−→
S k a diblockage of order k. In this way, when ω = k

the following theorem implies Theorem 5.1.4.

Theorem 5.3.1. Let ω > k ∈ N and let D = (V,E) be a digraph with |V | > 2ω − k. Then
exactly one of the following holds:

• D has an
−→
S k-path of width < ω − 1;

• There is an ω-diblockage of
−→
S k.

Proof. We will instead prove a stronger statement. We claim that for every consistent partial
orientation P of

−→
S k which extends Pω exactly one of the following holds:

• either there exists an (ω,P)-admissable
−→
S k-path; or

• there is an ω-diblockage of
−→
S k extending P.
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Note that, Pω is a consistent partial orientation of
−→
S k which extends Pω, and an (ω,Pω)-

admissable
−→
S k-path is an

−→
S k-path of width < ω−1. Hence the theorem follows from the above

claim applied to P = Pω.

Let us first show that both cannot happen. Suppose for contradiction that there exists an
(ω,P)-admissable

−→
S k-path (P, α) with V (P ) = {t1, . . . , tn}, α(ti, ti+1) = (Ai, Bi) for each i and

an ω-diblockage O of
−→
S k extending P.

Since O extends P, and (P, α) is (ω,P)-admissable, it follows that (A1, B1) ∈ P+∪P+
ω ⊆ O+

and (An−1, Bn−1) ∈ P− ∪ P−ω ⊆ O−. Let j = max{t : (At, Bt) ∈ O+}. By the previous
statement, 1 6 j < n−1, and so, since O is an orientation of

−→
S k, (Aj+1, Bj+1) ∈ O−. However,

|Aj+1 ∩Bj | < ω, contradicting the assumption that O is an ω-diblockage of
−→
S k.

We will prove the statement by induction on |−→S P |. Suppose that |−→S P | = 0, in which case
P is a consistent orientation of

−→
S k. Suppose that P is not an ω-diblockage. Since P+

ω ⊆ P+

and P−ω ⊆ P− there must exist a pair (A,B) 6 (C,D) with (A,B) ∈ P+, (C,D) ∈ P−
and |B ∩ C| < ω. Then, we can then form an (ω,P)-admissable

−→
S k-path as follows: Let

P = {v1, v2, v3} and let α(v1, v2) = (A,B) and α(v2, v3) = (C,D). It is a simple check that
(P, α) is a P-admissable

−→
S k-tree.

So, let us suppose that |−→S P | > 0, and that there is no ω-diblockage O of
−→
S k extending P.

There exists some separation (A,B) ∈ −→S k \ (P+ ∪P−). Let us choose (C,D) 6 (A,B) minimal
with (C,D) ∈ −→S k \ (P+ ∪ P−) and (A,B) 6 (E,F ) maximal with (E,F ) ∈ −→S k \ (P+ ∪ P−).

We claim that P1 = (P+ ∪ (C,D),P−) and P2 = (P+,P− ∪ (E,F )) are both consistent
partial orientations of

−→
S k. Indeed, by minimality of (C,D) every separation (U, V ) < (C,D)

is in P+ ∪ P− and since (U, V ) < (C,D) 6∈ P+ ∪ P− by the consistency of P it follows that
(U, V ) ∈ P+. Similarly (U, V ) ∈ P− for all (E,F ) < (U, V ). Hence both P1 and P2 are
consistent partial orientations of

−→
S k. Furthermore |−→S P1 |, |

−→
S P2 | < |

−→
S P |. Therefore, we can

apply the induction hypothesis to both P1 and P2.

Since an ω-diblockage of
−→
S k extending P1 or P2 also extends P, we may assume that there

exists an (ω,P1)-admissable
−→
S k-path (P1, α1) and an (ω,P2)-admissable

−→
S k-path (P2, α2). Fur-

thermore, we may assume that they are not (ω,P)-admissable, and so the initial leaf separation
of (P1, α1) is (C,D) and the terminal leaf separation of (P2, α2) is (E,F ). Let us pick a sep-
aration (C,D) 6 (X,Y ) 6 (E,F ) such that |X,Y | = λ

(
(C,D), (E,F )

)
. Note that, (X,Y ) is

up-linked to (C,D) and down-linked to (E,F ).

Let (P ′1, α
′
1) be the up-shift of (P1, α1) onto (X,Y ) and let (P ′2, α

′
2) be the down-shift of

(P2, α2) onto (X,Y ). Note that the initial leaf separation of (P ′1, α
′
1) and the terminal leaf

separation of (P ′2, α
′
2) are both (X,Y ). We form (P̂ , α̂) by taking P̂ to be the path formed by

identifying the terminal leaf of P ′2 with the initial leaf of P ′1, with α̂ defined to be α′1 on P ′1 and
α′2 on P ′2. We claim that (P̂ , α̂) is a P-admissable

−→
S k-path. Let us write V (P̂ ) = {t̂1, t̂2, . . . , t̂n̂},

with α̂(t̂j , t̂j+1) = (Âj , B̂j) for each j and B̂0 = Ân̂ = V (D).

For each j 6= 1, n̂, the bag Âj ∩ B̂j−1 is the shift of some non-leaf bag in (P1, α1) or (P2, α2).
Since these were (ω,P1) and (ω,P2)-admissable respectively, the size of the bag was less than
ω. Therefore, since (X,Y ) is up-linked to (C,D) and down-linked to (E,F ), by Lemma 5.2.5
|Âj ∩ B̂j−1| 6 ω.

Finally, consider the separations (Â1, B̂1) and (Ân̂−1, B̂n̂−1). If we denote by (U, V ) the
initial leaf separation in (P2, α2) then (U, V ) ∈ P+ ∪ P+

0 , since (P2, α2) is (ω,P2)-admissable.
Then, (Â1, B̂1) = (U, V ) ∧ (X,Y ) 6 (U, V ). We note that, since P is consistent, P+ is down-
closed, as is P+

0 by inspection, and so it follows that (Â1, B̂1) ∈ P+ ∪ P+
0 . A similar argument

shows that (Ân̂−1, B̂n̂−1) ∈ P− ∪ P−0 .

103



5.4 Finding an arborescence as a butterfly minor

In directed graphs, it is not clear what the best way to generalise the minor operation from
undirected graphs. One suggestion (see for example Johnson, Robertson and Seymour [83]),
is that of butterfly minors. We say an edge e = (u, v) in a digraph D is contractible if either
d−(v) = 1 or d+(u) = 1 where d− and d+ are the in- and out-degree respectively. We say a
digraph D′ is a butterfly minor of D, which we write D′ 4 D, if D′ can be obtained from D by
a sequence of vertex deletions, edge deletions and contractions of contractible edges.

We say an
−→
S -path (P, α) with V (P ) = {t1, t2, . . . , tn} and α(ti, ti+1) = (Ai, Bi) is a partial−→

S -path of width < k if for each 2 6 i 6 n − 1, ωi := |Ai ∩ Bi−1| 6 k and ωn = |Bn−1| 6 k.
That is, it is a path-decomposition in which each bag except the first has size 6 k. Note that a
partial

−→
S -path of width < k is necessarily an

−→
S k+1-path.

Let
−→
S ′k+1 ⊆

−→
S be the set of (A,B) such that (A,B) = α(t1, t2) for some partial

−→
S -path of

width < k. Note that, since the second bag in a partial
−→
S -path of width < k has size at most

k, it follows that |A,B| 6 k and hence
−→
S ′k+1 ⊆

−→
S k+1.

Theorem 5.1.5. For every forest of arborescences F , every digraph D with directed path-width
> |V (F )| − 1 has a butterfly minor isomorphic to F .

Proof. We may assume without loss of generality that F is in fact an arborescence. Therefore,
every vertex in F apart from the root v0 has exactly one in-neighbour, and there is some ordering
of the vertices V (F ) = v0, v1, . . . , vn such that every vi has no in-neighbours in {vi+1, . . . , vn}.
Furthermore, without loss of generality we may assume that the digraph D is weakly connected.

Let us define (C0, D0) to be a 6-minimal separation of D such that:

• |C0, D0| = 0;

• (C0, D0) ∈ −→S ′n+1.

Note that, since (P, α) with V (P ) = {t1, t2} and α(t1, t2) = (V, ∅) is a partial
−→
S -path of width

< n, at least once such separation exists. Let x0
0 ∈ C0 \D0, which is non-empty as dpw(D) > n.

We shall construct inductively xii and (Ci, Di) for 1 6 i 6 n where (Ci, Di) is a 6-minimal
separation satisfying the following properties:

• (Ci, Di) 6 (Ci−1, Di−1 ∪ {xi−1
i−1}) 6 (Ci−1, Di−1);

• |Ci, Di| = i;

• (Ci, Di) ∈
−→
S ′n+1.

Furthermore, we can label Ci ∩ Di = {xi0, . . . , xii−1} such that there exists a family of vertex
disjoint paths {P ij : j 6 i−1} such that P ij is a path from xi−1

j to xij paths P ij for each j. Finally,
there is some xii ∈ Ci \ Di such that if vi ∈ F has an in-neighbour vk(i) then there is an edge
(xik(i), x

i
i) ∈ E(D).

Suppose we have constructed xi−1
i−1 and (Ci−1, Di−1). Since (Ci−1, Di−1) ∈ −→S ′n+1 there is a

partial
−→
S -path (P, α) of width < n with V (P ) = {t1, . . . , tm} such that α(t1, t2) = (Ci−1, Di−1).

We can then form a partial
−→
S -path (P ′, α′) by letting P ′ be a path with V (P ′) = {t0, t1, . . . , tm},

α′(t0, t1) = (Ci−1, Di−1 ∪ {xi−1
i−1}) and α′ = α on P .

Since i 6 n, it is clear that this is a partial
−→
S -path of width < n, and so (Ci−1, Di−1 ∪

{xi−1
i−1}) ∈

−→
S ′n+1. Therefore, the set of separations satisfying the properties is non-empty, and

so there is some 6-minimal element (Ci, Di) which satisfies the three properties.
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We claim that λ((Ci, Di), (Ci−1, Di−1 ∪ {xi−1
i−1})) = i. Indeed, suppose for contradiction

there exists (Ci, Di) < (X,Y ) < (Ci−1, Di−1 ∪ {xi−1
i−1}) with |X,Y | = λ((Ci, Di), (Ci−1, Di−1 ∪

{xi−1
i−1})) < i. Note that, since |Ci, Di| = |Ci−1, Di−1 ∪ {xi−1

i−1}| = i, the inequalities are strict.

By assumption, there is a partial
−→
S -path (P, α) of width < n with initial leaf separation

(Ci, Di). By construction (X,Y ) is up-linked to (Ci, Di), and so by Lemma 5.2.5 the up-shift
of (P, α) onto (X,Y ) with respect to (Ci, Di) is a partial

−→
S -path of width < n with initial leaf

separation (X,Y ). Hence (X,Y ) ∈ −→S ′n+1.

However, |X,Y | := ` < i and (X,Y ) < (Ci−1, Di−1) 6 (C`, D`), contradicting the minimality
of (C`, D`). Therefore λ((Ci, Di), (Ci−1, Di−1 ∪ {xi−1

i−1})) = i, and so by Menger’s theorem there
exists a family of vertex disjoint Ci∩Di to Ci−1∩(Di−1∪{xi−1

i−1}) paths. Let us label the vertices
of Ci ∩Di = {xi0, . . . , xii−1} such that these paths are from xi−1

j to xij .

We claim that every xij with j 6 i − 1 has an out-neighbour in Ci \ Di. Indeed, suppose
xij does not, then (Ci \ {xij}, Di) ∈

−→
S . There exists a partial

−→
S -path (P, α) with V (P ) =

{t1, . . . , tm} of width < n with initial leaf separation (Ci, Di) and so if we consider (P, α′) with
α′(t1, t2) = (Ci \ {xij}, Di) and α = α′ on P [{t2, . . . , tm}], we see that (P, α′) is also a partial−→
S -path (P, α) of width < n, with initial leaf separation (Ci \ {xij}, Di).

Therefore, (Ci, Di) > (Ci \ {xij}, Di) ∈
−→
S ′n+1, contradicting the minimality of (Ci−1, Di−1).

Hence, if vk(i) is the in-neighbour of vi in F , then we can pick xii ∈ Ci \Di such that there is an
edge (xik(i), x

i
i) ∈ E(D).

For each 0 6 j 6 n− 1 let Pj =
⋃n
i=j P

i
j . Then Pj is a path from xjj to xnj containing xij for

each j 6 i 6 n− 1. Consider the subgraph of D given by

D′ =
n⋃
j=0

Pj ∪ {(xik(i), x
i
i) : 1 6 i 6 n}

Note that D′ is an arborescence, and so each vertex has at most 1 in-neighbour. Hence every
edge is contractible, and by contracting each Pi we obtain F as a butterfly minor.

One of the strengths of Theorem 5.1.3 is that there exist forests with unbounded path-width,
and so the theorem gives a family graphs that must appear as a minor of a graph with sufficiently
large path-width, and conversely cannot appear as a minor of a graph with small path-width.

Unfortunately, there do not exist arborescences of unbounded directed path-width. Indeed,
since the vertices of an arborescence can be linearly ordered such that no edge goes ‘backwards’,
every arborescence has directed path-width 0, and moreso this observation is even true for all
directed acyclic graphs. It would be interesting to know if these methods could be used to
prove a theorem similar to Theorem 5.1.5 for a class of graphs whose directed path-width is
unbounded.

5.5 Linked directed path-decompositions

A digraph D is simple if it is loopless and there is at most one edge (u, v) for every u, v ∈
V (D). A simple digraph is semi-complete if for every pair u, v ∈ V (D) either (u, v) ∈ E(D) or
(v, u) ∈ E(D). A semi-complete digraph is a tournament if exactly one of (u, v) and (v, u) is an
edge. Kim and Seymour [85] considered the following property of a directed path-decomposition
(P,V):

If |Vk| > t for every i 6 k 6 j, then there exists a collection of t

vertex-disjoint directed paths from Vj to Vi.
(5.5.1)
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Theorem 5.5.1 (Seymour and Kim). Let D = (V,E) be a semi-complete digraph. D has a
directed path-decomposition (P,V) of width dpw(D) satisfying (5.5.1).

Seymour and Kim called directed path-decompositions satisfying (5.5.1), as well as two other
technical conditions, ‘linked’. However, when thinking about directed path-decompositions in
terms of separations, perhaps a more natural concept to call ‘linked’ is the following (See [59]).
We say an

−→
S -path (P, α) with P = {t1, . . . , tn} is linked if for every 1 6 i < j 6 n− 1

min{|α(tk, tk+1)| : i 6 k 6 j} = λ
(
(Ai, Bi), (Aj , Bj)

)
. (5.5.2)

Remark. Given a linked directed path-decompositon (P,V) we can form an
−→
S -path as in the

discussion preceding Lemma 5.2.2. It is easy to check that this
−→
S -path is linked.

Conversely, given a linked
−→
S -path (P, α) we can form a directed path-decomposition (P,V)

as in Lemma 5.2.2. However, it is not true that this directed path-decomposition will be linked in
the sense of (5.5.1), however it is easy to adapt it to form a linked directed path-decomposition
by subdividing each edge (ti, ti+1) of P by a new vertex si and adding a bag at si which is the
adhesion set of the edge (ti, ti+1. Note that this process does not increase the width or adhesion
of the directed path-decomposition.

Given an
−→
S -path (P, α) and r ∈ N let us write Pr for the linear sub-forest of P induced by

the edges e ∈ E(P ) such that |α(e)| > r. Let us denote by e(Pr) and c(Pr) the number of edges
and components of Pr respectively.

Again we will prove a slightly more general theorem about
−→
S -paths where we fix indepen-

dently the size of the adhesion sets. Theorem 5.1.6 will follow from the following theorem, and
Remark , if we let ω = k. We note that a stronger result, which would imply Theorem 5.1.6, is
claimed in a preprint of Kintali [86]. However we were unable to verify the proof, and include a
counterexample to his claim in Section 5.6.

Theorem 5.5.2. Let D = (V,E) be a digraph and let k 6 ω ∈ N be such that there exists an−→
S k-path of width < ω − 1. There exists a linked

−→
S k-path of width < ω − 1.

Remark. As in Lemma 5.2.2 and the discussion preceding it, it is easy to see that a digraph
D has is a linked

−→
S k-path of width < ω − 1 if and only if it has a linked path-decomposition of

adhesion < k and width < ω − 1.

Proof. Let us define a partial order on the set of
−→
S k-paths of D of width < ω − 1 by letting

(P, α) 6 (Q, β) if there is some r such that,

• for all r′ > r, e(Pr′) = e(Qr′) and c(Pr′) = c(Qr′);

• either e(Pr) < e(Qr), or e(Pr) = e(Qr) and c(Pr) > c(Qr);

Note that, since c(Pr) is at most e(Pr) + 1, it is relatively simple to show that there are no
ifninite decreasing chains in this partial order. Hence, since there exists at least one directed
path-decomposition of D of width < ω− 1, there is some minimal element in this partial order,
(P, α) with V (P ) = {t1, . . . , tn} and α(ti, ti+1) = (Ai, Bi). We claim that (P, α) is linked.

Suppose for contradiction that (P, α) is not linked. That is, there exists 1 6 i < j 6 n − 1
such that

λ
(
(Ai, Bi), (Aj , Bj)

)
< min{|Ak, Bk| : i 6 k 6 j}.

We will construct another directed path-decomposition (P̂ , α̂) of width < ω − 1 such that
(P̂ , α̂) < (P, α).

Let us choose a separation (Ai, Bi) 6 (X,Y ) 6 (Aj , Bj) such that |X,Y | = λ
(
(Ai, Bi), (Aj , Bj)

)
.

Note that (X,Y ) is up-linked to (Ai, Bi) and down-linked to (Aj , Bj)
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We form two new
−→
Sk-paths (P ′, α′) and (P ′′, α′′) by taking the up-shift of (P, α) onto (X,Y )

with respect to (Ai, Bi) and the down-shift of (P, α) onto (X,Y ) with respect to (Aj , Bj). Let
us denote by (A′i, B

′
i), . . . , (A

′
n−1, B

′
n−1) and (A′′1, B

′′
1 ), . . . , (A′′j , B

′′
j ) for the images of α′ and α′′.

We note that the initial leaf separation of (P ′, α′) and the terminal leaf separation of (P ′′, α′′)
are both (X,Y ).

We form a new
−→
S k-path (P̂ , α̂) by letting P̂ be the path formed by identifying the initial

leaf of (P ′, α′) with the terminal leaf of (P ′′, α′′) and taking α̂ to be α′ on E(P ′) and α′′ on
E(P ′′).

By Lemma 5.2.5, since (P, α) was of width < ω − 1, so is (P̂ , α̂). We claim that (P̂ , α̂) <
(P, α). Given a vertex tk ∈ V (P ) we will write t′k and t′′k for the copy of tk in P ′ or P ′′ respectively,
and carry these labels over onto P̂ . Note that, not every vertex will appear in both P ′ and P ′′.

Claim 5.5.3. For every k ∈ [n] max{|A′k, B′k|, |A′′k, B′′k |} 6 |Ak, Bk|. Furthermore, if |Ak, Bk| =
|A′k, B′k| then |A′′k, B′′k | 6 |X,Y |. Similarly if |Ak, Bk| = |A′′k, B′′k | then |A′k, B′k| 6 |X,Y |. (Here
we are assuming for convenience that if (A′k, B

′
k) or (A′′k, B

′′
k) do not exist then their order is 0.)

Proof of claim. For the first claim we note that the proof of Lemma 5.2.4 in fact shows the
stronger statement that if (X,Y ) is up/down-linked to (Ai, Bi) then the order of each separation
in the up/down-shift of (P, α) onto (X,Y ) with respect to (Ai, Bi) does not increase.

For the second claim, it is sufficient to prove it for i 6 k 6 j, since otherwise one of (A′k, B
′
k)

or (A′′k, B
′′
k) has order 0.

Since (P ′, α′) was the up-shift of (P, α) onto (X,Y ) with respect to (Ai, Bi), (A′k, B
′
k) =

(Ak, Bk)∨(X,Y ) = (Ak∪X,Bk∩Y ). Similarly (A′′k, B
′′
k) = (Ak, Bk)∧(X,Y ) = (Ak∩X,Bk∪Y ).

Hence, by (5.2.1),

|A′k, B′k|+ |A′′k, B′′k | = |Ak, Bk|+ |X,Y |.

Let us write ek for the edge (tk, tk+1) ∈ E(P ), and e′k, e
′′
k for the two copies of ek in E(P̂ )

(when they exist).

Claim 5.5.4. For every r > |X,Y | and every k ∈ [n− 1] such that |Ak, Bk| = r exactly one of
(A′k, B

′
k), (A′′k, B

′′
k) has order |Ak, Bk|, and the other has order 6 |X,Y |. Furthermore, for each

component C of P r, and ep, eq ∈ C, then |A′p, B′p| = |Ap, Bp| if and only if |A′q, B′q| = |Aq, Bq|,
and similarly |A′′p, B′′p | = |Ap, Bp| if and only if |A′′q , B′′q | = |Aq, Bq|.

Proof of Claim. We will prove the claim by reverse induction on r, starting with r being the
order of the largest separation in (P, α). Note that, since |Ai, Bi|, |Aj , Bj | > |X,Y |, it follows
that r > |X,Y |.

By the first part of Claim 5.5.3 we have that the order of the largest separation in (P̂ , α̂) is
at most r. Hence, since (P, α) was minimal, e(Pr) 6 e(P̂r). However, by Claim 5.5.3, for each
(Ak, Bk) with |Ak, Bk| = r, at most one of the two separations (A′k, B

′
k) and (A′′k, B

′′
k) have order

r, and if it does, then the other has order 6 |X,Y | < r. Therefore it follows that e(P̂r) 6 e(Pr),
and so e(Pr) = e(P̂r), and the first part of the claim follows.

By minimality of (P, α) again, it follows that c(Pr) > c(P̂r). However, since the edge e′i = e′′j
in P̂ is mapped to the separation (X,Y ) by α̂, it follows from the first half of the claim that
c(P̂r) > c(Pr), and so c(Pr) = c(P̂r), and the second part of the claim follows.

Suppose then that the claim holds for all r′ > r. It follows that e(Pr′) = e(P̂r′) and
c(Pr′) = c(P̂r′) for all r′ > r and so, since (P, α) was minimal, e(Pr) 6 e(P̂r).

However, since by Lemma 5.2.4 the order of each separation does not increase when we shift
an
−→
S k-tree, the only edges in P̂r come from copies of edges in Pr′ with r′ > r. If r′ > r then,

by the induction hypothesis, these copies have order r′, or 6 |X,Y |. If r′ = r then, by Claim
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5.5.3 at most one of the two copies of the edge has order r, and if it does the other has order
6 |X,Y |. It follows that e(P̂r) 6 e(Pr), and so e(Pr) = e(P̂r), and the first part of the claim
follows.

By minimality of (P, α) again, it follows that c(Pr) > c(P̂r). However, since the edge e′i = e′′j
in P̂r is mapped to the separation (X,Y ) by α̂, it follows from the first half of the claim that
c(P̂r) > c(Pr), and so c(Pr) = c(P̂r), and the second part of the claim follows.

Recall that |Ak, Bk| > |X,Y | for all i 6 k 6 j by assumption. Hence ei and ej lie in the
same component of P|X,Y |+1. However, (A′i, B

′
i) = (A′′j , B

′′
j ) = (X,Y ), contradicting the second

part of Claim 5.5.4.

5.6 Counterexample to the existence of lean directed path-decompositions

Kintali [86] defines a directed path-decomposition to be lean if it satisfies the following condition:

Given k > 0, t1 6 t2 ∈ [n] and subsets Z1 ⊆ Vt1 and Z2 ⊆ Vt2 with |Z1| = |Z2| = k

either G contains k vertex-disjoint directed paths from Z2 to Z1 or there exists

i ∈ [t1, t2 − 1] such that |Vi ∩ Vi+1| < k

(5.6.1)

Note, this is a strengthening of (5.5.1). In particular, (5.6.1) has content in the case t1 = t2.
When Thomas proved his result on the existence of linked tree-decompositions of minimal width
[124] he in fact established the existence of tree-decompositions satisfying a stronger condition
in the vein of (5.6.1) (which are sometimes called lean tree-decompositions in the literature [43]).
Kintali claims the following analogous result.

Theorem 5.6.1 ([86] Theorem 7). Every digraph D has a directed path-decomposition of width
dpw(D) satisfying (5.6.1).

However, we note that this theorem cannot hold. Indeed, consider a perfect binary tree of
depth n, with all edges in both directions. Let us write Tn for the undirected tree and

−→
T n for

the digraph. It it easy to see that the directed path-width of
−→
T n is equal to the path width of

Tn, which is n−1
2 . Hence, in any directed path-decomposition of

−→
T n there is some bag of size

at least n+1
2 . Suppose that a lean directed path-decomposition exists, let us denote by Vi a bag

such that |Vi| > n+1
2 .

If we consider Vi as a subset of Tn, then it follows from (5.6.1) that for every k > 0 and every
Z1, Z2 ⊆ Vi with |Z1| = |Z2| = k, Tn contains k vertex-disjoint paths between Z1 and Z2. This
property is known in the literature as being well-linked, and the size of the largest well-linked
set in a graph is linearly related to the tree-width (see for example [77]). Specifically, since Tn
contains a well-linked set of size > n+1

2 it follows that tw(Tn) > n+1
6 . However, the tree-width

of any tree is one, contradicting the existence of a lean directed path-decomposition of
−→
T n for

n > 6.
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Chapter 6

A short derivation of the structure
theorem for graphs with excluded
topological minors

6.1 Introduction

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting
edges. In a series of 23 papers, published between 1983 and 2012, Robertson and Seymour
developed a deep theory of graph minors which culminated in the proof of Wagner’s Conjec-
ture [115], which asserts that in any infinite set of finite graphs there is one which is a minor
of another. One of the landmark results proved along the way, and indeed a fundamental step
in resolving Wagner’s Conjecture, is a structure theorem for graphs excluding a fixed graph as
a minor [111]. It is easy to see that G cannot contain H as a minor if there is a surface into
which G can be embedded but H cannot. Loosely speaking, the structure theorem of Robertson
and Seymour asserts an approximate converse to this, thereby revealing the deep connection
between topological graph theory and the theory of graph minors:

Theorem 6.1.1 ([111] (informal)). For any n ∈ N, every graph excluding the complete graph Kn

as a minor has a tree-decomposition in which every torso is almost embeddable into a surface
into which Kn is not embeddable.

A graph H is a topological minor of a graph G if G contains a subdivision of H as a subgraph.
It is easy to see that G then also contains H as a minor. The converse is not true, as there
exist cubic graphs with arbitrarily large complete minors. For topological minors, we thus have
an additional degree-based obstruction, which is fundamentally different from the topological
obstruction of surface-embeddings for graph minors. Grohe and Marx [70] proved a result in a
similar spirit to Theorem 6.1.1 for graphs excluding a fixed graph as a topological minor:

Theorem 6.1.2 ([70] (informal)). For any n ∈ N, every graph excluding Kn as a topological
minor has a tree-decomposition in which every torso either

(cl.1) has a bounded number of vertices of high degree, or

(cl.2) is almost embeddable into a surface of bounded genus.

More recently, Dvořák [56] refined the embeddability condition of this theorem to reflect
more closely the topology of embeddings of an arbitrary graph H which is to be excluded as a
topological minor.
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The proof given in [70], which uses Theorem 6.1.2 as a block-box, is algorithmic and explicitly
provides a construction of the desired tree-decomposition, however as a result the proof is quite
technical in parts. In this paper, we give a short proof of Theorem 6.1.2 which also provides a
good heuristic for the structure of graphs without a large complete topological minor, as well as
improving the implicit bounds given in [70] on many of the parameters in their theorem. Our
proof is non-constructive, but we note that it can easily be adapted to give an algorithm to find
either a subdivision of Kr or an appropriate tree-decomposition. However, the run time of this
algorithm will be much slower than that of the algorithm given in [70].

One of the fundamental structures we consider are k-blocks. A k-block in a graph G is
a set B of at least k vertices which is inclusion-maximal with the property that for every
separation (U,W ) of order < k, we either have B ⊆ U or B ⊆ W . The notion of a k-block,
which was first studied by Mader [99, 98], has previously been considered in the study of graph
decompositions [33, 35, 37].

It is clear that a subdivision of a clique on k + 1 vertices yields a k-block. The converse is
not true for any k > 4, as there exist planar graphs with arbitrarily large blocks. The second
author [127] proved a structure theorem for graphs without a k-block:

Theorem 6.1.3 ([127]). Let G be a graph and k > 2. If G has no (k + 1)-block then G has a
tree-decomposition in which every torso has at most k vertices of degree at least 2k(k − 1).

Now, since a subdivision of a complete graph gives rise to both a complete minor and a block,
there are two obvious obstructions to the existence of a large topological minor, the absence of
a large complete minor or the absence of a large block. The upshot of Theorem 6.1.2 is that in
a local sense these are the only obstructions, any graph without a large topological minor has a
tree-decomposition into parts whose torsos either don’t contain a large minor, or don’t contain
a large block. Furthermore, by Theorem 6.1.1 and Theorem 6.1.3, the converse should also be
true: if we can decompose the graph into parts whose torsos either don’t contain a large minor
or don’t contain a large block, then we can refine this tree-decomposition into one satisfying the
requirements of Theorem 6.1.2.

The idea of our proof is as follows. Both large minors and large blocks point towards a
‘big side’ of every separation of low order. A subdivision of a clique simultaneously gives rise
to both a complete minor and a block and, what’s more, the two are hard to separate in that
they choose the same ‘big side’ for every low-order separation. A qualitative converse to this is
already implicit in previous work on graph minors and linkage problems: if a graph contains a
large complete minor and a large block which cannot be separated from that minor, then the
graph contains a subdivision of a complete graph.

Therefore, if we assume our graph does not contain a subdivision of Kr, then we can separate
any large minor from every large block. It then follows from the tangle tree theorem of Robertson
and Seymour [110] – or rather its extension to profiles [80, 48, 35] – that there exists a tree-
decomposition which separates the blocks from the minors. Hence each part is either free of
large minors or of large blocks.

However, in order to apply Theorems 6.1.1 and 6.1.3, we need to have control over the torsos,
and not every tree-decomposition will provide that: it might be, for example, that separating
some set of blocks created a large minor in one of the torsos. We therefore contract some parts
of our tree-decomposition and use the minimality of the remaining separations to prove that
this does not happen.

A second nice feature of our proof is that we avoid the difficulty of constructing such a tree-
decomposition by choosing initially a tree-decomposition with certain connectivity properties,
the proof of whose existence already exists in the literature, and then simply deducing that this
tree-decomposition has the required properties.
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We are going to prove the following:

Theorem 6.1.4. Let r be a positive integer and let G be a graph containing no subdivision
of Kr. Then G has a tree-decomposition of adhesion <r2 such that every torso either

(cl.1) has fewer than r2 vertices of degree at least 2r4, or

(cl.2) has no K2r2-minor.

Combining Theorems 6.1.1 and 6.1.4 then yields Theorem 6.1.2.
Let us briefly compare the bounds we get to the result of Grohe and Marx [70, Theorem

4.1]. It is implicit in their results that if G contains no subdivision of Kr, then G has a tree-
decomposition of adhesion O(r6) such that every torso either has O(r6) vertices of degree Ω(r7),
has no KΩ(r6) minor or has size at most O(r6). In this way, Theorem 6.1.4 gives an improvement
on the bounds for each of the parameters. Recently Liu and Thomas [94] also proved an extension
of the work of Dvořák [56], with the aim to more closely control the bound on the degrees of
the vertices in (i). Their results, however, only give this structure ‘relative’ to some tangle.

6.2 Notation and background material

All graphs considered here are finite and undirected and contain neither loops nor parallel edges.
Our notation and terminology mostly follow that of [43].

Given a tree T and s, t ∈ V (T ), we write sT t for the unique s-t-path in T . A separation
of a graph G = (V,E) is a pair (A,B) with V = A ∪ B such that there are no edges between
A \B and B \A. The order of (A,B) is the number of vertices in A∩B. We call the separation
(A,B) tight if for all x, y ∈ A ∩ B, both G[A] and G[B] contain an x-y-path with no internal
vertices in A ∩B.

The set of all separations of G of order <k will be denoted by Sk(G). An orientation of Sk(G)
is a subset of Sk(G) containing precisely one element from each pair {(A,B), (B,A)} ⊆ Sk(G).
The orientation is consistent if it does not contain two separations (A,B), (C,D) with B ⊆ C and
D ⊆ A. A separation distinguishes two orientations O1, O2 of Sk(G) if precisely one of O1, O2

contains it. It does so efficiently if it has minimum order among all separations distinguishing
them.

Recall that, given an integer k, a set B of at least k vertices of G is a k-block if it is inclusion-
maximal with the property that for every separation (U,W ) of order <k, either B ⊆ U or
B ⊆W . Observe that B induces a consistent orientation OB := {(U,W ) : B ⊆W} of Sk(G).

Given an integer m, a model of Km is a family X of m pairwise disjoint sets of vertices of G
such that G[X] is connected for every X ∈ X and G has an edge between X and Y for any
two X,Y ∈ X . The elements of X are called branch sets. Note that, if (U,W ) is a separation
of order <m, then exactly one of U \W and W \ U contains some branch set. In this way, X
induces a consistent orientation OX of Sk(G), where (U,W ) ∈ OX if and only if some branch
set of X is contained in W .

A tree-decomposition of G is a pair (T,V), where T is a tree and V = (Vt)t∈T is a family of
sets of vertices of G such that:

• for every v ∈ V (G), the set of t ∈ V (T ) with v ∈ Vt induces a non-empty subtree of T ;

• for every edge vw ∈ E(G) there is a t ∈ V (T ) with v, w ∈ Vt.
If (T,V) is a tree-decomposition of G, then every st ∈ E(T ) induces a separation

(Us,Wt) := (
⋃

t/∈uTs

Vu,
⋃
s 6∈vT t

Vv).
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Note that Us ∩ Wt = Vs ∩ Vt. In this way, every edge e ∈ E(T ) has an order given by the
order of the separation it induces, which we will write as |e|. Similarly, an edge of T (efficiently)
distinguishes two orientations if the separation it induces does. We say that (T,V) (efficiently)
distinguishes two orientations O and P if some edge of T does. We call (T,V) tight if every
separation induced by an edge of T is tight.

The adhesion of (T,V) is the maximum order of an edge. If the adhesion of (T,V) is less
than k and O is an orientation of Sk(G), then O induces an orientation of the edges of T by
orienting an edge st towards t if (Us,Wt) ∈ O. If O is consistent, then all edges will be directed
towards some node t ∈ V (T ), which we denote by tO and call the home node of O. When O is
induced by a block B or model X , we abbreviate tB := tOB and tX := tOX , respectively. Observe
that and edge e ∈ E(T ) distinguishes two orientations O and P if and only if e ∈ E(tOTtP ).

Given t ∈ V (T ), the torso at t is the graph obtained from G[Vt] by adding, for every
neighbor s of t, an edge between any two non-adjacent vertices in Vs ∩Vt. More generally, given
a subtree S ⊆ T , the torso at S is the graph obtained from G

[⋃
s∈S Vs

]
by adding, for every

edge st ∈ E(T ) with S ∩ {s, t} = {s}, an edge between any two non-adjacent vertices in Vs ∩ Vt.
We also define contractions on tree-decompositions: Given (T,V) and an edge st ∈ E(T ), to

contract the edge st we form a tree-decomposition (T ′,V ′) where

• T ′ is obtained by contracting st in T to a new vertex x;

• Let V ′x := Vs ∪ Vt and V ′u := Vu for all u ∈ V (T ) \ {s, t}.

It is simple to check that (T ′,V ′) is a tree-decomposition. We note that the separations induced
by an edge in E(T ) \ {st} remain the same, as do the torsos of parts Vu for u 6= s, t.

We say a tree-decomposition (T,V) is k-lean if it has adhesion <k and the following holds
for all p ∈ [k] and s, t ∈ T : If sT t contains no edge of order <p, then every separation (A,B)
with |A ∩ Vs| > p and |B ∩ Vt| > p has order at least p.

Let n := |G|. The fatness of (T,V) is the sequence (a0, . . . , an), where ai denotes the number
of parts of order n − i. A tree-decomposition of lexicographically minimum fatness among all
tree-decompositions of adhesion smaller than k is called k-atomic. These tree-decompositions
play a pivotal role in our proof, but we actually only require two properties that follow from
this definition. It was observed by Carmesin, Diestel, Hamann and Hundertmark [34] that the
short proof of Thomas’ Theorem [124] given by Bellenbaum and Diestel in [17] also shows that
k-atomic tree-decompositions are k-lean (see also [66]).

Lemma 6.2.1 ([17]). Every k-atomic tree-decomposition is k-lean.

It is also not hard to see that k-atomic tree-decompositions are tight. In [127], the second
author used k-atomic tree-decompositions to prove a structure theorem for graphs without a
k-block. In fact, the proof given there yields the following:

Lemma 6.2.2 ([127]). Let G be a graph and k a positive integer. Let (T,V) be a k-atomic
tree-decomposition of G and t ∈ V (T ) such that Vt contains no k-block of G. Then the torso
at t contains fewer than k vertices of degree at least 2k2.

Let G be a graph and Z ⊆ V (G). We denote by GZ the graph obtained from G by making
the vertices of Z pairwise adjacent. A Z-based model is a model X of K|Z| such that X ∩ Z
consists of a single vertex for every X ∈ X .

The following lemma of Robertson and Seymour [114] is crucial to our proof.

Lemma 6.2.3 ([114]). Let G be a graph, Z ⊆ V (G) and p := |Z|. Let q > 2p−1 and let X be a
model of Kq in GZ . If X and Z induce the same orientation of Sp(G

Z), then G has a Z-based
model.
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6.3 The proof

Let us fix throughout this section a graph G with no subdivision of Kr, let k := r(r−1), m := 2k,
and let (T,V) be a k-atomic tree-decomposition of G.

First, we will show that (T,V) efficiently distinguishes every k-block from every model of Km

in G. This allows us to split T into two types of sub-trees, those containing a k-block and those
containing a model of Km. Lemma 6.2.2 allows us to bound the number of high degree degree
vertices in the torsos in the latter components. We will then show that if we choose these sub-
trees in a sensible way then we can also bound the order of a complete minor contained in the
torsos of the former. Hence, by contracting each of these sub-trees in (T,V) we will have our
desired tree-decomposition.

To show that (T,V) distinguishes every k-block from every model of Km in G, we must first
show that they are distinguishable, that is, no k-block and Km induce the same orientation.
The following lemma, as well as its proof, is similar to Lemma 6.11 in [70].

Lemma 6.3.1. Let B be a k-block and X a model of Km in G. If B and X induce the same
orientation of Sk, then G contains a subdivision of Kr with arbitrarily prescribed branch vertices
in B.

Proof. Suppose B and X induce the same orientation and let B0 be an arbitrary subset of B
of size r. Let H be the graph obtained from G by replacing every b ∈ B0 by an independent
set Jb of order (r − 1), where every vertex of Jb is adjacent to every neighbor of b in G and to
every vertex of Jc if b, c are adjacent. Let J :=

⋃
b Jb and note that |J | = k. We regard G as a

subgraph of H by identifying each b ∈ B with one arbitrary vertex in Jb. In this way we can
regard X as a model of Km in H.

Assume for a contradiction that there was a separation (U,W ) of H such that |U ∩W | < |J |,
J ⊆ U and X ⊆ W \ U for some X ∈ X . We may assume without loss of generality that for
every b ∈ B0, either Jb ⊆ U ∩W or Jb ∩ (U ∩W ) = ∅. Indeed, if there is a z ∈ Jb \ (U ∩W ),
then z ∈ U \W , and we can delete any z′ ∈ Jb ∩W from W and maintain a separation (because
N(z) = N(z′)) with the desired properties. In particular, for every b ∈ B0 we find b ∈ W if
and only if Jb ⊆ W . Since |U ∩W | < |J |, it follows that there is at least one b0 ∈ B0 with
Jb0 ⊆ (U \W ). Let (U ′,W ′) := (U ∩ V (G),W ∩ V (G)) be the induced separation of G. Then
X ⊆W ′\U ′ and b0 ∈ U ′\W ′. Since |U ′∩W ′| 6 |U∩W | < k and B is a k-block, we have B ⊆ U ′.
But then (U ′,W ′) distinguishes B and X , which is a contradiction to our initial assumption.

We can now apply Lemma 6.2.3 to H and find a J-based model Y = (Yj)j∈J in H. For each
b ∈ B0, label the vertices of Jb as (vbc)c∈B0\{b}. For b 6= c, H has a path P ′b,c ⊆ Yvbc ∪ Yvcb and the
paths obtained like this are pairwise disjoint, because the Yj are, and P ′b,c ∩ J = {vbc, vcb}. For
each such path P ′b,c, obtain Pb,c ⊆ G by replacing vbc by b and vcb by c. The collection of these
paths (Pb,c)b,c∈B0 gives a subdivision of Kr with branch vertices in B0.

Now we can show that (T,V) efficiently distinguishes every k-block from every model of Km

in G.

Lemma 6.3.2. (T,V) efficiently distinguishes all orientations of Sk(G) induced by k-blocks or
models of Km.

Proof. Let us call a consistent orientation O of Sk(G) anchored if for every (U,W ) ∈ O, there
are at least k vertices in W ∩ VtO .

Note that every orientation O = OB induced by a k-block B is trivially anchored, since
B ⊆ VtB . But the same is true for the orientation O = OX induced by a model X of Km.
Indeed, let (U,W ) ∈ OX . Then every set in X meets VtX . At least k branch sets of X are
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disjoint from U ∩W , say X1, . . . , Xk, and they all lie in W \U . For 1 6 i 6 k, let xi ∈ Xi ∩ VtX
and note that R := {x1, . . . , xk} ⊆W ∩ VtX .

We now show that (T,V) efficiently distinguishes all anchored orientations of Sk(G). Let
O1, O2 be anchored orientations of Sk(G) and let their home nodes be t1 and t2 respectively. If
t1 6= t2, let p be the minimum order of an edge along t1Tt2, and put p := k otherwise. Choose
some (U,W ) ∈ O2 \O1 of minimum order. Since O1 and O2 are anchored, we have |U ∩Vt1 | > k
and |W ∩ Vt2 | > k. As (T,V) is k-lean, it follows that |U ∩W | > p. Hence t1 6= t2 and (T,V)
efficiently distinguishes O1 and O2.

Let us call a node t ∈ V (T ) a block-node if it is the home node of some k-block and model-node
if it is the home node of a model of Km.

Let F ⊆ E(T ) be inclusion-minimal such that every k-block is efficiently distinguished from
every model of Km by some separation induced by an edge in F . We now define a red/blue
colouring c : V (T )→ {r, b} by letting c(t) = b if the component of T − F containing t contains
a block-node and letting c(t) = r if it contains a model-node. Let us first show that this is in
fact a colouring of V (T ).

Lemma 6.3.3. Every node receives exactly one colour.

Proof. Suppose first that t ∈ V (T ) is such that the component of T − F containing t contains
both a block node and a model node. Then there is a k-block B and a Km-minor X such
that tBTt and tXTt both contain no edges of F . But then B and X are not separated by the
separations induced by F , a contradiction.

Suppose now that t ∈ V (T ) is such that the component S of T − F containing t contains
neither a block nor a minor. Let f1, . . . , fn be the edges of T between S and T \S, ordered such
that |f1| > |fi| for all i 6 n. By minimality of F , there is a block-node tB and a model-node tX
such that f1 is the only edge of F that efficiently distinguishes B and X . Since tB, tX /∈ S,
there is a j > 2 such that fj ∈ E(tBTtX ), and so fj distinguishes B and X as well, and since
|f1| > |fj |, it does so efficiently, contradicting our choice of B and X

Lemma 6.3.4. Let st ∈ E(T ) and suppose s is blue and t is red. Then G[Wt] has a (Vs ∩ Vt)-
based model.

Proof. Let Q := Vs∩Vt. Let tB be a block-node in the same component of T −F as s and let tX
be a model-node in the same component as t. Since the separations induced by F efficiently
distinguish B and X , it must be that st ∈ F and (Us,Wt) efficiently distinguishes B and X .

Let Y := (X ∩Wt)X∈X . Since (Us,Wt) ∈ OX , Y is a model of Km in G[Wt]
Q. We wish to

apply Lemma 6.2.3 to Q and Y in the graph G[Wt]. Suppose Q and Y do not induce the same
orientation of S|Q|(G[Wt]

Q). That is, there is a separation (U,W ) of G[Wt]
Q with |U ∩W | < |Q|

and Q ⊆ U such that Y ∩ U = ∅ for some Y ∈ Y. There is an X ∈ X so that Y = X ∩G[Wt].
Note that X ∩U is empty as well. Now (U ′,W ′) := (U ∪Us,W ) is a separation of G. Note that

X ∩ U ′ = X ∩ Us = ∅,

because X is connected, meets Wt and does not meet Q. Therefore X ⊆ W ′ \ U ′ and B ⊆
Us ⊆ U ′. But |U ′ ∩W ′| = |U ∩W | < |Q|, which contradicts the fact that (Us,Wt) efficiently
distinguishes B and X . Therefore, by Lemma 6.2.3, G[Wt] has a Q-based model.

Using the above we can bound the size of a complete minor in the torso of a blue component.
The next lemma plays a similar role to Lemma 6.9 in [70].

Lemma 6.3.5. Let S ⊆ T be a maximal subtree consisting of blue nodes. Then the torso of S
has no Km-minor.
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Proof. Let FS := {(s, t) : st ∈ E(T ), s ∈ S, t /∈ S}. For every (s, t) ∈ FS , the node s is blue
and t is red. By Lemma 6.3.4, Gt has a (Vs ∩ Vt)-based complete minor Ys,t. Contract each of
its branch sets onto the single vertex of Vs ∩ Vt that it contains. Do this for every (s, t) ∈ FS .
After deleting any vertices outside of VS :=

⋃
s∈S Vs, we obtain the torso of S as a minor of the

graph G.
Suppose the torso of S contained a Km-minor. Then G has a Km-minor X such that every

X ∈ X meets VS . Therefore X orients every edge st ∈ E(T ) with (s, t) ∈ FS towards s. But
then tX ∈ S, contradicting the assumption that S contains no red nodes.

We can now finish the proof. Let (T ′,V ′) be obtained from (T,V) by contracting every
maximal subtree consisting of blue nodes and let the vertices of T ′ inherit the colouring from
V (T ). We claim that (T ′,V ′) satisfies the conditions of Theorem 6.1.4.

Indeed, firstly, the adhesion of (T ′,V ′) is at most that of (T,V), and hence is at most k.
Secondly, the torso of every red node in (T ′,V ′) is the torso of some red node in (T,V), which by
Lemma 6.2.2 has fewer than k vertices of degree at least 2k2. Finally, by Lemma 6.3.5 the torso of
every blue node in (T ′,V ′) has no Km minor. Since k = r(r−1) and m = 2k, the theorem follows.

As claimed in the introduction, it is not hard to turn this proof into an algorithm to find either
a subdivision of Kr or an appropriate tree-decomposition. Indeed, the proof of Lemma 6.2.1
can easily be adapted to give an algorithm to find a tight k-lean tree-decomposition. Similarly,
in order to colour the vertices of the tree red or blue we must check for the existence of a Km

minor or a k-block having this vertex as a home node, both of which can be done algorithmically
(See [114] and [34]). However, we note that the running time of such an algorithm, or at least a
naive implementation of one, would have run time ∼ |V (G)|f(r) for some function of the size of
the topological minor Kr we are excluding, whereas the algorithm of Grohe and Marx has run
time g(r)|V (G)|O(1), which should be much better for large values of r.
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Part II

Infinitary combinatorics
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Chapter 7

A counterexample to the
reconstruction conjecture for locally
finite trees

7.1 Introduction

We say that two graphs G and H are (vertex-)hypomorphic if there exists a bijection ϕ between
the vertices of G and H such that the induced subgraphs G − v and H − ϕ(v) are isomorphic
for each vertex v of G. Any such bijection is called a hypomorphism. We say that a graph G is
reconstructible if H ∼= G for every H hypomorphic to G. The following conjecture, attributed to
Kelly and Ulam, is perhaps one of the most famous unsolved problems in the theory of graphs.

Conjecture 7.1.1 (The Reconstruction Conjecture). Every finite graph with at least three ver-
tices is reconstructible.

For an overview of results towards the Reconstruction Conjecture for finite graphs see the
survey of Bondy and Hemminger [23]. Harary [75] proposed the Reconstruction Conjecture
for infinite graphs, however Fisher [62] found a counterexample, which was simplified to the
following counterexample by Fisher, Graham and Harary [63]: consider the infinite tree G in
which every vertex has countably infinite degree, and the graph H formed by taking two disjoint
copies of G, which we will write as G tG. For each vertex v of G, the induced subgraph G− v
is isomorphic to G tG t · · · , a disjoint union of countably many copies of G, and similarly for
each vertex w of H, the induced subgraph H−w is isomorphic to GtGt· · · as well. Therefore,
any bijection from V (G) to V (H) is a hypomorphism, but G and H are clearly not isomorphic.
Hence, the tree G is not reconstructible.

These examples, however, contain vertices of infinite degree. Regarding locally finite graphs,
Harary, Schwenk and Scott [76] showed that there exists a non-reconstructible locally finite
forest. However, they conjectured that the Reconstruction Conjecture should hold for locally
finite trees.

Conjecture 7.1.2 (The Harary-Schwenk-Scott Conjecture). Every locally finite tree is recon-
structible.

This conjecture has been verified in a number of special cases. Kelly [84] showed that finite
trees on at least three vertices are reconstructible. Bondy and Hemminger [22] showed that
every tree with at least two but a finite number of ends is reconstructible, and Thomassen [125]
showed that this also holds for one-ended trees. Andreae [10] proved that also every tree with
countably many ends is reconstructible.
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A survey of Nash-Williams [103] on the subject of reconstruction problems in infinite graphs
gave the following three main open problems in this area, which have remained open until now.

Problem 1 (Nash-Williams). Is every locally finite connected infinite graph reconstructible?

Problem 2 (Nash-Williams). If two infinite trees are hypomorphic, are they also isomorphic?

Problem 3 (Halin). If G and H are hypomorphic, do there exist embeddings G ↪→ H and
H ↪→ G?

Problem 2 has been emphasized in Andreae’s [12], which contains partial affirmative results
on Problem 2. A positive answer to Problem 1 or 2 would verify the Harary-Schwenk-Scott
Conjecture. In this paper we construct a pair of trees which are not only a counterexample
to the Harary-Schwenk-Scott Conjecture, but also answer the three questions of Nash-Williams
and Halin in the negative. Our counterexample will in fact have bounded degree.

Theorem 7.1.3. There are two (vertex)-hypomorphic infinite trees T and S with maximum
degree three such that there is no embedding T ↪→ S or S ↪→ T .

Our example also provides a strong answer to a question by Andreae [11] about edge-
reconstructibility. Two graphsG andH are edge-hypomorphic if there exists a bijection ϕ : E(G)→
E(H) such that G−e ∼= H−ϕ(e) for each e ∈ E(G). A graph G is edge-reconstructible if H ∼= G
for all H edge-hypomorphic to G. In [11] Andreae constructed countable forests which are not
edge-reconstructible, but conjectured that no locally finite such examples can exist.

Problem 4 (Andreae). Is every locally finite graph with infinitely many edges edge-reconstructible?

Our example answers Problem 4 in the negative: the trees T and S we construct for Theo-
rem 7.1.3 will also be edge-hypomorphic. Besides answering Problem 4, this appears to be the
first known example of two non-isomorphic graphs that are simultaneously vertex- and edge-
hypomorphic.

The Reconstruction Conjecture has also been considered for general locally finite graphs.
Nash-Williams [102] showed that any locally finite graph with at least three, but a finite number
of ends is reconstructible, and in [104], he established the same result for two-ended graphs. The
following problems, also from [103], remain open:

Problem 5 (Nash-Williams). Is every locally finite graph with exactly one end reconstructible?

Problem 6 (Nash-Williams). Is every locally finite graph with countably many ends recon-
structible?

In a paper in preparation [29], we will extend the methods developed in the present paper
to also construct counterexamples to Problems 5 and 6.

This paper is organised as follows. In the next section we will give a short, high-level overview
of our counterexample to the Harary-Schwenk-Scott Conjecture. In Section 7.3, we will develop
the technical tools necessary for our construction, and in Section 7.4, we will prove Theorem
7.1.3.

For standard graph theoretical concepts we follow the notation in [43].
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7.2 Sketch of the construction

In this section we sketch the main ideas of the construction. For the sake of simplicity we only
indicate how to ensure that the trees T and S are vertex-hypomorphic and non-isomorphic, but
not that they are edge-hypomorphic as well, nor that neither embeds into the other.

Our plan is to build the trees T and S recursively, where at each step of the construction we
ensure for some vertex v already chosen for T that there is a corresponding vertex w of S with
T − v ∼= S −w, or vice versa. This will ensure that by the end of the construction, the trees we
have built are hypomorphic.

More precisely, at step n we will construct subtrees Tn and Sn of our eventual trees, where
some of the leaves of these subtrees have been coloured in two colours, say red and blue. We
will only further extend the trees from these coloured leaves, and we will extend from leaves of
the same colour in the same way.

That is, the plan is that there should be two further rooted trees R and B such that T can
be obtained from Tn by attaching copies of R at all red leaves and copies of B at all blue leaves,
and S can be obtained from Sn in the same way. At step n, however, we do not yet know what
these trees R and B will eventually be.

Nevertheless, we can ensure that the induced subgraphs, T − v and S−w, of the vertices we
have dealt with so far really will match up. More precisely, by step n we have vertices x1, . . . , xn
of Tn and y1, . . . , yn of Sn for which we intend that T − xj should be isomorphic to S − yj for
each j. We ensure this by arranging that for each j there is an isomorphism from Tn − xj to
Sn − yj which preserves the colours of the leaves.

The Tn will be nested, and we will take T to be the union of all of them; similarly the Sn
will be nested and we take S to be the union of all of them.

There is a trick to ensure that T and S do not end up being isomorphic. First we ensure,
for each n, that there is no isomorphism from Tn to Sn. We also ensure that the part of T or
S beyond any coloured leaf of Tn or Sn begins with a long non-branching path (called a bare
path), longer than any such path appearing in Tn or Sn. Call the length of these long paths
kn+1.

Suppose now for a contradiction that there is an isomorphism from T to S. Then there must
exist some large n such that the isomorphism sends some vertex t of Tn to a vertex s of Sn.
However, Tn is the component of T containing t after all bare paths of length kn+1 have been
removed1, and so it must map isomorphically onto the component of S containing s after all bare
paths of length kn+1 have been removed, namely onto Sn. However, there is no isomorphism
from Tn onto Sn, so we have the desired contradiction.

r b̂

Tn Ŝn

br̂

T̂n Sn

Figure 7.1: A first approximation of Tn+1 on the left, and Sn+1 on the right. All dotted lines
are non-branching paths of length kn+1.

Suppose now that we have already constructed Tn and Sn and wish to construct Tn+1 and
Sn+1. Suppose further that we are given a vertex v of Tn for which we wish to find a partner w
in Sn+1 so that T − v and S − w are isomorphic. We begin by building a tree T̂n 6∼= Tn which

1Here and throughout this section we will omit minor technical details for brevity.
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has some vertex w such that Tn − v ∼= T̂n − w. This can be done by taking the components of
Tn − v and arranging them suitably around the new vertex w.

We will take Sn+1 to include Sn and T̂n, with the copies of red and blue leaves in T̂n also
coloured red and blue respectively. As indicated on the right in Figure 7.1, we add paths of
length kn+1 to some blue leaf b of Sn and to some red leaf r̂ of T̂n and join these paths at their
other endpoints by some edge en. We also join two new leaves y and g to the endvertices of en.
We colour the leaf y yellow and the leaf g green (to avoid confusion with the red and blue leaves
from step n, we take the two colours applied to the leaves in step n+ 1 to be yellow and green).

To ensure that Tn+1− v ∼= Sn+1−w, we take Tn+1 to include Tn together with a copy Ŝn of
Sn, coloured appropriately and joined up in the same way, as indicated on the left in Figure 7.1.

The only problem up to this point is that we have not been faithful to our intention of
extending in the same way at each red or blue leaf of Tn and Sn. Thus, we now copy the same
subgraph appearing beyond r in Fig. 7.1, including its coloured leaves, onto all the other red
leaves of Sn and Tn. Similarly we copy the subgraph appearing beyond the blue leaf b of Sn
onto all other blue leaves of Sn and Tn.

Figure 7.2: A sketch of Tn+1 and Sn+1 after countably many steps.

At this point, we would have kept our promise of adding the same thing behind every red
and blue leaf of Tn and Sn, and hence would have achieved Tn+1− xj ∼= Sn+1− yj for all j 6 n.
However, by gluing the additional copies to blue and red leaves of Tn and Sn, we now have
ruined the isomorphism between Tn+1− v and Sn+1−w. In order to repair this, we also have to
copy the graphs appearing beyond r and b in Fig. 7.1 respectively onto all red and blue leaves
of Ŝn and T̂n. This repairs Tn+1 − v ∼= Sn+1 − w, but again violates our initial promises. In
this way, we keep adding, step by step, further copies of the graphs appearing beyond r and b
in Fig. 7.1 respectively onto all red and blue leaves of everything we have constructed so far.

At every step we preserved the colours of leaves in all newly added copies, so we get new red
leaves and blue leaves, and we continue the process of copying onto those new leaves as well.
After countably many steps we have dealt with all red or blue leaves. We take these new trees
to be Sn+1 and Tn+1. They are non-isomorphic, since after removing all long bare paths, Tn+1

contains Tn as a component, whereas Sn+1 does not.

Figure 7.2 shows how Tn+1 and Sn+1 might appear. We have now fulfilled our intention of
sticking the same thing onto all red leaves and the same thing onto all blue leaves, but we have
also ensured that Tn+1 − v ∼= Sn+1 − w, as desired.

7.3 Closure with respect to promises

In this section, we formalise the ideas set forth in the proof sketch of how to extend a graph so
that it looks the same beyond certain sets of leaves.
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Given a directed edge ~e = ~xy in some forest G = (V,E), we denote by G(~e) the unique
component of G− e containing the vertex y. We think of G(~e) as a rooted tree with root y. As
indicated in the previous section, in order to make T and S hypomorphic at the end, we will
often have to guarantee S(~e) ∼= T (~f) for certain pairs of edges ~e and ~f .

Definition 7.3.1 (Promise structure). A promise structure P =
(
G, ~P ,L

)
consists of:

• a forest G,

• ~P = {~pi : i ∈ I} a set of directed edges ~P ⊆ ~E(G), and

• L = {Li : i ∈ I} a set of pairwise disjoint sets of leaves of G.

Often, when the context is clear, we will not make a distinction between L and the set
⋃
i Li,

for notational convenience.

We will call an edge ~pi ∈ ~P a promise edge, and leaves ` ∈ Li promise leaves. A promise edge
~pi ∈ ~P is called a placeholder-promise if the component G(~pi) consists of a single leaf ci ∈ Li,
then called a placeholder-leaf. We write

Lp = {Li : i ∈ I, ~pi a placeholder-promise} and Lq = L \ Lp.

Given a leaf ` in G, there is a unique edge q` ∈ E(G) incident with `, and this edge has a
natural orientation ~q` towards `. Informally, we think of the ‘promise’ ` ∈ Li as saying that
if we extend G to a graph H ⊃ G, we will do so in such a way that H(~q`) ∼= H(~pi). Given a
promise structure P =

(
G, ~P ,L

)
, we would like to construct a graph H ⊃ G which satisfies all

the promises in P. This will be done by the following kind of extension.

Definition 7.3.2 (Leaf extension). Given an inclusion H ⊇ G of forests and a set L of leaves
of G, H is called a leaf extension, or more specifically an L-extension, of G, if:

• every component of H contains precisely one component of G, and

• for every vertex h ∈ H \G and every vertex g ∈ G in the same component as h, the unique
g − h path in H meets L.

In the remainder of this section we describe a construction of a forest cl(G) which has the
following properties.

Proposition 7.3.3. Let G be a forest and let
(
G, ~P ,L

)
be a promise structure. Then there is

a forest cl(G) such that:

(cl.1) cl(G) is an Lq-extension of G, and

(cl.2) for every ~pi ∈ ~P and all ` ∈ Li,

cl(G)(~pi) ∼= cl(G)(~q`)

are isomorphic as rooted trees.

We first describe the construction of cl(G), and then verify the properties asserted in Propo-
sition 7.3.3. Let us define a sequence of promise structures

(
H(i), ~P ,L(i)

)
as follows. We set(

H(0), ~P ,L(0)
)

=
(
G, ~P ,L

)
. We construct a sequence of graphs

G = H(0) ⊆ H(1) ⊆ H(2) ⊆ · · · ,
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and each H(n) will get a promise structure whose set of promise edges is equal to ~P again, yet
whose set of promise leaves depends on n as follows: given

(
H(n), ~P ,L(n)

)
, we construct H(n+1)

by gluing, for each i, at every promise leaf ` ∈ L(n)
i a rooted copy of G(~pi). As promise leaves

for H(n+1) we take all promise leaves from the newly added copies of G(~pi). That is, if a leaf
` ∈ G(~pi) was such that ` ∈ Lj , then every copy of that leaf will be in L

(n+1)
j .

Formally, suppose that
(
G, ~P ,L

)
is a promise structure. For each ~pi ∈ ~P let Ci = G(~pi) and

let ci be the root of this tree. If U is a set and H is a graph, then we denote by U ×H the graph
whose vertices are pairs (u, v) with u ∈ U and v a vertex of H, and with an edge from (u, v) to
(u,w) whenever vw is an edge of H. Let

(
H(0), ~P ,L(0)

)
=
(
G, ~P ,L

)
and given

(
H(n), ~P ,L(n)

)
let us define:

• H(n+1) to be the quotient of H(n) t⊔i∈I(L
(n)
i × Ci) w.r.t. the relation

l ∼ (l, ci) for l ∈ L(n)
i ∈ L(n).

• L(n+1) =
{
L

(n+1)
i : i ∈ I

}
with L

(n+1)
i =

⋃
j∈I L

(n)
j × (Cj ∩ Li).

There is a sequence of natural inclusions G = H(0) ⊆ H(1) ⊆ · · · and we define cl(G) to be
the direct limit of this sequence.

Definition 7.3.4 (Promise-respecting map). Let G be a forest, F (1) and F (2) be leaf extensions
of G, and P(1) =

(
F (1), ~P ,L(1)

)
and P(2) =

(
F (2), ~P ,L(2)

)
be promise structures with ~P ⊆

~E(G). Suppose X(1) ⊆ V (F (1)) and X(2) ⊆ V (F (2)).
A bijection ϕ : X(1) → X(2) is ~P -respecting (with respect to P(1) and P(2)) if the image of

L
(1)
i ∩X(1) under ϕ is L

(2)
i ∩X(2) for all i.

Since both promise structures P(1) and P(2) refer to the same edge set ~P , we can think of
them as defining a |~P |-colouring on some sets of leaves. Then a mapping is ~P -respecting if it
preserves leaf colours.

Lemma 7.3.5. Let
(
G, ~P ,L

)
be a promise structure and let G = H(0) ⊆ H(1) ⊆ · · · be as

defined above. Then the following statements hold:

• H(n) is an Lq-extension of G for all n,

• ∆(H(n+1)) = ∆(H(n)) for all n, and

• For each ` ∈ Li ∈ L there exists a sequence of ~P -respecting rooted isomorphisms ϕ`,n : H(n)(~pi)→
H(n+1)(~q`) such that ϕ`,n+1 extends ϕ`,n for all n ∈ N.

Proof. The first two statements are clear. We will prove the third by induction on n. To
construct H(1) from G, we glued a rooted copy of G(~pi) to each ` ∈ Li, keeping all copies of
promise leaves. Hence, for any given ` ∈ Li, the natural isomorphism ϕ`,0 : G(~pi)→ H(1)(~q`) is
~P -respecting as desired.

Now suppose that ϕ`,n exists for all ` ∈ L. To form H(n+1)(~pi), we glued on a copy of G(~pi)
to each ` ∈ L(n)

i ∩ H(n)(~pi), and to construct H(n+2)(~q`), we glued on a copy of G(~pi) to each
` ∈ L(n+1)

i ∩H(n+1)(~q`), in both cases keeping all copies of promise leaves.
Therefore, since ϕ`,n was a ~P -respecting rooted isomorphism from H(n)(~pi) to H(n+1)(~q`),

we can combine the individual isomorphisms between the newly added copies of G(~pi) with ϕ`,n
to form ϕ`,n+1.

We can now complete the proof of Proposition 7.3.3.
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Proof of Proposition 7.3.3. First, we note thatG ⊆ cl(G), and since eachH(n) is an Lq-extension
of G for all n, so is cl(G). Also, since each H(n) is a forest it follows that cl(G) is a forest.

Let us show that cl(G) satisfies property (cl.2). Since we have the sequence of inclusions
G = H(0) ⊆ H(1) ⊆ . . ., it follows that cl(G)(~q`) is the direct limit of the sequence H(0)(~q`) ⊆
H(1)(~q`) ⊆ · · · and also cl(G)(~pi) is the direct limit of the sequence H(0)(~pi) ⊆ H(1)(~pi) ⊆ · · · .
By Lemma 7.3.5 there is a sequence of rooted isomorphisms ϕ`,n : H(n)(~pi) → H(n+1)(~q`) such
that ϕ`,n+1 extends ϕ`,n, so ϕ` =

⋃
n ϕ`,n is the required isomorphism.

We remark that it is possible to show that cl(G) is in fact determined, uniquely up to
isomorphism, by the properties (cl.1) and (cl.2). Also we note that since each H(n) has the same
maximum degree as G, it follows that ∆(cl(G)) = ∆(G).

There is a natural promise structure on cl(G) given by the placeholder promises in ~P and
their corresponding promise leaves. In the construction sketch from Section 7.2, these leaves
corresponded to the yellow and green leaves. We now show how to keep track of the placeholder
promises when taking the closure of a promise structure.

Note that if ~pi is a placeholder promise, then for each
(
H(n),P,L(n)

)
we have L

(n)
i ⊇ L(n−1)

i .
Indeed, for each leaf in L

(n−1)
i we glue a copy of the component ci together with the associated

promises on the leaves in this component. However, ci is just a single vertex, with a promise
corresponding to ~pi, and hence L

(n)
i ⊇ L

(n−1)
i . For every placeholder promise ~pi ∈ ~P we define

cl(Li) =
⋃
n L

(n)
i .

Definition 7.3.6 (Closure of a promise structure). The closure of the promise structure (G,P,L)
is the promise structure cl(P) =

(
cl(G), cl(~P ), cl(L)

)
, where:

• cl(~P ) =
{
~pi : ~pi ∈ ~P is a placeholder-promise

}
, and

• cl(L) = {cl(Li) : ~pi ∈ ~P is a placeholder-promise}.
We note that, since each isomorphism ϕ`,n from Lemma 7.3.5 was ~P -respecting, it is possible

to strengthen Proposition 7.3.3 in the following way.

Proposition 7.3.7. Let G be a forest and let
(
G, ~P ,L

)
be a promise structure. Then the forest

cl(G) satisfies:

(cl.3) for every ~pi ∈ ~P and every ` ∈ Li,
cl(G)(~pi) ∼= cl(G)(~q`)

are isomorphic as rooted trees, and this isomorphism is cl(~P )-respecting with respect to
cl(P).

Proof. Since each isomorphism ϕ`,n : H(n)(~pi)→ H(n+1)(~q`) in Proposition 7.3.5 is ~P -respecting,
we have

ϕ`,n

(
L

(n)
i ∩H(n)(~pi)

)
= L

(n+1)
i ∩H(n+1)(~q`).

For each placeholder promise we have that cl(Li) =
⋃
n L

(n)
i , and so it follows that

cl(Li) ∩ cl(G)(~q`) =
⋃
n

(
L

(n)
i ∩H(n)(~q`)

)
and

cl(Li) ∩ cl(G)(~pi) =
⋃
n

(
L

(n)
i ∩H(n)(~pi)

)
.

From this it follows that ϕ` =
⋃
n ϕl,n is a cl(~P )-respecting isomorphism between cl(G)(~pi) and

cl(G)(~q`) as rooted trees.
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It is precisely this property (cl.3) of the promise closure that will allow us, in Claim 7.4.14
below, to maintain partial hypomorphisms during our recursive construction.

7.4 The construction

In this section we construct two hypomorphic locally finite trees neither of which embed into
the other, establishing our main theorem announced in the introduction.

7.4.1 Preliminary definitions

Definition 7.4.1 (Bare path). A path P = v0, v1, . . . , vn in a graph G is called a bare path if
degG(vi) = 2 for all internal vertices vi for 0 < i < n. The path P is a maximal bare path (or
maximally bare) if in addition degG(v0) 6= 2 6= degG(vn). An infinite path P = v0, v1, v2, . . . is
maximally bare if degG(v0) 6= 2 and degG(vi) = 2 for all i > 1.

Lemma 7.4.2. Let T be a tree and e ∈ E(T ). If every maximal bare path in T has length at
most k ∈ N, then every maximal bare path in T − e has length at most 2k.

Proof. We first note that every maximal bare path in T − e has finite length, since any infinite
bare path in Tn − e would contain a subpath which is an infinite bare path in T . If P =
{x0, x1, . . . , xn} is a maximal bare path in T − e which is not a subpath of any maximal bare
path in T , then there is at least one 1 6 i 6 n− 1 such that e is adjacent to xi, and since T was
a tree, xi is unique. Therefore, both {x0, x1, . . . , xi} and {xi, xi+1, . . . , xn} are maximal bare
paths in T . By assumption both i and n − i are at most k, and so the length of P is at most
2k, as claimed.

Definition 7.4.3 (Bare extension). Given a forest G, a subset B of leaves of G, and a component
T of G, we say that a tree T̂ ⊃ T is a bare extension of T at B to length k if T̂ can be obtained
from T by adjoining, at each vertex l ∈ B ∩ V (T ), a new path of length k starting at l and a
new leaf whose only neighbour is l.

T

A tree T with designated leaf set B.

T

A bare extension of T at B.

Figure 7.3: Building a bare extension of a tree T at B to length k. All dotted lines are maximal
bare paths of length k.

Note that the new leaves attached to each l ∈ B ensure that the paths of length k are indeed
maximal bare paths.

Definition 7.4.4 (k-ball). For G a subgraph of H, the k-ball BallH(G, k) is the induced subgraph
of H on the set of vertices within distance k of some vertex of G.
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Definition 7.4.5 (Binary tree). For k > 1, the binary tree of height k is the unique rooted tree
on 2k− 1 = 1 + 2 + · · ·+ 2k−1 vertices such that the root has degree 2, there are 2k−1 leaves, and
all other vertices have degree 3. By a binary tree we mean a binary tree of height k for some
k ∈ N.

Figure 7.4: The binary tree of height 3.

7.4.2 The back-and-forth construction

We prove the following theorem.

Theorem 7.4.6. There are two (vertex-)hypomorphic infinite trees T and S with maximum
degree 3 such that there is no embedding T ↪→ S or S ↪→ T .

To do this we shall recursively construct, for each n ∈ N,

• disjoint (possibly infinite) rooted trees Tn and Sn,

• disjoint (possibly infinite) sets Rn and Bn of leaves of the forest Tn t Sn,

• finite sets Xn ⊂ V (Tn) and Yn ⊂ V (Sn), and bijections ϕn : Xn → Yn,

• a family of isomorphisms Hn = {hn,x : Tn − x→ Sn − ϕn(x) : x ∈ Xn},

• strictly increasing sequences of integers kn > 2 and bn > 3,

such that (letting all objects indexed by −1 be the empty set) for all n ∈ N:

(†1) Tn−1 ⊂ Tn and Sn−1 ⊂ Sn as induced subgraphs,

(†2) the vertices of Tn and Sn all have degree at most 3,

(†3) the root of Tn is in Rn and the root of Sn is in Bn,

(†4) all binary trees appearing as subgraphs of Tn t Sn are finite and have height at most bn,

(†5) all bare paths in Tn t Sn are finite and have length at most kn,

(†6) BallTn(Tn−1, kn−1 + 1) is a bare extension of Tn−1 at Rn−1 ∪Bn−1 to length kn−1 + 1 and
does not meet Rn ∪Bn,

(†7) BallSn(Sn−1, kn−1 + 1) is a bare extension of Sn−1 at Rn−1 ∪Bn−1 to length kn−1 + 1 and
does not meet Rn ∪Bn,

(†8) there is no embedding from Tn into any bare extension of Sn at Rn ∪ Bn to any length,
nor from Sn into any bare extension of Tn at Rn ∪Bn to any length,

(†9) any embedding of Tn into a bare extension of Tn at Rn ∪ Bn to any length fixes the root
of Tn and has image Tn,

(†10) any embedding of Sn into a bare extension of Sn at Rn ∪ Bn to any length fixes the root
of Sn and has image Sn,
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(†11) there are enumerations V (Tn) = {tj : j ∈ Jn} and V (Sn) = {sj : j ∈ Jn} such that

• Jn−1 ⊂ Jn ⊂ N,

• {tj : j ∈ Jn} extends the enumeration {tj : j ∈ Jn−1} of V (Tn−1), and similarly for
{sj : j ∈ Jn},
• |N \ Jn| =∞,

• {0, 1, . . . , n} ⊂ Jn,

(†12) {tj , sj : j 6 n} ∩ (Rn ∪Bn) = ∅,

(†13) the finite sets of vertices Xn and Yn satisfy |Xn| = n = |Yn|, and

• Xn−1 ⊂ Xn and Yn−1 ⊂ Yn,

• ϕn � Xn−1 = ϕn−1,

• {tj : j 6 n} ⊂ X2n+1 and {sj : j 6 n} ⊂ Y2(n+1),

• (Xn ∪ Yn) ∩ (Rn ∪Bn) = ∅,

(†14) the families of isomorphisms Hn satisfy

• hn,x � (Tn−1 − x) = hn−1,x for all x ∈ Xn−1,

• the image of Rn ∩ V (Tn) under hn,x is Rn ∩ V (Sn), and

• the image of Bn ∩ V (Tn) under hn,x is Bn ∩ V (Sn) for all x ∈ Xn.

7.4.3 The construction yields the desired non-reconstructible trees.

By property (†1), we have T0 ⊂ T1 ⊂ T2 ⊂ · · · and S0 ⊂ S1 ⊂ S2 ⊂ · · · . Let T and S be the
union of the respective chains. It is clear that T and S are trees, and that as a consequence of
(†2), both trees have maximum degree 3.

We claim that the map ϕ =
⋃
n ϕn is a hypomorphism between T and S. Indeed, it follows

from (†11) and (†13) that ϕ is a well-defined bijection from V (T ) to V (S). To see that ϕ is a
hypomorphism, consider any vertex x of T . This vertex appears as some tj in our enumeration
of V (T ), so by (†14) the map

hx :=
⋃
n>2j

hn,x : T − x→ S − ϕ(x)

is an isomorphism between T − x and S − ϕ(x).

Now suppose for a contradiction that f : T ↪→ S is an embedding of T into S. Then f(t0) is
mapped into Sn for some n ∈ N. Properties (†5) and (†6) imply that after deleting all maximal
bare paths in T of length > kn, the connected component of t0 is a bare extension of Tn to
length 0. Further, by (†7), BallS(Sn, kn + 1) is a bare extension of Sn at Rn ∪ Bn to length
kn + 1. But combining the fact that f(Tn) ∩ Sn 6= ∅ and the fact that Tn does not contain long
maximal bare paths, it is easily seen that f(Tn) ⊂ BallS(Sn, kn + 1), contradicting (†8).2

The case S ↪→ T yields a contradiction in a symmetric fashion, completing the proof.

2To get the non-embedding property, we have used (†5)–(†8) at every step n. While at the first glance,
properties (†4), (†9) and (†10) do not seem to be needed at this point, they are crucial during the construction
to establish (†8) at step n+ 1. See Claim 7.4.11 below for details.
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7.4.4 The base case: there are finite rooted trees T0 and S0 satisfying re-
quirements (†1)–(†14).

Choose a pair of non-isomorphic, equally sized trees T0 and S0 of maximum degree 3, and
pick a leaf each as roots r(T0) and r(S0) for T0 and S0, subject to conditions (†8)–(†10) with
R0 = {r(T0)} and B0 = {r(S0)}. A possible choice is given in Fig. 7.5. Here, (†8) is satisfied,
because any embedding of T0 into a bare extension of S0 has to map the binary tree of height
3 in T0 to the binary tree in S0, making it impossible to embed the middle leaf. Properties (†9)
and (†10) are similar.

r(T0) r(S0)

Figure 7.5: A possible choice for finite rooted trees T0 and S0.

Let J0 = {0, 1, . . . , |T0| − 1} and choose enumerations V (T0) = {tj : j ∈ J0} and V (S0) =
{sj : j ∈ J0} with t0 6= r(T0) and s0 6= r(S0). This takes care of (†11) and (†12). Finally, (†13)
and (†14) are satisfied for X0 = Y0 = H0 = ϕ0 = ∅. Set k0 = 2 and b0 = 3.

7.4.5 The inductive step: set-up

Now, assume that we have constructed trees Tk and Sk for all k 6 n such that (†1)–(†14) are
satisfied up to n. If n = 2m is even, then we have {tj : j 6 m− 1} ⊂ Xn, so in order to satisfy
(†13) we have to construct Tn+1 and Sn+1 such that the vertex tm is taken care of in our partial
hypomorphism. Similarly, if n = 2m+1 is odd, then we have {sj : j 6 m− 1} ⊂ Yn and we have
to construct Tn+1 and Sn+1 such that the vertex sm is taken care of in our partial hypomorphism.
Both cases are symmetric, so let us assume in the following that n = 2m is even.

Now let v be the vertex with the least index in the set {tj : j ∈ Jn} \Xn, i.e.

v = ti for i = min {` : t` ∈ V (Tn) \Xn}. (7.4.1)

Then by assumption (†13), v will be tm, unless tm was already in Xn anyway. In any case,
since |Xn| = |Yn| = n, it follows from (†11) that i 6 n, so by (†12), v does not lie in our leaf
sets Rn ∪Bn, i.e.

v /∈ Rn ∪Bn. (7.4.2)

In the next sections, we will demonstrate how to to obtain trees Tn+1 ⊃ Tn and Sn+1 ⊃ Sn
with Xn+1 = Xn ∪ {v} and Yn+1 = Yn ∪ {ϕn+1(v)} satisfying (†1)—(†10) and (†13)–(†14).

After we have completed this step, since |N \ Jn| = ∞, it is clear that we can extend our
enumerations of Tn and Sn to enumerations of Tn+1 and Sn+1 as required, making sure to first
list some new elements that do not lie in Rn+1 ∪ Bn+1. This takes care of (†11) and (†12) and
completes the recursion step n 7→ n+ 1.

7.4.6 The inductive step: construction

Given the two trees Tn and Sn, we extend each of them through their roots as indicated in Fig-
ure 7.6 to trees T̃n and S̃n respectively. The trees Tn+1 and Sn+1 will be obtained as components
of the promise closure of the forest Gn = T̃n t S̃n with respect to the coloured promise edges.
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Since v is not the root of Tn, there is a first edge e on the unique path in Tn from v to the
root.

This edge we also call e(v). (7.4.3)

Then Tn − e has two connected components: one that contains the root of Tn which we name
Tn(r), and one that contains v which we name Tn(v).

Since every maximal bare path in Tn has length at most kn by (†5), it follows from Lemma 7.4.2
that all maximal bare paths in Tn − e, and so all bare paths in Tn(r) and Tn(v), have bounded
length. Let k = k̃n be twice the maximum of the length of bare paths in Tn, Sn, Tn(r) and
Tn(v), which exists by (†5).

r(Tn)

Tn

Dnv

Ŝn

r(Tn+1) g

(a) tree T̃n

r(Sn)

T̂n(r)

v̂

T̂n(v̂)D̂n

Sn

r(Sn+1)y

The tree S̃n.

Figure 7.6: All dotted lines are maximal bare paths of length at least k = k̃n. The trees Dn are
binary trees of height bn + 3, hence Dn 6↪→ Tn and Dn 6↪→ Sn by ((†4)).

To obtain T̃n, we extend Tn through its root r(Tn) ∈ Rn by a path

r(Tn) = u0, u1, . . . , up−1, up = r
(
Ŝn

)
of length p = 4(k̃n + 1) + 3, where at its last vertex up we glue a rooted copy Ŝn of Sn (via an
isomorphism ŵ ↔ w), identifying up with the root of Ŝn.

Next, we add two additional leaves at u0 and up, so that deg(r(Tn)) = 3 = deg
(

r
(
Ŝn

))
.

Further, we add a leaf r(Tn+1) at u2k+2, which will be our new root for the next tree Tn+1; and
another leaf g at u2k+5. Finally, we take a copy Dn of a rooted binary tree of height bn + 3 and
connect its root via an edge to u2k+3. This completes the construction of T̃n.

The construction of S̃n is similar, but with a twist. For its construction, we extend Sn
through its root r(Sn) ∈ Bn by a path

r(Sn) = vp, vp−1, . . . , v1, v0 = r
(
T̂n(r)

)
of length p, where at its last vertex v0 we glue a copy T̂n(r) of Tn(r), identifying v0 with the
root of T̂n(r). Then, we take a copy T̂n(v̂) of Tn(v) and connect v̂ via an edge to vk+1.

This edge we call e(v̂). (7.4.4)

Finally, as before, we add two leaves at v0 and vp so that deg
(

r
(
T̂n(r)

))
= 3 = deg (r(Sn)).

Next, we add a leaf r(Sn+1) to v2k+5, which will be our new root for the next tree Sn+1; and
another leaf y to v2k+2. Finally, we take another copy D̂n of a rooted binary tree of height bn+3
and connect its root via an edge to v2k+3. This completes the construction of S̃n.
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By the induction hypothesis, certain leaves of Tn have been coloured with one of the two
colours Rn ∪ Bn, and also some leaves of Sn have been coloured with one of the two colours
Rn ∪Bn. In the above construction, we colour leaves of Ŝn, T̂n(r) and T̂n(v̂) accordingly:

R̃n =
(
Rn ∪

{
ŵ ∈ Ŝn ∪ T̂n(r) ∪ T̂n(v̂) : w ∈ Rn

})
\
{

r(Tn), r
(
T̂n(r)

)}
,

B̃n =
(
Bn ∪

{
ŵ ∈ Ŝn ∪ T̂n(r) ∪ T̂n(v̂) : w ∈ Bn

})
\
{

r(Sn), r
(
Ŝn

)}
.

(7.4.5)

Now put Gn := T̃n t S̃n and consider the following promise structure P =
(
Gn, ~P ,L

)
on Gn, consisting of four promise edges ~P = {~p1, ~p2, ~p3, ~p4} and corresponding leaf sets L =
{L1, L2, L3, L4}, as follows:

• ~p1 pointing in Tn towards the root r(Tn), with L1 = R̃n,

• ~p2 pointing in Sn towards the root r(Sn), with L2 = B̃n,

• ~p3 pointing in T̃n towards the root r(Tn+1), with L3 = {r(Tn+1), y},
• ~p4 pointing in S̃n towards the root r(Sn+1), with L4 = {r(Sn+1), g}.

(7.4.6)

Note that our construction so far has been tailored to provide us with a ~P -respecting iso-
morphism

h : T̃n − v → S̃n − v̂. (7.4.7)

Consider the closure cl(Gn) with respect to the promise structure P defined above. Since
cl(Gn) is a leaf-extension of Gn, it has two connected components, just as Gn. We now define

Tn+1 = the component containing Tn in cl(Gn), and

Sn+1 = the component containing Sn in cl(Gn).
(7.4.8)

It follows that cl(Gn) = Tn+1 tSn+1 and v̂ ∈ V (Sn+1). Further, since ~p3 and ~p4 are placeholder
promises, cl(G) carries a corresponding promise structure, see Definition 7.3.6. We define

Rn+1 = cl(L3) and Bn+1 = cl(L4). (7.4.9)

Lastly, we set

Xn+1 = Xn ∪ {v},
Yn+1 = Yn ∪ {v̂}, and

ϕn+1 = ϕn ∪ {(v, v̂)},
(7.4.10)

and put

kn+1 = 2k̃n + 3 and bn+1 = bn + 3 (7.4.11)

The construction of trees Tn+1 and Sn+1, coloured leaf sets Rn+1 and Bn+1, the bijection
ϕn+1 : Xn+1 → Yn+1, and integers kn+1 and bn+1 is now complete. In the following, we verify
that (†1)–(†14) are indeed satisfied for the (n+ 1)th instance.
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7.4.7 The inductive step: verification

Claim 7.4.7. Tn+1 and Sn+1 extend Tn and Sn. Moreover, they are rooted trees of maximum
degree 3 such that their respective roots are contained in Rn+1 and Bn+1. Hence, (†1)–(†3) are
satisfied.

Proof. Property (†1) follows from (cl.1), i.e. that cl(Gn) is a leaf-extension of Gn. Thus, Tn+1

is a leaf extension of T̃n, which in turn is a leaf extension of Tn, and similar for Sn. This shows
(†1).

As noted after the proof of Proposition 7.3.3, taking the closure does not affect the maximum
degree, i.e. ∆(cl(Gn)) = ∆(Gn) = 3. This shows (†2).

Finally, (7.4.9) implies (†3), as r(Tn+1) ∈ Rn+1 and r(Sn+1) ∈ Bn+1.

Claim 7.4.8. All binary trees appearing as subgraphs of Tn+1 t Sn+1 have height at most bn+1,
and every such tree of height bn+1 is some copy Dn or D̂n. Hence, Tn+1 and Sn+1 satisfy (†4).

Proof. We first claim that all binary trees appearing as subgraphs of T̃n t S̃n which are not
contained in Dn or D̂n have height at most bn + 1. Indeed, note that any binary tree appearing
as a subgraph of Tn, T̂n(r), T̂n(v), Ŝn or Sn has height at most bn by the inductive hypothesis.
Since the paths we added to the roots of Tn and Ŝn to form T̃n were sufficiently long, any binary
tree appearing as a subgraph of T̃n can only meet one of Tn, Ŝn or Dn. Since the roots of Tn and
Ŝn are adjacent to two new vertices in T̃n, one of degree 1, any such tree meeting Tn or Ŝn must
have height at most bn+ 1. By Figure 7.6 we see that any binary tree in T̃n which meets Dn but
whose root lies outside of Dn has height at most 3 6 bn + 1. Consider then a binary tree whose
root lies inside Dn, but that is not contained in Dn. Again, by Figure 7.6 we see that the root of
Dn must lie in one of the bottom three layers of this binary tree. Hence, if the root of this tree
lies on the kth level of Dn, then the tree can have height at most min{bn + 3 − k, k + 2}, and
hence the tree has height at most bn/2 + 2 6 bn + 1. Any other binary tree meeting Dn is then
contained in Dn. It follows that the only binary tree of height bn + 3 appearing as a subgraph
of T̃n is Dn, and a similar argument holds for S̃n and D̂n.

Recall that Tn+1 and Sn+1 are the components of cl(T̃n t S̃n) containing T̃n and S̃n respec-
tively. If we refer back to Section 7.3 we see that Tn+1 can be formed from T̃n by repeatedly
gluing components isomorphic to T̃n(~p1) or S̃n(~p2) to leaves. Consider a binary tree appearing
as a subgraph of Tn+1 which is contained in T̃n or one of the copies of T̃n(~p1) or S̃n(~p2). By the
previous paragraph, this tree has height at most bn + 3, and if it has height bn + 3 it is a copy
Dn or D̂n. Suppose then that there is a binary tree, of height b, whose root is in T̃n, but is not
contained in T̃n. Such a tree must contain some vertex ` ∈ T̃n which is adjacent to a vertex not
in T̃n. Hence, ` must have been a leaf in T̃n at which a copy of T̃n(~p1) or S̃n(~p2) was glued on.
However, the roots of each of these components are adjacent to just two vertices, one of degree
1, and hence this leaf ` must either be in the bottom, or second to bottom layer of the binary
tree. Therefore, b 6 bn + 2. A similar argument holds when the root lies in some copy of T̃n(~p1)
or S̃n(~p2), and also for Sn+1.

Therefore, all binary trees appearing as subgraphs of Tn+1tSn+1 have height at most bn+3,
and every such tree is some copy Dn or D̂n. Hence, since bn+1 = bn+3, it follows that bn+1 > bn
and Tn+1 and Sn+1 satisfy (†4).

Claim 7.4.9. Every maximal bare path in Tn+1 t Sn+1 has length at most kn+1. Hence, Tn+1

and Sn+1 satisfy (†5).

Proof. We first claim that all maximal bare paths in T̃ntS̃n have length at most 2k̃n+3. Firstly,
we note that any maximal bare path which is contained in Tn or Ŝn has length at most kn 6 k̃n
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by the induction hypothesis. Also, since the roots of Tn and Ŝn have degree 3 in T̃n, any maximal
bare path is either contained in Tn or Ŝn, or does not contain any interior vertices from Tn or
Ŝn. However, it is clear from the construction that any maximal bare path in T̃n that does not
contain any interior vertices from Tn or Ŝn has length at most 2k̃n + 3. Similarly, any maximal
bare path which is contained in T̂n(r), T̂n(v), or Sn has length at most k̃n by definition. By the
same reasoning as above, any maximal bare path in S̃n not contained in T̂n(r), T̂n(v), or Sn has
length at most 2k̃n + 3.

Again, recall that Tn+1 can be formed from T̃n by repeatedly gluing components isomorphic
to T̃n(~p1) or S̃n(~p2) to leaves. Any maximal bare path in Tn+1 which is contained in T̃n or one of
the copies of T̃n(~p1) or S̃n(~p2) has length at most 2k̃n + 3 by the previous paragraph. However,
since every interior vertex in a maximal bare path has degree two, and the vertices in Tn+1 at
which we, at some point in the construction, stuck on copies of T̃n(~p1) or S̃n(~p2) have degree 3,
any maximal bare path in Tn+1 must be contained in T̃n or one of the copies of T̃n(~p1) or S̃n(~p2).
Again, a similar argument holds for Sn+1. Hence, all maximal bare paths in Tn+1 t Sn+1 have
length at most 2k̃n + 3. Therefore, since kn+1 = 2k̃n + 3, it follows that kn+1 > kn and Tn+1

and Sn+1 satisfy (†5).

Claim 7.4.10. BallTn+1(Tn, kn + 1) is a bare extension of Tn at Rn ∪ Bn to length kn + 1 and
does not meet Rn+1 ∪Bn+1 and similarly for Sn+1. Hence, Tn+1 and Sn+1 satisfy (†6) and (†7)
respectively.

Proof. We will show that Tn+1 satisfies (†6), the proof that Sn+1 satisfies (†7) is analogous. By
Proposition 7.3.3, the tree Tn+1 is an

(
(R̃n ∪ B̃n) ∩ V (T̃n)

)
-extension of T̃n. Hence Tn+1 is an

((
(R̃n ∪ B̃n) ∩ V (Tn)

)
∪ r(Tn)

)
=
(
(Rn ∪Bn) ∩ V (Tn)

)
-extension of Tn. (7.4.12)

By looking at the construction of cl(G) from Section 7.3, we see that Tn+1 is also an L′-
extension of the supertree T ′ ⊇ Tn formed by gluing a copy of T̃n(~p1) to every leaf in Rn∩V (Tn)
and a copy of S̃n(~p2) to every leaf in Bn∩V (Tn), where the leaves in L′ are the inherited promise
leaves from the copies of T̃n(~p1) and S̃n(~p2).

However, we note that every promise leaf in T̃n(~p1) and S̃n(~p2) is at distance at least k̃n + 1
from the respective root, and so BallTn+1(Tn, k̃n) = BallT ′(Tn, k̃n). However, BallT ′(Tn, k̃n) can
be seen immediately to be a bare extension of Tn at Rn∪Bn to length k̃n, and since k̃n > kn+ 1
it follows that BallTn+1(Tn, kn + 1) is a bare extension of Tn at Rn ∪ Bn to length kn + 1 as
claimed.

Finally, we note that Rn+1∪Bn+1 is the set of promise leaves cl(Ln). By the same reasoning as
before, BallTn+1(Tn, kn+1) contains no promise leaf in cl(Ln), and so does not meet Rn+1∪Bn+1

as claimed.

Claim 7.4.11. Let Un+1 be a bare extension of cl(Gn) = Tn+1 t Sn+1 at Rn+1 ∪ Bn+1 to any
length. Then any embedding of Tn+1 or Sn+1 into Un+1 fixes the respective root. Hence, Tn+1

and Sn+1 satisfy (†8).

Proof. Recall that the promise closure was constructed by recursively adding copies of rooted
trees Ci and identifying their roots with promise leaves. For the promise structure P =(
Gn, ~P ,L

)
on Gn we have C1 = T̃n(~p1) and C2 = S̃n(~p2).

Note that by (†5), the image of any embedding Tn ↪→ Un+1 cannot contain a bare path of
length kn + 1. Also, by construction, every copy of Tn, Sn, T̂n(r), or T̂n(v̂) in Tn+1 has the
property that its (kn + 1)-ball in Tn+1 is a bare extension to length kn + 1 of this copy. Hence,
if the root of Tn embeds into some copy of Tn, Sn, T̂n(r), or T̂n(v̂), then the whole tree embeds
into a bare extension of this copy. The same is true for Sn.
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By (†8), there are no embeddings of Tn into a bare extension of Sn, or of Sn into a bare
extension of Tn. Moreover, since both T̂n(r) and T̂n(v̂) are subtrees of Tn, there is no embedding
of Tn or Sn into bare extensions of them by (†8) and (†9).

Thus, only the following embeddings are possible:

• Tn embeds into a bare extension of a copy of Tn, or Sn embeds into a bare extension of a
copy of Sn. In both cases, the root must be preserved, as otherwise we contradict (†9) or
(†10).

Let f : Tn+1 ↪→ Un+1 be an embedding. By Claim 7.4.8, Un+1 contains no binary trees of
height bn + 3 apart from Dn, D̂n, and the copies of those two trees that were created by adding
copies of C1 and C2. Consequently f maps Dn to one of these copies, mapping the root to
the root. The neighbours of r(Tn+1) and g must map to vertices of degree 3 at distance two
and three from the image of the root of Dn respectively, which forces f(r(Tn+1)) ∈ Rn+1. If
f(r(Tn+1)) = r(Tn+1) then we are done.

Otherwise there are two possibilities for f(r(Tn+1)). If f(r(Tn+1)) is contained in a copy of
C1, then r(Tn) maps to a promise leaf other than the root in a copy of Tn, Sn, T̂n(r), or T̂n(v̂).
If f(r(Tn+1)) = y or f(r(Tn+1)) is contained in a copy of C2, then r(Tn) maps to a copy of
r
(
T̂n(r)

)
or some vertex of T̂n(v̂). In both cases the root of Tn does not map to the root of a

copy of Tn, which is impossible by the first bullet point.

Finally, let f : Sn+1 ↪→ Un+1 be an embedding. By the same arguments as above f(r(Sn+1)) ∈
Bn+1. If f fixes r(Sn+1), we are done.

Otherwise we have again two cases. If f(r(Sn+1)) = g, or f(r(Sn+1)) is contained in a copy
of C1, then vk+1 (the neighbour of v̂ on the long path) would have to map to a vertex of degree
2, giving an immediate contradiction. If f(r(Sn+1)) is contained in a copy of C2, then r(Sn)
maps to a promise leaf other than the root in a copy of Tn, Sn, T̂n(r), or T̂n(v̂) which is also
impossible by the observations in the bullet points.

Claim 7.4.12. Let Un+1 be as in Claim 7.4.11. Then there is no embedding of Tn+1 or Sn+1

into Un+1 whose image contains vertices outside of cl(Gn), i.e. vertices that have been added to
form the bare extension.

Since a root-preserving embedding of a locally finite tree into itself must be an automorphism,
this together with the previous claim implies (†9)and (†10).

Proof. We prove this claim for Tn+1, the proof for Sn+1 is similar. Assume for a contradiction
that there is a vertex w of Tn+1 and an embedding f : Tn+1 ↪→ Un+1 such that f(w) /∈ cl(Gn).
By definition of bare extension, removing f(w) from Un+1 splits the component of f(w) into at
most two components, one of which is a path.

Note first that w does not lie in a copy of Dn or D̂n, because these must map to binary trees
of the same height by Claim 7.4.8. Furthermore, all vertices in Rn+1 ∪ Bn+1 have a neighbour
of degree 3 whose neighbours all have degree > 2, thus w /∈ Rn+1 ∪ Bn+1. Finally, only one
component of Tn+1 − w can contain vertices of degree 3. Consequently, w must lie in a copy C
of Tn, Sn, T̂n(r), or T̂n(v̂).

All maximal bare paths in the image f(C) have length at most k = k̃n, so f(C) cannot
intersect any copies of Tn, Sn, T̂n(r), or (T̂n(v̂) + vk+1). Let r be the root of C (where r = v̂
in the last case). Now f(r) must have the following properties: it is a vertex of degree 3, and
the root of a nearest binary tree of height bn+1 not containing f(r) lies at distance d from f(r),
where 5 6 d 6 2k + 4.

But the only vertices with these properties are contained in copies of Tn, Ŝn, T̂n(r), or
(T̂n(v̂) + vk+1). This contradicts the fact that f(C) does not intersect any of these copies.
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Claim 7.4.13. The function ϕn+1 is a well-defined bijection extending ϕn, such that its domain
and range do not intersect Rn+1 ∪Bn+1. Hence, property (†13) holds for ϕn+1 : Xn+1 → Yn+1.

Proof. By the choice of x in (7.4.1) and the definition of ϕn+1 : Xn+1 → Yn+1 in (7.4.10), the
first three items of property (†13) hold.

Since v does not lie in Rn ∪ Bn by (7.4.2), it follows by our construction of the promise
structure P =

(
Gn, ~P ,L

)
in (7.4.5) and (7.4.6) that neither v nor v̂ = ϕn+1(v) appear as

promise leaves in L. Furthermore, by the induction hypothesis, (Xn ∪ Yn) ∩ (Rn ∪ Bn) = ∅, so
no vertex in (Xn ∪ Yn) appears as a promise leaf in L either. Thus, in formulas,

(Xn+1 ∪ Yn+1) ∩
⋃
L∈L

L = ∅. (7.4.13)

In particular, since

(Rn+1 ∪Bn+1) ∩Gn = (cl(L3) ∪ cl(L4)) ∩Gn = L3 ∪ L4,

and Xn+1 ∪ Yn+1 ⊂ Gn, we get (Xn+1 ∪ Yn+1) ∩ (Rn+1 ∪Bn+1) = ∅. Thus, also the last item of
(†13) is verified.

Claim 7.4.14. There is a family of isomorphisms Hn+1 = {hn+1,x : x ∈ Xn+1} witnessing that
Tn+1 − x and Sn+1 − ϕn+1(x) are isomorphic for all x ∈ Xn+1, such that hn+1,x extends hn,x
for all x ∈ Xn. Hence, property (†14) holds.

Proof. There are four things to be verified for this claim. Firstly, we need an isomorphism hn+1,v

witnessing that Tn+1− v and Sn+1− v̂ are isomorphic. Secondly, we need to extend all previous
isomorphisms hn,x between Tn−x and Sn−ϕn(x) to Tn+1−x and Sn+1−ϕn(x). This will take
care of the first item of (†14). To also comply with the remaining two items, we need to make
sure that each isomorphism in

Hn+1 = {hn+1,x : x ∈ Xn+1}

maps leaves in Rn+1 ∩ V (Tn+1) bijectively to leaves in Rn+1 ∩ V (Sn+1), and similarly for Bn+1.
To find the first isomorphism, note that by construction of the promise structure P =(

Gn, ~P ,L
)

on Gn in (7.4.5), and properties (cl.1) and (cl.3) of the promise closure, the trees

Tn+1 and Sn+1 are obtained from T̃n and S̃n by attaching at every leaf r ∈ R̃n a copy of the
rooted tree cl(Gn)(~p1), and by attaching at every leaf b ∈ B̃n a copy of the rooted tree cl(Gn)(~p2).

By (7.4.13), neither v nor ϕn+1(v) are mentioned in L. As observed in (7.4.7), there is a
~P -respecting isomorphism

h : T̃n − v → S̃n − ϕn+1(v).

In other words, h maps promise leaves in Li∩V (T̃n) bijectively to the promise leaves in Li∩V (S̃n)
for all i = 1, 2, 3, 4. Our plan is to extend h to an isomorphism between Tn+1−v and Sn+1−ϕn(v)
by mapping the corresponding copies of cl(Gn)(~p1) and cl(Gn)(~p2) attached to the various red
and blue leaves to each other.

Formally, by (cl.3) there is for each ` ∈
(
R̃n ∪ B̃n

)
∩ V (T ) a cl(~P )-respecting isomorphism

of rooted trees
cl(Gn)(~q`) ∼= cl(Gn)(~qh(`)).

Therefore, by combining the isomorphism h between T̃n − v and S̃n − ϕn+1(v) with these iso-
morphisms between each cl(Gn)(~q`) and cl(Gn)(~qh(`)) we get a cl(~P )-respecting isomorphism

hn+1,v : Tn+1 − v → Sn+1 − ϕn+1(v).
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And since Rn+1 and Bn+1 have been defined in (7.4.9) to be the promise leaf sets of cl(P),
by definition of cl(~P )-respecting (Def. 7.3.4), the image of Rn+1 ∩ V (Tn+1) under hn+1,v is
Rn+1 ∩ V (Sn+1), and similarly for Bn+1.

It remains to extend the old isomorphisms in Hn. As argued in (7.4.12), both trees Tn+1

and Sn+1 are leaf extensions of Tn and Sn at Rn∪Bn respectively. By property (cl.3), these leaf
extensions are obtained by attaching at every leaf r ∈ Rn a copy of the rooted tree cl(Gn)(~p1),
and similarly by attaching at every leaf b ∈ Bn a copy of the rooted tree cl(Gn)(~p2).

By induction assumption (†14), for each x ∈ Xn the isomorphism

hn,x : Tn − x→ Sn − ϕn(x)

maps the red leaves of Tn bijectively to the red leaves of Sn, and the blue leaves of Tn bijectively
to the blue leaves of Sn. Thus, by property (cl.3), there are cl(~P )-respecting isomorphisms of
rooted trees

cl(Gn)(~q`) ∼= cl(Gn)(~qhn,x(`))

for all ` ∈ (Rn ∪ Bn) ∩ V (Tn). By combining the isomorphism hn,x between Tn − x and Sn −
ϕn(x) with these isomorphisms between each cl(Gn)(~q`) and cl(Gn)(~qhn,x(l)), we obtain a cl(~P )-
respecting extension

hn+1,x : Tn+1 − x→ Sn+1 − ϕn(x).

As before, by definition of cl(~P )-respecting, the image of Rn+1∩V (Tn+1) under hn+1,x is Rn+1∩
V (Sn+1), and similarly for Bn+1.

Finally, by construction we have hn+1,x � (Tn − x) = hn,x for all x ∈ Xn as desired. The
proof is complete.

7.5 The trees are also edge-hypomorphic

In this final section, we briefly indicate why the trees T and S yielded by our strategy above are
automatically edge-hypomorphic: we claim the correspondence

ψ : e(x) 7→ e(ϕ(x))

as introduced in (7.4.3) and (7.4.4) is an edge-hypomorphism between T and S. For this, we
need to verify that

(a) ψ is a bijection between E(T ) and E(S), and that

(b) the maps hx ∪ {〈x, ϕ(x)〉} : G− e(x)→ H − e(ϕ(x)) are isomorphisms.

Regarding (b), observe that the map h as defined in (7.4.7) yields, by construction, also a
~P -respecting isomorphism

h ∪ {(v, v̂)} : T̃n − e(v)→ S̃n − e(v̂),

and from there, the arguments are entirely the same as in the previous section.
For (a), we use the canonical bijection between the edge set of a rooted tree, and its vertices

other than the root; namely the bijection mapping every such vertex to the first edge on its
unique path to the root. Thus, given the enumeration of V (Tn) and V (Sn) in (†11), we obtain
corresponding enumerations of E(Tn) and E(Sn), and since the rooted trees Tn and Sn are
order-preserving subtrees of the rooted trees Tn+1 and Sn+1 (cf. Figure 7.6), it follows that
also our enumerations of E(Tn) and E(Sn) extend the enumerations of E(Tn−1) and E(Sn−1)
respectively. But now it follows from (†13) and the definition of ψ that by step 2(n+ 1) we have
dealt with the first n edges in our enumerations of E(T ) and E(S) respectively.
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Chapter 8

Non-reconstructible locally finite
graphs

8.1 Introduction

Two graphs G and H are hypomorphic if there exists a bijection ϕ between their vertex sets such
that the induced subgraphs G− v and H − ϕ(v) are isomorphic for each vertex v of G. We say
that a graph G is reconstructible if H ∼= G for every H hypomorphic to G. The Reconstruction
Conjecture, a famous unsolved problem attributed to Kelly and Ulam, suggests that every finite
graph with at least three vertices is reconstructible.

For an overview of results towards the Reconstruction Conjecture for finite graphs see the
survey of Bondy and Hemminger [23]. The corresponding reconstruction problem for infinite
graphs is false: the countable regular tree T∞, and two disjoint copies of it (written as T∞ ∪
T∞) are easily seen to be non-homeomorphic reconstructions of each other. This example,
however, contains vertices of infinite degree. Regarding locally finite graphs, Harary, Schwenk
and Scott [76] showed that there exists a non-reconstructible locally finite forest. However,
they conjectured that the Reconstruction Conjecture should hold for locally finite trees. This
conjecture has been verified for locally finite trees with at most countably many ends in a
series of paper [10, 22, 125]. However, very recently, the present authors have constructed a
counterexample to the conjecture of Harary, Schwenk and Scott.

Theorem 8.1.1 (Bowler, Erde, Heinig, Lehner, Pitz [29]). There exists a non-recon-structible
tree of maximum degree three.

The Reconstruction Conjecture has also been considered for general locally finite graphs.
Nash-Williams [102] showed that if p > 3 is an integer, then any locally finite graph with
exactly p ends is reconstructible; and in [104] he showed the same is true for p = 2. The case
p = 2 is significantly more difficult. Broadly speaking this is because every graph with p > 3
ends has some identifiable finite ‘centre’, from which the ends can be thought of as branching
out. A two-ended graph however can be structured like a double ray, without an identifiable
‘centre’.

The case of 1-ended graphs is even harder, and the following problems from a survey of
Nash-Williams [103], which would generalise the corresponding results established for trees,
have remained open.

Problem 7 (Nash-Williams). Is every locally finite graph with exactly one end reconstructible?

Problem 8 (Nash-Williams). Is every locally finite graph with countably many ends recon-
structible?
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In this paper, we extend our methods from [29] to construct examples showing that both of
Nash-Williams’ questions have negative answers. Our examples will not only be locally finite,
but in fact have bounded degree.

Theorem 8.1.2. There is a connected one-ended non-reconstructible graph with bounded max-
imum degree.

Theorem 8.1.3. There is a connected countably-ended non-reconstructible graph with bounded
maximum degree.

Since every locally finite graph has either finitely many, countably many or continuum many
ends, Theorems 8.1.1, 8.1.2 and 8.1.3 together with the results of Nash-Williams provide a
complete picture about what can be said about number of ends versus reconstruction:

• A locally finite tree with at most countably many ends is reconstructible; but there are
non-reconstructible locally finite trees with continuum many ends.

• A locally finite graph with at least two, but a finite number of ends is reconstructible;
but there are non-reconstructible locally finite graphs with one, countably many, and
continuum many ends respectively.

This paper is organised as follows: In the next section we give a short, high-level overview
of our constructions which answer Nash-Williams’ problems. In Sections 8.3 and 8.4, we de-
velop the technical tools necessary for our construction, and in Sections 8.5 and 8.6, we prove
Theorems 8.1.2 and 8.1.3.

For standard graph theoretical concepts we follow the notation in [43].

8.2 Sketch of the construction

In this section we sketch the main ideas of the construction in three steps. First, we quickly
recall our construction of two hypomorphic, non-isomorphic locally finite trees from [29]. We
will then outline how to adapt the construction to obtain a one-ended-, and a countably-ended
counterexample respectively.

8.2.1 The tree case

This section contains a very brief summary of the much more detailed sketch from [29]. The
strategy is to build trees T and S recursively, where at each step of the construction we ensure
for some new vertex v already chosen for T that there is a corresponding vertex w of S with
T − v ∼= S −w, or vice versa. This will ensure that by the end of the construction, the trees we
have built are hypomorphic.

More precisely, at step n we will construct subtrees Tn and Sn of our eventual trees, where
some of the leaves of these subtrees have been coloured in two colours, say red and blue. We
will only further extend the trees from these coloured leaves, and we will extend from leaves of
the same colour in the same way. We also make sure that earlier partial isomorphisms between
Tn − vi ∼= Sn − wi preserve leaf colours. Together, these requirements guarantee that earlier
partial isomorphisms always extend to the next step.

The Tn will be nested, and we will take T to be the union of all of them; similarly the Sn
will be nested and we take S to be the union of all of them. To ensure that T and S do not end
up being isomorphic, we first ensure, for each n, that there is no isomorphism from Tn to Sn.
Our second requirement is that T or S beyond any coloured leaf of Tn or Sn begins with a long
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r

Tn Ŝn

b

T̂n Sn

Figure 8.1: A first approximation of Tn+1 on the left, and Sn+1 on the right. All dotted lines
are long non-branching paths.

non-branching path, longer than any such path appearing in Tn or Sn. Together, this implies
that T and S are not isomorphic.

Algorithm Stage One: Suppose now that we have already constructed Tn and Sn and wish
to construct Tn+1 and Sn+1. Suppose further that we are given a vertex v of Tn for which we
wish to find a partner w in Sn+1 so that T − v and S−w are isomorphic. We begin by building
a tree T̂n 6∼= Tn which has some vertex w such that Tn− v ∼= T̂n−w. This can be done by taking
the components of Tn − v and arranging them suitably around the new vertex w.

We will take Sn+1 to include Sn and T̂n, with the copies of red and blue leaves in T̂n also
coloured red and blue respectively. As indicated on the right in Figure 8.1, we add long non-
branching paths to some blue leaf b of Sn and to some red leaf r of T̂n and join these paths at
their other endpoints by some edge en. We also join two new leaves y and g to the endvertices
of en. We colour the leaf y yellow and the leaf g green. To ensure that Tn+1− v ∼= Sn+1−w, we
take Tn+1 to include Tn together with a copy Ŝn of Sn, with its leaves coloured appropriately,
and joined up in the same way, as indicated on the left in Figure 8.1. Note that, whilst Ŝn and
Sn are isomorphic as graphs, we make a distinction as we want to lift the partial isomorphisms
between Tn− vi ∼= Sn−wi to these new graphs, and our notation aims to emphasize the natural
inclusions Tn ⊂ Tn+1 and Sn ⊂ Sn+1.

Algorithm Stage Two: We now have committed ourselves to two targets which are seemingly
irreconcilable: first, we promised to extend in the same way at each red or blue leaf of Tn and
Sn, but we also need that Tn+1 − v ∼= Sn+1 − w. The solution is to copy the same subgraph
appearing beyond r in Fig. 8.1, including its coloured leaves, onto all the other red leaves of
Sn and Tn. Similarly we copy the subgraph appearing beyond the blue leaf b of Sn onto all
other blue leaves of Sn and Tn. In doing so, we create new red and blue leaves, and we will
keep adding, step by step, further copies of the graphs appearing beyond r and b in Fig. 8.1
respectively onto all red and blue leaves of everything we have constructed so far.

Figure 8.2: A sketch of Tn+1 and Sn+1 after countably many steps.

After countably many steps we have dealt with all red and blue leaves, and it can be checked
that both our targets are achieved. We take these new trees to be Sn+1 and Tn+1. They are non-
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G0Ĝ0Ĝ0 Ĥ0 Ĥ0

H0Ĝ0Ĝ0 Ĥ0 Ĥ0

Figure 8.3: A sketch of G1 (above) and H1 (below).

isomorphic, as after removing all long non-branching paths, Tn+1 contains Tn as a component,
whereas Sn+1 does not.

8.2.2 The one-ended case

To construct a one-ended non-reconstructible graph, we initially follow the same strategy as
in the tree case and build locally finite graphs Gn and Hn and some partial hypomorphisms
between them. Simultaneously, however, we will also build one-ended locally finite graphs of a
grid-like form Fn × N (the Cartesian product of a locally finite tree Fn with a ray) which share
certain symmetries with Gn and Hn. These will allow us to glue Fn ×N onto both Gn and Hn,
in order to make them one-ended, without spoiling the partial hypomorphisms. Let us illustrate
this idea by explicitly describing the first few steps of the construction.

We start with two non-isomorphic graphs G0 and H0, such that G0 and H0 each have exactly
one red and one blue leaf. After stage one of our algorithm, our approximations to G1 and H1

as in Figure 8.1 contain, in each of G0, Ĥ0, Ĝ0 and H0, one coloured leaf. In stage two, we
add copies of these graphs recursively. It follows that the resulting graphs G′1 and H ′1 have the
global structure of a double ray, along which parts corresponding to copies of G0, Ĥ0, Ĝ0 and
H0 appear in a repeating pattern. Crucially, however, each graph G′1 and H ′1 has infinitely many
yellow and green leaves, which appear in an alternating pattern extending to infinity in both
directions along the double ray.

Consider the minor F1 of G′1 obtained by collapsing every subgraph corresponding to G0,
Ĥ0, Ĝ0 and H0 to a single point. Write ψG : G′1 → F1 for the quotient map. Then F1 is a double
ray with alternating coloured leaves hanging off it. Note that we could have started with H ′1 and
obtained the same F1. In other words, F1 approximates the global structures of both G′1 and
H ′1. Consider the one-ended grid-like graph F1 × N, where we let F1 × {0} inherit the colours
from F1. We now form G1 and H1 by gluing F1 × N onto G′1, by identifying corresponding
coloured vertices y and ψG(y), and similarly for H ′2. 1 Since the coloured leaves contained both
ends of our graphs in their closure, the graphs G1 and H1 are now one-ended.

It remains to check that our partial isomorphism h1 : G′1 − v1 → H ′1 − w1 guaranteed by
step two can be extended to G1 − v1 → H1 − w1. This can be done essentially because of the
following property: let us write L(·) for the set of coloured leaves. It can be checked that there
is an automorphism π1 : F1 → F1 such that the diagram

1For technical reasons, in the actual construction we identify ψG(y) with the corresponding base vertex of the
leaf y in G′1. In this way the coloured leaves of G′1 remain leaves, and we can continue our recursive construction.
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L(G′1) L(H ′1)

L(F1) L(F1)

ψG

h1 � L(G1)

π1 � L(F1)

ψH

is colour-preserving and commutes. Hence, π1 × id is an automorphism of F1 × N which is
compatible with our gluing procedure, so it can be combined with h1 to give us the desired
isomorphism.

We are now ready to describe the general step. Instead of describing Fn as a minor of Gn,
which no longer works näıvely at later steps, we will directly build Fn by recursion, so that it
satisfies the properties of the above diagram.

Suppose at step n we have constructed locally finite graphs Gn and Hn, and also a locally
finite tree Fn where some leaves are coloured in one of two colours. Furthermore, suppose we
have a family of isomorphisms

Hn = {hx : Gn − x→ Hn − ϕ(x) : x ∈ Xn},

for some subset Xn ⊂ V (Gn), a family of isomorphisms Πn = {πx : Fn → Fn : x ∈ Xn}, and
colour-preserving bijections ψGn : L(Gn) → L(Fn) and ψHn : L(Hn) → L(Fn) such that the
corresponding commutative diagram from above holds for each x. We construct G′n+1 and H ′n+1

according to stages one and two of the previous algorithm. As before our isomorphisms hx will
lift to isomorphisms between G′n+1 − x and H ′n+1 − ϕ(x).

ψGn(r) ψHn(b)

FGn FHn

Figure 8.4: The auxiliary graph F̃n.

Algorithm Stage Three. As indicated in Figure 8.4, we take two copies FGn and GHn of Fn,
and glue them together mimicking stage one of the algorithm, i.e. connect ψGn(r) in FGn by a
path of length three to ψHn(b) in FHn , and attach two new leaves coloured yellow and green in
the middle of the path. Call the resulting graph F̃n. We then apply stage two of the algorithm
to this graph, gluing again and again onto every blue vertex a copy of the graph of F̃n behind
ψHn(b), and similarly for every red leaf, to obtain a tree Fn+1. Since this procedure is, in
structural terms, so similar to the construction of G′n+1 and H ′n+1, it can be shown that we do
obtain a colour-preserving commuting diagram of the form

L(G′n+1) L(H ′n+1)

L(Fn+1) L(Fn+1)

ψGn+1

hx � L(G′n+1)

πx � L(Fn+1)

ψHn+1

As before, this means that we can indeed glue together G′n+1 and Fn+1 × N, and H ′n+1 and
Fn+1 × N to obtain one-ended graphs Gn+1 and Hn+1 as desired.
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At the end of our construction, after countably many steps, we have built two graphs G and
H which are hypomorphic, and for the same reasons as in the tree case the two graphs will not
be isomorphic. Further, since all Gn and Hn are one-ended, so will be G and H.

8.2.3 The countably-ended case

In order to produce hypomorphic graphs with countably many ends we follow the same procedure
as for the one-ended case, except that we start with one-ended (non-isomorphic) graphs G0 and
H0.

After the first and second stage of our algorithm, the resulting graphs G′1 and H ′1 will again
consist of infinitely many copies of G0 and H0 glued together along a double ray. After gluing
F1 × N to these graphs as before, we obtain graphs with one thick end, with many coloured
leaves tending to that end, as well as infinitely many thin ends, coming from the copies of G0

and H0, each of which contained a ray. These thin ends will eventually be rays, and so have
no coloured leaves tending towards them. This guarantees that in the next step, when we glue
F2 × N onto G′2 and H ′2, the thin ends will not be affected, and that all the other ends in the
graph will be amalgamated into one thick end.

Then, in each stage of the construction, the graphs Gn and Hn will have exactly one thick
end, again with many coloured leaves tending towards it, and infinitely many thin ends each of
which is eventually a ray. This property lifts to the graphs G and H constructed in the limit:
they will have one thick end and infinitely many ends which are eventually rays. However, since
G and H are countable, there can only be countably many of these rays. Hence the two graphs
G and H have countably many ends in total, and as before they will be hypomorphic but not
isomorphic.

8.3 Closure with respect to promises

A bridge in a graph G is an edge e = {x, y} such that x and y lie in different components of
G− e. Given a directed bridge ~e = ~xy in some graph G = (V,E), we denote by G(~e) the unique
component of G− e containing the vertex y. We think of G(~e) as a rooted graph with root y.

Definition 8.3.1 (Promise structure). A promise structure P =
(
G, ~P ,L

)
is a triple consisting

of:

• a graph G,

• ~P = {~pi : i ∈ I} a set of directed bridges ~P ⊂ ~E(G), and

• L = {Li : i ∈ I} a set of pairwise disjoint sets of leaves of G.

We insist further that, if the component G(~pi) consists of a single leaf c ∈ Lj, then i = j.

Often, when the context is clear, we will not make a distinction between L and the set
⋃
i Li,

for notational convenience.
We call an edge ~pi ∈ ~P a promise edge, and leaves ` ∈ Li promise leaves. A promise edge

~pi ∈ ~P is called a placeholder-promise if the component G(~pi) consists of a single leaf c ∈ Li,
which we call a placeholder-leaf. We write

Lp = {Li : ~pi a placeholder-promise} and Lq = L \ Lp.

Given a leaf ` in G, there is a unique edge q` ∈ E(G) incident with `, and this edge has
a natural orientation ~q` towards `. Informally, we think of ` ∈ Li as the ‘promise’ that if we
extend G to a graph H ⊃ G, we will do so in such a way that H(~q`) ∼= H(~pi).
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Definition 8.3.2 (Leaf extension). Given an inclusion H ⊇ G of graphs and a set L of leaves
of G, H is called a leaf extension, or more specifically an L-extension, of G, if:

• every component of H contains precisely one component of G, and

• every component of H −G is adjacent to a unique vertex l of G, and we have l ∈ L.

In [29], given a promise structure P =
(
G, ~P ,L

)
, it is shown how to construct a graph

cl(G) ⊃ G which has the following properties.

Proposition 8.3.3 (Closure w.r.t a promise structure, cf. [29, Proposition 3.3]). Let G be a
graph and let

(
G, ~P ,L

)
be a promise structure. Then there is a graph cl(G), called the closure

of G with respect to P, such that:

(cl.1) cl(G) is an Lq-extension of G,

(cl.2) for every ~pi ∈ ~P and all ` ∈ Li,

cl(G)(~pi) ∼= cl(G)(~q`)

are isomorphic as rooted graphs.

Since the existence of cl(G) is crucial to our proof, we briefly remind the reader how to
construct such a graph. As a first approximation, in order to try to achieve ((cl.2)), we glue
a copy of the component G(~pi) onto each leaf ` ∈ Li, for each i ∈ I. We call this the 1-step
extension G(1) of G. If there were no promise leaves in the component G(~pi), then the promises
in Li would be satisfied. However, if there are, then we have grown G(~pi) by adding copies of
various G(~pj)s behind promise leaves appearing in G(~pi).

However, remembering all promise leaves inside the newly added copies of G(~pi) we glued
behind each ` ∈ Li, we continue this process indefinitely, growing the graph one step at a time
by gluing copies of (the original) G(~pi) to promise leaves `′ which have appeared most recently as
copies of ` ∈ Li. After a countable number of steps the resulting graph cl(G) satisfies Proposition
8.3.3. We note also that the maximum degree of cl(G) equals that of G.

Definition 8.3.4 (Promise-respecting map). Let G be a graph, P =
(
G, ~P ,L

)
be a promise

structure on G, and let T1 and T2 be two components of G.
Given x ∈ T1 and y ∈ T2, a bijection ϕ : T1− x→ T2− y is ~P -respecting (with respect to P)

if the image of Li ∩ T1 under ϕ is Li ∩ T2 for all i.

We can think of P as defining a |~P |-colouring on some sets of leaves. Then a mapping is
~P -respecting if it preserves leaf colours.

Suppose that ~pi is a placeholder promise, and G = H(0) ⊆ H(1) ⊆ · · · is the sequence of
1-step extensions whose direct limit is cl(G). Then, if we denote by L

(n)
i the set of promise

leaves associated with ~pi in H(n), it follows that L
(n)
i ⊇ L(n−1)

i since G(~pi) is just a single vertex
ci ∈ Li. For every placeholder promise ~pi ∈ ~P , we define cl(Li) =

⋃
n L

(n)
i .

Definition 8.3.5 (Closure of a promise structure). The closure of the promise structure
(
G, ~P ,L

)
is the promise structure cl(P) =

(
cl(G), cl(~P ), cl(L)

)
, where:

• cl(~P ) =
{
~pi : ~pi ∈ ~P is a placeholder-promise

}
,

• cl(L) = {cl(Li) : ~pi ∈ ~P is a placeholder-promise}.
Proposition 8.3.6 ([29, Proposition 3.3]). Let G be a graph and let

(
G, ~P ,L

)
be a promise

structure. Then cl(G) satisfies:
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(cl.3) for every ~pi ∈ ~P and every ` ∈ Li,

cl(G)(~pi) ∼= cl(G)(~q`)

are isomorphic as rooted graphs, and this isomorphism is cl(~P )-respecting with respect to
cl(P).

It is precisely this property (cl.3) of the promise closure that will allow us to maintain partial
hypomorphisms during our recursive construction.

The last two results of this section serve as preparation for growing Gn+1, Hn+1 and Fn+1

‘in parallel’, as outlined in the third stage of the algorithm in Section 8.2.2. If L = {Li : i ∈ I}
and L′ = {L′i : i ∈ I}, we say a map ψ :

⋃L → ⋃L′ is colour-preserving if ψ(Li) ⊆ L′i for every
i.

Lemma 8.3.7. Let
(
G, ~P ,L

)
and

(
G′, ~P ′,L′

)
be promise structures, and let G = H(0) ⊆

H(1) ⊆ · · · and G′ = H ′(0) ⊆ H ′(1) ⊆ · · · be 1-step extensions approximating their respective
closures.

Assume that ~P = {~p1, . . . , ~pk} and ~P ′ = {~r1, . . . , ~rk}, and that there is a colour-preserving
bijection

ψ :
⋃
L →

⋃
L′

such that (recall that L(·) is the set of leaves of a graph that are in L)

ψ � G(~pi) : L(G(~pi))→ L′(G′(~ri))

is still a colour-preserving bijection for all ~pi ∈ ~P .

Then for each i 6 k there is a sequence of colour-preserving bijections

αin : L
(
H(n)(~pi)

)
→ L′

(
H ′(n)(~ri)

)
such that αin+1 extends αin.

Proof. Fix i. We proceed by induction on n. Put αi0 := ψ � G(~pi).

Now suppose that αin exists. To form H(n+1)(~pi), we glued a copy of G(~pj) to each ` ∈
L

(n)
j ∩ H(n)(~pi) for all j 6 k, and to construct H ′(n+1)(~ri), we glued a copy of G′(~rj) to each

`′ ∈ L′(n)
j ∩H ′(n)(~ri) for all j 6 k, in both cases keeping all copies of promise leaves.

By assumption, the second part can be phrased equivalently as: we glued on a copy of G′(~rj)
to each αin(`) for ` ∈ L(n)

j ∩H(n)(~ri). Thus, we can now combine the bijections αin(`) with all
the individual bijections ψ between all newly added G(~pj) and G′(~rj) to obtain a bijection αin+1

as desired.

Corollary 8.3.8. In the above situation, for each i there is a colour-preserving bijection αi

between L(cl(G)(~pi)) and L′(cl(G′)(~ri)) with respect to the promise closures cl(P) and cl(P ′).

Proof. Put αi =
⋃
n α

i
n. Because all αin respected all colours, they respect in particular the

placeholder promises which make up cl(P) and cl(P ′).

8.4 Thickening the graph

In this section, we lay the groundwork for the third stage of our algorithm, as outlined in
Section 8.2.2. Our aim is to clarify how gluing a one-ended graph F onto a graph G affects
automorphisms and the end-space of the resulting graph.
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Definition 8.4.1 (Gluing sum). Given two graphs G and F , and a bijection ψ with dom(ψ) ⊆
V (G) and ran(ψ) ⊆ V (F ), the gluing sum of G and F along ψ, denoted by G ⊕ψ F , is the
quotient graph (G ∪ F )/ ∼ where v ∼ ψ(v) for all v ∈ dom(ψ).

Our first lemma of this section explains how a partial isomorphism from Gn−x to Hn−φ(x)
in our construction can be lifted to the gluing sum of Gn and Hn with a graph F respectively.

Lemma 8.4.2. Let G, H and F be graphs, and consider two gluing sums G⊕ψGF and H⊕ψH F
along partial bijections ψG and ψH . Suppose there exists an isomorphism h : G − x → H − y
that restricts to a bijection between dom(ψG) and dom(ψH).

Then h extends to an isomorphism (G ⊕ψG F ) − x → (H ⊕ψH F ) − y provided there is an
automorphism π of F such that π ◦ ψG(v) = ψH ◦ h(v) for all v ∈ dom(ψG).

Proof. We verify that the map

ĥ : (G⊕ψG F )− x→ (H ⊕ψH F )− y, v 7→
{
h(v) if v ∈ G− x, and

π(v) if v ∈ F

is a well-defined isomorphism. It is well-defined, since if v ∼ ψG(v) in G ⊕ψG F , then ĥ(v) ∼
ĥ(ψG(v)) in H⊕ψH F by assumption on π. Moreover, since h and π are isomorphisms, it follows
that ĥ is an isomorphism, too.

For the remainder of this section, all graphs are assumed to be locally finite. A ray in a
graph G is a one-way infinite path. Given a ray R, then for any finite vertex set S ⊂ V (G)
there is a unique component C(R,S) of G− S containing a tail of R. An end in a graph is an
equivalence class of rays under the relation

R ∼ R′ ⇔ for every finite vertex set S ⊂ V (G) we have C(R,S) = C(R′, S).

We denote by Ω(G) the set of ends in the graph G, and write C(ω, S) := C(R,S) with R ∈ ω.
Let Ω(ω, S) = {ω′ : C(ω′, S) = C(ω, S)}. The singletons {v} for v ∈ V (G) and sets of the form
C(ω, S) ∪ Ω(ω, S) generate a compact metrizable topology on the set V (G) ∪ Ω(G), which is
known in the literature as |G|.2 This topology allows us to talk about the closure of a set of
vertices X ⊂ V (G), denoted by X. Write ∂(X) = X \X = X ∩ Ω(X) for the boundary of X:
the collection of all ends in the closure of X. Then an end ω ∈ Ω(G) lies in ∂(X) if and only
if for every finite vertex set S ⊂ V (G), we have |X ∩ C(ω, S)| = ∞. Therefore Ω(G) = ∂(X)
if and only if for every finite vertex set S ⊂ V (G), every infinite component of G− S meets X
infinitely often. In this case we say that X is dense for Ω(G).

Finally, an end ω ∈ Ω(G) is free if for some S, the set Ω(ω, S) = {ω}. Then Ω′(G) denotes
the non-free (or limit-)ends. Note that Ω′(G) is a closed subset of Ω(G).

Lemma 8.4.3. For locally finite connected graphs G and F , consider the gluing sum G ⊕ψ
F for a partial bijection ψ. If F is one-ended and dom(ψ) is infinite, then Ω(G ⊕ψ F ) ∼=
Ω(G)/∂(dom(ψ)).

Proof. Note first that for locally finite graphs G and F , also G ⊕ψ F is locally finite. Observe
further that all rays of the unique end of F are still equivalent in G ⊕ψ F , and so G ⊕ψ F has
an end ω̂ containing the single end of F .

We are going to define a continuous surjection f : Ω(G) → Ω(G ⊕ψ F ) with the property
that f has precisely one non-trivial fibre, namely f−1(ω̂) = ∂(dom(ψ)). It then follows from

2Normally |G| is defined on the 1-complex of G together with its ends, but for our purposes it will be enough
to just consider the subspace V (G) ∪ Ω(G). See the survey paper of Diestel [42] for further details.
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definition of the quotient topology that f induces a continuous bijection from the compact
space Ω(G)/∂(dom(ψ)) to the Hausdorff space Ω(G ⊕ψ F ), which, as such, is necessarily a
homeomorphism.

The mapping f is defined as follows. Given an end ω ∈ Ω(G) \ ∂(dom(ψ)), there is a
finite S ⊂ V (G) such that C(ω, S) ∩ dom(ψ) = ∅, and so C = C(ω, S) is also a component of
(G⊕ψ F ) − S, which is disjoint from F . Define f to be the identity between Ω(G) ∩ C and
Ω(G⊕ψ F ) ∩ C, while for all remaining ends ω ∈ Ω(G) ∩ dom(ψ), we put f(ω) = ω̂.

To see that this assignment is continuous at ω ∈ Ω(G) ∩ dom(ψ), it suffices to show that
C := C(ω, S) ⊂ G−S is a subset of C ′ := C(ω̂, S) ⊂ (G⊕ψ F )−S for any finite set S ⊂ G⊕ψF .
To see this inclusion, note that by choice of ω, we have |dom(ψ) ∩ C| = ∞. At the same time,
since F is both one-ended and locally finite, F − S has precisely one infinite component D and
F −D is finite, so as ψ is a bijection, there is v ∈ dom(ψ)∩C with ψ(v) ∈ D (in fact, there are
infinitely many such v). Since v and ψ(v) get identified in G ⊕ψ F , we conclude that C ∪D is
connected in (G⊕ψ F )− S, and hence that C ∪D ⊂ C ′ as desired.

Finally, to see that f is indeed surjective, note first that the fact that dom(ψ) is infinite
implies that dom(ψ) ∩ Ω(G) 6= ∅, and so ω̂ ∈ ran(f). Next, consider an end ω ∈ Ω(G ⊕ψ F )
different from ω̂. Find a finite separator S ⊂ V (G⊕ψF ) such that C(ω, S) 6= C(ω̂, S). It follows
that dom(ψ) ∩ C(ω, S) is finite. So there is a finite S′ ⊇ S such that C := C(ω, S′) 6= C(ω̂, S′)
and dom(ψ) ∩ C = ∅. So by definition, f is a bijection between Ω(G) ∩ C and Ω(G⊕ψ F ) ∩ C,
so ω ∈ ran(f).

Corollary 8.4.4. Under the above assumptions, if dom(ψ) is dense for Ω(G), then G⊕ψ F is
one-ended.

Corollary 8.4.5. Under the above assumptions, if dom(ψ) ∩ Ω(G) = Ω′(G), then G⊕ψ F has
at most one non-free end.

We remark that more direct proofs for Corollaries 8.4.4 and 8.4.5 can be given that do not
need the full power of Lemma 8.4.3.

8.5 The construction

8.5.1 Preliminary definitions

In the precise statement of our construction in Section 8.5.2, we are going to employ the following
notation.

Definition 8.5.1 (Mii-path). A path P = v0, v1, . . . , vn in a graph G is called internally isolated
if degG(vi) = 2 for all internal vertices vi for 0 < i < n. The path P is maximal internally
isolated (or mii for short) if in addition degG(v0) 6= 2 6= degG(vn). An infinite path P =
v0, v1, v2, . . . is mii if degG(v0) 6= 2 and degG(vi) = 2 for all i > 1.

Definition 8.5.2 (Mii-spectrum). The mii-spectrum of G is

Σ(G) := {k ∈ N : G contains an mii-path of length k}.

If Σ(G) is finite, we let σ0(G) = max Σ(G) and σ1(G) = max (Σ(G) \ {σ0(G)}).

Lemma 8.5.3. Let e be an edge of a locally finite graph G. If Σ(G) is finite, then Σ(G− e) is
finite.
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Proof. Observe first that every vertex of degree 6 2 in any graph can lie on at most one mii-path.

We now claim that for an edge e = xy, there are at most two finite mii-paths in G− e which
are not subpaths of finite mii-paths of G.

Indeed, if deg x = 3 in G, then x can now be the interior vertex of one new finite mii-path
in G − e. And if deg x = 2 in G, then x can now be end-vertex of one new finite mii-path in
G− e (this is relevant if x lies on an infinite mii-path of G). The argument is for y is the same,
so the claim follows.

Definition 8.5.4 (Spectrally distinguishable). Given two graphs G and H, we say that G
and H are spectrally distinguishable if there is some k > 3 such that k ∈ Σ(G)4Σ(H) =
Σ(G) \ Σ(H) ∪ Σ(H) \ Σ(G).

Note that being spectrally distinguishable is a strong certificate for being non-isomorphic.

Definition 8.5.5 (k-ball). For G a subgraph of H, and k > 0, the k-ball BallH(G, k) is the
induced subgraph of H on the set of vertices at distance at most k of some vertex of G.

Definition 8.5.6 (proper Mii-extension; infinite growth). Let G be a graph, B a subset of leaves
of G, and H a component of G.

• A graph Ĝ ⊃ H is an mii-extension of H at B to length k if BallĜ(H, k) can be obtained
from H by adjoining, at each vertex l ∈ B ∩ V (H), a new path of length k starting at l,
and a new leaf whose only neighbour is l.3

• A leaf l in a graph G is proper if the unique neighbour of l in G has degree > 3. An
mii-extension is called proper if every leaf in B is proper.

• An mii-extension Ĝ of G is of infinite growth if every component of Ĝ−G is infinite.

8.5.2 The back-and-forth construction

Our aim in this section is to prove our main theorem announced in the introduction.

Theorem 12.1.4. There are two (vertex)-hypomorphic infinite trees T and S with maximum
degree three such that there is no embedding T ↪→ S or S ↪→ T .

To do this we shall recursively construct, for each n ∈ N,

• disjoint rooted connected graphs Gn and Hn,

• disjoint sets Rn and Bn of proper leaves of the graph Gn ∪Hn,

• trees Fn,

• disjoint sets R′n and B′n of leaves of Fn,

• bijections ψGn : V (Gn) ∩ (Rn ∪Bn)→ R′n ∪B′n and
ψHn : V (Hn) ∩ (Rn ∪Bn)→ R′n ∪B′n,

• finite sets Xn ⊂ V (Gn) and Yn ⊂ V (Hn), and bijections ϕn : Xn → Yn,

• a family of isomorphisms Hn = {hn,x : Gn − x→ Hn − ϕn(x) : x ∈ Xn},

• a family of automorphisms Πn = {πn,x : Fn → Fn : x ∈ Xn},
3We note that this is a slightly different definition of an mii-extension to that in [29].
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• a strictly increasing sequence of integers kn > 2,

such that for all n ∈ N:4

(†1) Gn−1 ⊂ Gn and Hn−1 ⊂ Hn as induced subgraphs,

(†2) the vertices of Gn and Hn all have degree at most 5,

(†3) the vertices of Fn all have degree at most 3,

(†4) the root of Gn is in Rn and the root of Hn is in Bn,

(†5) σ0(Gn) = σ0(Hn) = kn,

(†6) Gn and Hn are spectrally distinguishable,

(†7) Gn and Hn have at most one end,

(†8) Ω(Gn ∪Hn) ⊂ Rn ∪Bn,

(†9) (a) Gn is a (proper) mii-extension of infinite growth of Gn−1 at
Rn−1 ∪Bn−1 to length kn−1 + 1, and

(b) BallGn(Gn−1, kn−1 + 1) does not meet Rn ∪Bn,

(†10) (a) Hn is a (proper) mii-extension of infinite growth of Hn−1 at
Rn−1 ∪Bn−1 to length kn−1 + 1, and

(b) BallHn(Hn−1, kn−1 + 1) does not meet Rn ∪Bn,

(†11) there are enumerations V (Gn) = {tj : j ∈ Jn} and V (Hn) = {sj : j ∈ Jn} such that

• Jn−1 ⊂ Jn ⊂ N,

• {tj : j ∈ Jn} extends the enumeration {tj : j ∈ Jn−1} of V (Gn−1), and similarly for
{sj : j ∈ Jn},
• |N \ Jn| =∞,

• {0, 1, . . . , n} ⊂ Jn,

(†12) {tj , sj : j 6 n} ∩ (Rn ∪Bn) = ∅,

(†13) the finite sets of vertices Xn and Yn satisfy |Xn| = n = |Yn|, and

• Xn−1 ⊂ Xn and Yn−1 ⊂ Yn,

• ϕn � Xn−1 = ϕn−1,

• {tj : j 6 b(n− 1)/2c} ⊂ Xn and {sj : j 6 bn/2c − 1} ⊂ Yn,

• (Xn ∪ Yn) ∩ (Rn ∪Bn) = ∅,

(†14) the families of isomorphisms Hn satisfy

• hn,x � (Gn−1 − x) = hn−1,x for all x ∈ Xn−1,

• the image of Rn ∩ V (Gn) under hn,x is Rn ∩ V (Hn),

• the image of Bn ∩ V (Gn) under hn,x is Bn ∩ V (Hn) for all x ∈ Xn.

(†15) the families of automorphisms Πn satisfy

4If the statement involves an object indexed by n− 1 we only require that it holds for n > 1.
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• πn,x � R′n is a permutation of R′n for each x ∈ Xn,

• πn,x � B′n is a permutation of B′n for each x ∈ Xn,

• for each x ∈ Xn, the following diagram commutes:

L(Gn) L(Hn)

L(Fn) L(Fn)

ψGn

hn,x � L(Gn)

πn,x � L(Fn)

ψHn

I.e. for every ` ∈ L(Gn) := V (Gn) ∩ (Rn ∪Bn) we have πn,x(ψGn(`)) = ψHn(hn,x(`)).

8.5.3 The construction yields the desired non-reconstructible one-ended
graphs.

By property (†1), we have G0 ⊂ G1 ⊂ G2 ⊂ · · · and H0 ⊂ H1 ⊂ H2 ⊂ · · · . Let G and H be the
union of the respective sequences. Then both G and H are connected, and as a consequence of
(†2), both graphs have maximum degree 5.

We claim that the map ϕ =
⋃
n ϕn is a hypomorphism between G and H. Indeed, it follows

from (†11) and (†13) that ϕ is a well-defined bijection from V (G) to V (H). To see that ϕ is a
hypomorphism, consider any vertex x of G. This vertex appears as some tj in our enumeration
of V (G), so the map

hx =
⋃
n>2j

hn,x : G− x→ H − ϕ(x),

is a well-defined isomorphism by (†14) between G− x and H − ϕ(x).
Now suppose for a contradiction that there exists an isomorphism f : G→ H. Then f(t0) is

mapped into Hn for some n ∈ N. Properties (†5) and (†9) imply that after deleting all mii-paths
in G of length > kn, the connected component C of t0 is a leaf extension of Gn adding one
further leaf to every vertex in V (Gn) ∩ (Rn ∪Bn). Similarly, properties (†5) and (†10) imply
that after deleting all mii-paths in H of length > kn, the connected component D of f(t0) is a
leaf-extension of Hn adding one further leaf to every vertex in V (Hn)∩ (Rn ∪Bn). Note that f
restricts to an isomorphism between C and D. However, since C and D are proper extensions, we
have Σ(C)4Σ(Gn) ⊆ {1, 2} and Σ(D)4Σ(Hn) ⊆ {1, 2}. Hence, since Gn and Hn are spectrally
distinguishable by (†6), so are C and D, a contradiction. We have established that G and H
are non-isomorphic reconstructions of each other.

Finally, for G being one-ended, we now show that for every finite vertex separator S ⊂ V (G),
the graph G−S has only one infinite component (the argument for H is similar). Suppose for a
contradiction G−S has two infinite components C1 and C2. Consider n large enough such that
S ⊂ V (Gn). Since Gk is one-ended for all k by (†7), we may assume that C1 ∩ Gk falls apart
into finite components for all k > n. Since C1 is infinite and connected, it follows from (†9)(b)
that C1 intersects Gn+1 − Gn. But since Gn+1 is an mii-extension of Gn of infinite growth by
(†9)(a), we see that that C1 ∩ (Gn+1 −Gn) contains an infinite component, a contradiction.

8.5.4 The base case: there are finite rooted graphs G0 and H0 satisfying
requirements (†1)–(†15).

Choose a pair of spectrally distinguishable, equally sized graphs G0 and H0 with maximum
degree 6 5 and σ0(G0) = σ0(H0) = k0. Pick a proper leaf each as roots r(G0) and r(H0) for G0

and H0, and further proper leaves `b ∈ G0 and `r ∈ H0.
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r(G0)
`b

r(H0)
`r

Figure 8.5: A possible choice for the finite rooted graphs G0 and H0.

Define R0 = {r(G0), `r} and B0 = {r(H0), `b}. We take F0 to be two vertices x and y joined
by an edge, with R′0 = {x} and B′0 = {y} and take ψG0 to be the unique bijection sending
R0 ∩G0 to R′0 and B0 ∩G0 to B′0, and similarly for ψH0 .

yx

Figure 8.6: F0.

Let J0 = {0, 1, . . . , |G0| − 1} and choose enumerations V (G0) = {tj : j ∈ J0} and V (H0) =
{sj : j ∈ J0} with t0 6= r(G0) and s0 6= r(H0). Finally we let X0 = Y0 = H0 = ∅. It is a simple
check that conditions (†1)–(†15) are satisfied.

8.5.5 The inductive step: set-up

Now, assume that we have constructed graphs Gk and Hk for all k 6 n such that (†1)–(†15)
are satisfied up to n. If n = 2m is even, then we have {tj : j 6 m− 1} ⊂ Xn and in order to
satisfy (†13) we have to construct Gn+1 and Hn+1 such that the vertex tm is taken care of in
our partial hypomorphism. Similarly, if n = 2m+ 1 is odd, then we have {sj : j 6 m− 1} ⊂ Yn
and we have to construct Gn+1 and Hn+1 such that the vertex sm is taken care of in our partial
hypomorphism. Both cases are symmetric, so let us assume in the following that n = 2m is
even.

Now let v be the vertex with the least index in the set {tj : j ∈ Jn} \Xn, i.e.

v = ti for i = min {j : tj ∈ V (Gn) \Xn}. (8.5.1)

Then by assumption (†13), v will be tm, unless tm was already in Xn anyway. In any case,
since |Xn| = |Yn| = n, it follows from (†11) that i 6 n, so by (†12), v does not lie in our leaf
sets Rn ∪Bn, i.e.

v /∈ Rn ∪Bn. (8.5.2)

In the next sections, we will demonstrate how to obtain graphs Gn+1 ⊃ Gn, Hn+1 ⊃ Hn and
Fn+1 with Xn+1 = Xn ∪{v} and Yn+1 = Yn ∪{ϕn+1(v)} satisfying (†1)—(†10) and (†13)–(†15).

After we have completed this step, since |N \ Jn| = ∞, it is clear that we can extend our
enumerations of Gn and Hn to enumerations of Gn+1 and Hn+1 as required, making sure to first
list some new elements that do not lie in Rn+1 ∪ Bn+1. This takes care of (†11) and (†12) and
completes the step n 7→ n+ 1.

8.5.6 The inductive step: construction

We will construct the graphs Gn+1 and Hn+1 in three steps. First, in Section 8.5.6 we construct
graphs G′n+1 ⊃ Gn and H ′n+1 ⊃ Hn such that there is a vertex φn+1(v) ∈ H ′n+1 with G′n+1−v ∼=
H ′n+1 − φn+1(v). This first step essentially follows the argument from [29, Section 4.6]. We will
also construct a graph Fn+1 via a parallel process.
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Secondly, in Section 8.5.6 we will show that there are well-behaved maps from the coloured
leaves of G′n+1 and H ′n+1 to Fn+1 × N, such that analogues of (†14) and (†15) hold for G′n+1,
H ′n+1 and Fn+1, giving us control over the corresponding gluing sum.

Lastly, in Section 8.5.6, we do the actual gluing process and define all objects needed for
step n+ 1 of our inductive construction.

Building the auxiliary graphs

Given the two graphs Gn and Hn, we extend each of them through their roots as indicated in
Figure 8.7 to graphs G̃n and H̃n respectively.

Since v is not the root of Gn, there is a unique component of Gn − v containing the
root, which we call Gn(r). Let Gn(v) be the induced subgraph of Gn on the remaining ver-
tices, including v. We remark that if v is not a cutvertex of Gn, then Gn(v) is just a sin-
gle vertex v. Since σ0(Gn) = kn by (†5) and deg(v) 6 5 by (†2), it follows from an it-
erative application of Lemma 8.5.3 that Σ (Gn(r)) and Σ (Gn(v)) are finite. Let k = k̃n =
max{σ0(Gn), σ0 (Gn(r)) , σ0 (Gn(v)) , σ0(Hn)}+ 1.

r(Gn)

Gn

v

Ĥn

r
(
G′n+1

)
g

The graph G̃n.

r(Hn)

Ĝn(r)

v̂

Ĝn(v̂)

Hn

r
(
H ′n+1

)
y

The graph H̃n.

Figure 8.7: All dotted lines are mii-paths of length at least k + 1 = k̃n + 1.

To obtain G̃n, we extend Gn through its root r(Gn) ∈ Rn by a path

r(Gn) = u0, u1, . . . , up−1, up = r
(
Ĥn

)
of length p = 4(k̃n + 1) + 1, where at its last vertex up we glue a rooted copy Ĥn of Hn (via an
isomorphism ẑ ↔ z), identifying up with the root of Ĥn.

Next, we add two additional leaves at u0 and up, so that deg(r(Gn)) = 3 = deg
(

r
(
Ĥn

))
.

Further, we add a leaf r
(
G′n+1

)
at u2k+2, which will be our new root for the next tree G′n+1; and

another leaf g at u2k+3. This completes the construction of G̃n.
The construction of H̃n is similar, but not entirely symmetric. For its construction, we

extend Hn through its root r(Hn) ∈ Bn by a path

r(Hn) = vp, vp−1, . . . , v1, v0 = r
(
Ĝn(r)

)
of length p, where at its last vertex v0 we glue a copy Ĝn(r) of Gn(r), identifying v0 with the
root of Ĝn(r). Then, we take a copy Ĝn(v̂) of Gn(v) and connect v̂ via an edge to vk+1.

Finally, as before, we add two leaves at v0 and vp so that deg
(

r
(
Ĝn(r)

))
= 3 = deg (r(Hn)).

Next, we add a leaf r
(
H ′n+1

)
to v2k+3, which will be our new root for the next tree H ′n+1; and

another leaf y to v2k+2. This completes the construction of H̃n.
By the induction assumption, certain leaves of Gn have been coloured with one of the two

colours in Rn ∪Bn, and also some leaves of Hn have been coloured with one of the two colours
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in Rn ∪Bn. In the above construction, we colour leaves of Ĥn, Ĝn(r) and Ĝn(v̂) accordingly:

R̃n =
(
Rn ∪

{
ẑ ∈ Ĥn ∪ Ĝn(r) ∪ Ĝn(v̂) : z ∈ Rn

})
\
{

r(Gn), r
(
Ĝn(r)

)}
,

B̃n =
(
Bn ∪

{
ẑ ∈ Ĥn ∪ Ĝn(r) ∪ Ĝn(v̂) : z ∈ Bn

})
\
{

r(Hn), r
(
Ĥn

)}
.

(8.5.3)

Now put Mn := G̃n ∪ H̃n and consider the following promise structure P =
(
Mn, ~P ,L

)
on Mn, consisting of four promise edges ~P = {~p1, ~p2, ~p3, ~p4} and corresponding leaf sets L =
{L1, L2, L3, L4}, as follows:

• ~p1 pointing in Gn towards r(Gn), with L1 = R̃n,

• ~p2 pointing in Hn towards r(Hn), with L2 = B̃n,

• ~p3 pointing in G̃n towards r
(
G′n+1

)
, with L3 =

{
r
(
G′n+1

)
, y
}
,

• ~p4 pointing in H̃n towards r
(
H ′n+1

)
, with L4 =

{
r
(
H ′n+1

)
, g
}
.

(8.5.4)

Note that our construction so far has been tailored to provide us with a ~P -respecting iso-
morphism

h : G̃n − v → H̃n − v̂. (8.5.5)

Consider the closure cl(Mn) with respect to the above defined promise structure P. Since
cl(Mn) is a leaf-extension of Mn, it has two connected components, just as Mn. We now define

G′n+1 = the component containing Gn in cl(Mn),

H ′n+1 = the component containing Hn in cl(Mn).
(8.5.6)

It follows that cl(Mn) = G′n+1∪H ′n+1. Further, since ~p3 and ~p4 are placeholder promises, cl(Mn)
carries a corresponding promise structure, cf. Def. 8.3.5. We define

Rn+1 = cl(L3) and Bn+1 = cl(L4). (8.5.7)

Lastly, set

Xn+1 = Xn ∪ {v},
Yn+1 = Yn ∪ {v̂},
ϕn+1 = ϕn ∪ {(v, v̂)},
kn+1 = 2(k̃n + 1).

(8.5.8)

We now build Fn+1 in a similar fashion to the above procedure. That is, we take two copies
of Fn and join them pairwise through their roots as indicated in Figure 8.7 to form a graph F̃n.
We consider the graph Nn = F̃n ∪ ˆ̃Fn, and take Fn+1 to be one of the components of cl(Nn)
(unlike for cl(Mn), both components of cl(Nn) are isomorphic).

More precisely we take two copies of Fn, which we will denote by FGn and FHn . We extend
FGn through the image of the r(Gn) under the bijection ψGn by a path

ψGn(r(Gn)) = u0, u1, u2, u3 = ψHn(r(Hn))

of length three, where ψGn(r(Gn)) is taken in FGn and ψHn(r(Hn)) is taken in FHn . Further, we
add a leaf x at u1, and another leaf y at u2. We will consider the graph Nn = F̃n ∪ ˆ̃Fn as in
Figure 8.8 formed by taking two disjoint copies of F̃n.
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ψGn(r(Gn)) ψHn(r(Hn))

FGn FHn

x y

The graph F̃n.

̂ψGn(r(Gn)) ̂ψHn(r(Hn))

F̂Gn F̂Hn

x̂ ŷ

The graph ˆ̃Fn.

Figure 8.8: The graph Nn = F̃n ∪ ˆ̃Fn.

By the induction assumption, certain leaves of Fn have been coloured with one of the two
colours in R′n ∪B′n. In the above construction, we colour leaves of FGn , F

H
n , F̂

G
n and F̂Hn accord-

ingly:

R̃′n =
{
w ∈ FGn ∪ FHn ∪ F̂Gn ∪ F̂Hn : w ∈ R′n

}
\
{
ψGn(r(Gn)), ̂ψGn(r(Gn))

}
B̃′n =

{
w ∈ FGn ∪ FHn ∪ F̂Gn ∪ F̂Hn : w ∈ B′n

}
\
{
ψHn(r(Hn)), ̂ψHn(r(Hn))

}
.

(8.5.9)

Now consider the following promise structure P ′ =
(
Nn, ~P

′,L′
)

on Nn, consisting of four

promise edges ~P ′ = {~r1, ~r2, ~r3, ~r4} and corresponding leaf sets L′ = {L′1, L′2, L′3, L′4}, as follows:

• ~r1 pointing in FGn towards ψGn(r(Gn)), with L′1 = R̃′n,

• ~r2 pointing in F̂Hn towards ψHn(r(Hn)), with L′2 = B̃′n,

• ~r3 pointing in F̃n towards x, with L′3 = {x, x̂},
• ~r4 pointing in ˆ̃Fn towards ŷ, with L′4 = {y, ŷ}.

(8.5.10)

Consider the closure cl(Nn) with respect to the promise structure P ′ defined above. Since
cl(Nn) is a leaf-extension of Nn, it has two connected components, and we define Fn+1 to be the
component containing FGn in cl(Nn). Since ~r3 and ~r4 are placeholder promises, cl(Nn) carries a
corresponding promise structure, cf. Def. 8.3.5. We define

R′n+1 = cl(L′3) ∩ Fn+1 and B′n+1 = cl(L′4) ∩ Fn+1. (8.5.11)

Extending maps

In order to glue Fn+1 × N onto G′n+1 and H ′n+1 we will need to show that that analogues of
(†14) and (†15) hold for G′n+1, H ′n+1 and Fn+1. Our next lemma is essentially [29, Claim 4.13],
and is an analogue of (†14). We briefly remind the reader of the details, as we need to know the
nature of our extensions in our later claims.

Lemma 8.5.7. There is a family of isomorphisms H′n+1 =
{
h′n+1,x : x ∈ Xn+1

}
witnessing that

G′n+1 − x and H ′n+1 − ϕn+1(x) are isomorphic for all x ∈ Xn+1, such that h′n+1,x extends hn,x
for all x ∈ Xn.

Proof. The graphs G′n+1 and H ′n+1 defined in (8.5.6) are obtained from G̃n and H̃n by attaching
at every leaf in R̃n a copy of the rooted graph cl(Mn)(~p1), and by attaching at every leaf in B̃n
a copy of the rooted graph cl(Mn)(~p2) by (cl.2).
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From (8.5.5) we know that there is a ~P -respecting isomorphism

h : G̃n − v → H̃n − ϕn+1(v).

In other words, h maps promise leaves in Li ∩ V (G̃n) bijectively to the promise leaves in Li ∩
V (H̃n) for all i = 1, 2, 3, 4.

There is for each ` ∈ R̃n ∪ B̃n ∪ {r(Gn), r(Hn)} a cl(~P )-respecting isomorphism of rooted
graphs

f` : cl(Mn)(~q`) ∼= cl(Mn)(~pi) (8.5.12)

given by (cl.3) for ` ∈ (R̃n ∪ B̃n), where i equals blue or red depending on whether ` ∈ R̃n or
B̃n, and for the roots of Gn and Hn we have ~qr = ~pi and the isomorphism is the identity. Hence,
for each `,

f−1
h(`) ◦ f` : cl(Mn)(~q`) ∼= cl(Mn)(~qh(`))

is a cl(~P )-respecting isomorphism of rooted graphs. By combining the isomorphism h between
G̃n − v and H̃n − ϕn+1(v) with these isomorphisms between each cl(Mn)(~q`) and cl(Mn)(~qh(`))
we get a cl(~P )-respecting isomorphism

h′n+1,v : G′n+1 − v → H ′n+1 − ϕn+1(v).

To extend the old isomorphisms hn,x (for x ∈ Xn), note that G′n+1 and H ′n+1 are obtained
from Gn and Hn by attaching at every leaf in Rn a copy of the rooted graph cl(Mn)(~p1), and
similarly by attaching at every leaf in Bn a copy of the rooted graph cl(Mn)(~p2). By induction
assumption (†14), for each x ∈ Xn the isomorphism

hn,x : Gn − x→ Hn − ϕn(x)

maps the red leaves of Gn bijectively to the red leaves of Hn, and the blue leaves of Gn bijectively
to the blue leaves of Hn. Thus, by (8.5.12),

f−1
hn,x(`) ◦ f` : cl(Mn)(~q`) ∼= cl(Mn)(~qhn,x(`))

are cl(~P )-respecting isomorphisms of rooted graphs for all ` ∈ (Rn ∪Bn) ∩ V (Gn). By combin-
ing the isomorphism hn,x between Gn − x and Hn − ϕn(x) with these isomorphisms between
each cl(Mn)(~q`) = G′n+1(~q`) and cl(Mn)(~qhn,x(l)) = H ′n+1(~qhn,x(l)), we obtain a cl(~P )-respecting
extension

h′n+1,x : G′n+1 − x→ H ′n+1 − ϕn(x).

Our next claim should be seen as an approximation to property (†15). Recall that cl(Nn)
has two components Fn+1

∼= F̂n+1.

Lemma 8.5.8. There are colour-preserving bijections

ψG′n+1
: V (G′n+1) ∩ (Rn+1 ∪Bn+1)→ R′n+1 ∪B′n+1,

ψH′n+1
: V (H ′n+1) ∩ (Rn+1 ∪Bn+1)→ R̂′n+1 ∪ B̂′n+1,

and a family of isomorphisms

Π̂n+1 =
{
π̂n+1,x : Fn+1 → F̂n+1 : x ∈ Xn+1

}
such that for each x ∈ Xn+1 the following diagram commutes.
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L(G′n+1) L(H ′n+1)

L′(Fn+1) L′(F̂n+1)

ψG′
n+1

h′n+1,x � L(G′n+1)

π̂n+1,x � L′(Fn+1)

ψH′
n+1

Proof. Defining ψG′n+1
and ψH′n+1

. By construction, we can combine the maps ψGn and ψHn to
obtain a natural colour-preserving bijection

ψ : L(Mn)→ L′(Nn),

which satisfies the assumptions of Lemma 8.3.7. Thus, by Corollary 8.3.8, there are bijections

αi : L(cl(Mn)(~pi))→ L′(cl(Nn)(~ri))

which are colour-preserving with respect to the promise structures cl(P) and cl(P ′) on cl(Mn)
and cl(Nn), respectively.

We now claim that ψ extends to a colour-preserving bijection (w.r.t. cl(P))

cl(ψ) : L(cl(Mn))→ L′(cl(Nn)).

Indeed, by (cl.3), for every ` ∈ R̃′n ∪ B̃′n, there is a ~P ′-respecting rooted isomorphism

g` : cl(Nn)(~q`)→ cl(Nn)(~ri), (8.5.13)

where i equals blue or red depending on whether ` ∈ R̃′n or B̃′n. As in the case of (8.5.12) we
define the maps gr with ~qr = ~ri for the roots of FGn and F̂Hn respectively to be the identity.
Together with the rooted isomorphisms f` from (8.5.12), it follows that for each ` ∈ R̃n ∪ B̃n ∪
{r(Gn), r(Hn)}, the map

ψ` = g−1
ψ(`) ◦ α

i ◦ f` : L(cl(Mn)(~q`))→ L
(
cl(Nn)(~qψ(`))

)
is a colour-preserving bijection. Now combine ψ with the individual ψ` to obtain cl(ψ). We then
put

ψG′n+1
= cl(ψ) � G′n+1 and ψH′n+1

= cl(ψ) � H ′n+1.

Defining isomorphisms Π̂n+1. To extend the old isomorphisms πn,x, given by the induction
assumption, note that by (cl.2), Fn+1 is obtained from Fn by attaching at every leaf in R′n a
copy of the rooted graph Fn+1(~r1), and similarly by attaching at every leaf in B′n a copy of the
rooted graph Fn+1(~r2). For each x ∈ Xn let us write π̂n,x for the map sending each z ∈ FGn to
the copy of πn,x(z) in F̂Hn . By the induction assumption (†15), for each x ∈ Xn the isomorphism

π̂n,x : FGn → F̂Hn

preserves the colour of red and blue leaves. Thus, using the maps g` from (8.5.13), the mappings

g−1
π̂n,x(`) ◦ g` : cl(Nn)(~q`) ∼= cl(Nn)(~qπ̂n,x(`))

are cl( ~P ′)-respecting isomorphisms of rooted graphs for all ` ∈ R′n ∪ B′n. By combining the
isomorphism πn,x with these isomorphisms between each Fn+1(~q`) and F̂n+1(~qπ̂n,x(`)), we obtain
a cl(~P ′)-respecting extension

π̂n+1,x : Fn+1 → F̂n+1.
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For the new isomorphism π̂n+1,v : Fn+1 → F̂n+1, we simply take the ‘identity’ map which extends
the map sending each z ∈ F̃n to ẑ ∈ ˆ̃Fn.

The diagram commutes. To see that the new diagram above commutes, for each x ∈ Xn it
suffices to check that for all ` ∈ (Rn ∪Bn) ∩ V (Gn) we have

π̂n+1,x ◦ ψG′n+1
� L
(
G′n+1(~q`)

)
= ψH′n+1

◦ h′n+1,x � L
(
G′n+1(~q`)

)
,

which by construction of cl(ψ) above is equivalent to showing that

π̂n+1,x ◦ ψ` = ψhn,x(`) ◦ h′n+1,x.

By definition of ψ` this holds if and only if

π̂n+1,x ◦ g−1
ψ(`) ◦ α

i ◦ f` = g−1
ψ(hn,x(`)) ◦ α

i ◦ fhn,x(`) ◦ h′n+1,x.

Now by construction of π̂n+1,x and h′n+1,x, we have

π̂n+1,x ◦ g−1
ψ(`) = g−1

π̂n,x(ψ(`)) and fhn,x(`) ◦ h′n+1,x = f`.

Hence, the above is true if and only if

g−1
π̂n,x(ψ(`)) ◦ α

i ◦ f` = g−1
ψ(hn,x(`)) ◦ α

i ◦ f`.

Finally, this last line holds since ψ(`) = ψGn(`) and ψ(hn,x(`)) = ψHn(hn,x(`)) by definition of
ψ, and because

π̂n,x ◦ ψGn(`) = ψHn ◦ hn,x(`)

by the induction assumption.

For π̂n+1,v we see that, as above, it will be sufficient to show that for all ` ∈ (R̃n∪B̃n)∩V (G̃n)
we have

π̂n+1,v ◦ ψ` = ψh′n+1,v(`) ◦ h′n+1,v,

which reduces as before to showing that,

g−1
π̂n+1,v(ψ(`)) ◦ α

i ◦ f` = g−1
ψ(h′n+1,v(`))

◦ αi ◦ f`.

Recall that, π̂n+1,v sends each v to v̂ and also, since h′n+1,v � G̃n = h, the image of every leaf
` ∈ (R̃n ∪ B̃n) ∩ V (G̃n) is simply l̂ ∈ Ĝn(v) ∪ Ĝn(r). Hence we wish to show that

g−1
ˆ(ψ(`))
◦ αi ◦ f` = g−1

ψ(l̂)
◦ αi ◦ f`,

that is,
ˆ(ψ(`)) = ψ(l̂),

which follows from the construction of ψ.

Gluing the graphs together

Let us take the cartesian product of Fn+1 with a ray, which we simply denote by Fn+1 × N. If
we identify Fn+1 with the subgraph Fn+1×{0}, then we can interpret both ψG′n+1

and ψH′n+1
as

maps from L(G′n+1) and L(H ′n+1) to a set of vertices in Fn+1×N, under the natural isomorphism
between F̂n+1 and Fn+1.
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Instead of using the function ψG′n+1
directly for our gluing operation, we identify, for every

leaf l in L(G′n+1) the unique neighbour of l with ψG′n+1
(l). Formally, define a bijection χGn+1

between the neighbours of L(G′n+1) and L′(Fn+1) via

χGn+1 =
{

(z1, z2) : ∃l ∈ L(G′n+1) s.t. z1 ∈ N(`) and ψG′n+1
(l) = z2

}
, (8.5.14)

and similarly

χHn+1 =
{

(z1, z2) : ∃l ∈ L(H ′n+1) s.t. z1 ∈ N(`) and ψH′n+1
(l) = z2

}
. (8.5.15)

Since two promise leaves in G′n+1 or H ′n+1 are never adjacent to the same vertex, χGn+1 and
χHn+1 are indeed bijections. Moreover, since all promise leaves were proper, the vertices in
the domain of χGn+1 and χHn+1 have degree at least 3. Using our notion of gluing-sum (see
Def. 8.4.1), we now define

Gn+1 := G′n+1 ⊕χGn+1
(Fn+1 × N) and Hn+1 := H ′n+1 ⊕χHn+1

(Fn+1 × N). (8.5.16)

We consider Rn+1, Bn+1, Xn+1 and Yn+1 as subsets of Gn+1 and Hn+1 in the natural way.
Then ψGn+1 and ψHn+1 can be taken to be the maps ψG′n+1

and ψH′n+1
, again identifying F̂n+1

with Fn+1 in the natural way. We also take the roots of Gn+1 and Hn+1 to be the roots of G′n+1

and H ′n+1 respectively
This completes the construction of graphs Gn+1, Hn+1, and Fn+1, the coloured leaf sets

Rn+1, Bn+1, R
′
n+1, and B′n+1, the bijections ψGn+1 and ψHn+1 , as well as ϕn+1 : Xn+1 → Yn+1,

and kn+1 = 2(k̃n + 1). In the next section, we show the existence of families of isomorphisms
Hn+1 and Πn+1, and verify that (†1)–(†15) are indeed satisfied for the (n+ 1)th instance.

8.5.7 The inductive step: verification

Lemma 8.5.9. We have Gn ⊂ Gn+1, Hn ⊂ Hn+1, ∆(Gn+1),∆(Hn+1) 6 5, ∆(Fn+1) 6 3, and
the roots of Gn+1 and Hn+1 are in Rn+1 and Bn+1 respectively.

Proof. We note that Gn ⊂ G′n+1 by construction. Hence, it follows that

Gn ⊂ G′n+1 ⊂ G′n+1 ⊕χGn+1
(Fn+1 × N) = Gn+1,

and similarly forHn. Since we glued together degree 3 and degree 2 vertices, and ∆(Gn),∆(Hn) 6
5 and ∆(Fn) 6 3, it is clear that the same bounds hold for n+ 1. Finally, since the root of G̃n
was a placeholder promise, and Rn+1 was the corresponding set of promise leaves in cl(G̃n), it
follows that the root of G′n+1 is in Rn+1, and hence so is the root of Gn+1. A similar argument
shows that the root of Hn+1 is in Bn+1.

Lemma 8.5.10. We have σ0(Gn+1) = σ0(Hn+1) = kn+1.

Proof. By construction we have that σ0(G̃n) = σ0(H̃n) = kn+1. Since G′n+1 and H ′n+1 are
realised as components of the promise closure of Mn, and this was a proper extension, it is a
simple check that σ0(G′n+1) = σ0(H ′n+1) = kn+1. Also note that Fn+1 × N has no mii-paths of
length bigger than two, since the vertices of degree two in Fn+1 × N are precisely those of the
form (`, 0) with ` a leaf of Fn+1.

Since G′n+1 ⊕χGn+1
(Fn+1 × N) is formed by gluing a set of degree-two vertices of Fn+1 × N

to a set of degree-three vertices in G′n+1, it follows that σ0(Gn+1) = kn+1 as claimed. A similar
argument shows that σ0(Hn+1) = kn+1.

Lemma 8.5.11. The graphs Gn+1 and Hn+1 are spectrally distinguishable.
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Proof. Since in G̃n we have that all long mii-paths except for those of length kn+1 are contained
inside Gn or Ĥn, it follows from our induction assumption (†5) that σ1(G̃n) = kn. However, in
H̃n, we attached Ĝn(v̂) to generate an mii-path of length k̃n + 1 in H̃n (see Fig. 8.7), implying
that

σ1(H̃n) = k̃n + 1 > kn = σ1(G̃n).

As before, since the promise closures G′n+1 and H ′n+1 are proper extensions of G̃n and H̃n, they
are spectrally distinguishable. Lastly, since Fn+1 × N has no leaves and no mii-paths of length
bigger than two, the same is true for Gn+1 and Hn+1.

Lemma 8.5.12. The graphs Gn+1 and Hn+1 have exactly one end, and Ω(Gn+1 ∪ Hn+1) ⊂
Rn+1 ∪Bn+1.

Proof. By the induction assumption (†8), we know that Ω(Gn ∪Hn) ⊂ Rn ∪Bn.

Claim. The set Rn+1 ∪Bn+1 is dense for G′n+1.

Consider a finite S ⊂ V (G′n+1). We have to show that any infinite component C of G′n+1−S
has non-empty intersection with Rn+1 ∪Bn+1.

Let us consider the global structure of G′n+1 as being roughly that of an infinite regular tree,
as in Figure 8.2. Specifically, we imagine a copy of Gn at the top level, at the next level are the
copies of Gn and Hn that come from a blue or red leaf in the top level, at the next level are the
copies attached to blue or red leaves from the previous level, and so on.

With this in mind, it is evident that either C contains an infinite component from some copy
of Hn − S or Gn − S, or C contains an infinite ray from this tree structure. In the first case,
we have |C ∩ (Rn ∪Bn)| = ∞ by induction assumption. Since any vertex from Rn ∪ Bn has a
leaf from Rn+1 ∪ Bn+1 within distance kn+1 + 1 (cf. Figure 8.7), it follows that C also meets
Rn+1 ∪ Bn+1 infinitely often. In the second case, the same conclusion follows, since between
each level of our tree structure, there is a pair of leaves in Rn+1 ∪ Bn+1. This establishes the
claim.

Claim. The set Rn+1 ∪Bn+1 is dense for H ′n+1.

The proof of the second claim is entirely symmetric to the first claim.

To complete the proof of the lemma, observe that Fn+1 × N is one-ended, and with Rn+1 ∪
Bn+1, also dom(χGn+1) ∪ dom(χHn+1) is dense for G′n+1 ∪ H ′n+1 by our claims. So by Corol-
lary 8.4.4, the graphs Gn+1 and Hn+1 have exactly one end. Moreover, since Rn+1∪Bn+1 meets
both graphs infinitely, it follows immediately that it is dense for Gn+1 ∪Hn+1.

Lemma 8.5.13. The graph Gn+1 is a proper mii-extension of infinite growth of Gn at Rn∪Bn to
length kn+ 1, and BallGn+1(Gn, kn+ 1) does not meet Rn+1∪Bn+1. Similarly, Hn+1 is a proper
mii-extension of infinite growth of Hn at Rn ∪ Bn to length kn + 1, and BallHn+1(Hn, kn + 1)
does not meet Rn+1 ∪Bn+1. Hence, (†9) and (†10) are satisfied at stage n+ 1.

Proof. We will just prove the statement for Gn+1, as the corresponding proof for Hn+1 is anal-
ogous.

Since G′n+1 is an
(

(R̃n ∪ B̃n) ∩ V (G̃n)
)

-extension of G̃n, it follows that G′n+1 is an

((
(R̃n ∪ B̃n) ∩ V (Gn)

)
∪ r(Gn)

)
=
(
(Rn ∪Bn) ∩ V (Gn)

)
-extension of Gn. (8.5.17)

However, from the construction of the closure of a graph it is clear that that G′n+1 is also
an L′-extension of the supergraph K of Gn formed by gluing a copy of G̃n(~p1) to every leaf in
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Rn ∩ V (Gn) and a copy of H̃n(~p2) to every leaf in Bn ∩ V (Gn), where L′ is defined as the set of
inherited promise leaves from the copies of G̃n(~p1) and H̃n(~p2).

However, we note that every promise leaf in G̃n(~p1) and H̃n(~p2) is at distance at least k̃n + 1
from the respective root, and so BallG′n+1

(Gn, k̃n) = BallK(Gn, k̃n). However, BallK(Gn, k̃n) can
be seen immediately to be an mii-extension of Gn at Rn∪Bn to length k̃n, and since k̃n > kn+1
it follows that BallG′n+1

(Gn, kn + 1) is an mii-extension of Gn at Rn ∪ Bn to length kn + 1 as
claimed.

Finally, we note that Rn+1∪Bn+1 is the set of promise leaves cl(Ln). By the same reasoning as
before, BallG′n+1

(Gn, kn+1) contains no promise leaf in cl(Ln), and so does not meet Rn+1∪Bn+1

as claimed. Furthermore, it doesn’t meet any neighbours of Rn+1 ∪Bn+1.
Recall that Gn+1 is formed by gluing a set of vertices in (Fn+1×N) to neighbours of vertices

in Rn+1 ∪ Bn+1. However, by the above claim, BallG′n+1
(Gn, kn + 1) does not meet any of the

neighbours of Rn+1 ∪ Bn+1 and so BallGn+1(Gn, kn + 1) = BallG′n+1
(Gn, kn + 1), and the claim

follows.
Finally, to see that Gn+1 is a leaf extension of Gn of infinite growth, it suffices to observe that

Gn+1−Gn consists of one component only, which is a superset of the infinite graph Fn×N.

Lemma 8.5.14. There is a family of isomorphisms

Hn+1 = {hn+1,x : Gn+1 − x→ Hn+1 − ϕn+1(x) : x ∈ Xn+1},

such that

• hn+1,x � (Gn − x) = hn,x for all x ∈ Xn,

• the image of Rn+1 ∩ V (Gn+1) under hn+1,x is Rn+1 ∩ V (Hn+1),

• the image of Bn+1 ∩ V (Gn+1) under hn+1,x is Bn+1 ∩ V (Hn+1) for all x ∈ Xn+1.

Proof. Recall that Lemma 8.5.7 shows that the there exists such a family of isomorphisms
between G′n+1 and H ′n+1. Furthermore, we have that

Gn+1 := G′n+1 ⊕χGn+1
(Fn+1 × N) and Hn+1 := H ′n+1 ⊕χHn+1

(Fn+1 × N).

where it is easy to check that χGn+1 and χHn+1 satisfy the assumptions of Lemma 8.4.2, since
the functions ψG′n+1

and ψH′n+1
do by Lemma 8.5.8.

More precisely, given x ∈ Xn+1 and h′n+1,x, it follows from Lemma 8.5.8 that

χHn+1 ◦ h′n+1,x ◦ χGn+1

extends to an isomorphism πn+1,x of Fn+1. Hence, by Lemma 8.4.2, h′n+1,x extends to an
isomorphism hn+1,x from Gn+1 − x to Hn+1 − y. That this isomorphism satisfies the three
properties claimed follows immediately from Lemma 8.5.7 and the fact that hn+1,x � (Gn − x) =
h′n+1,x � (Gn − x).

Lemma 8.5.15. There exist bijections

ψGn+1 : V (Gn+1) ∩ (Rn+1 ∪Bn+1)→ R′n+1 ∪B′n+1

and
ψHn+1 : V (Hn+1) ∩ (Rn+1 ∪Bn+1)→ R′n+1 ∪B′n+1,

and a family of isomorphisms

Πn+1 = {πn+1,x : Fn+1 → Fn+1 : x ∈ Xn+1},

such that
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• πn+1,x � R′n+1 is a permutation of R′n+1 for each x,

• πn+1,x � B′n+1 is a permutation of B′n+1 for each x, and

• for each x ∈ Xn+1, the corresponding diagram commutes:

L(Gn+1) L(Hn+1)

L(Fn+1) L(Fn+1)

ψGn+1

hn+1,x � L(Gn+1)

πn+1,x � L(Fn+1)

ψHn+1

I.e. for every ` ∈ V (Gn+1)∩ (Rn+1 ∪Bn+1) we have πn+1,x(ψGn+1(`)) = ψHn+1(hn+1,x(`)).

Proof. Since Rn+1, Bn+1 ⊂ G′n+1 ∪ H ′n+1, and hn+1,x extends h′n+1,x for each x ∈ Xn+1, this
follows immediately from Lemma 8.5.8 after identifying F̂n+1 with Fn+1.

This completes our recursive construction, and hence the proof of Theorem 8.1.2 is complete.

8.6 A non-reconstructible graph with countably many ends

In this section we will prove Theorem 8.1.3. Since the proof will follow almost exactly the same
argument as the proof of Theorem 8.1.2, we will just indicate briefly here the parts which would
need to be changed, and how the proof is structured.

The proof follows the same back and forth construction as in Section 8.5.2, however instead
of starting with finite graphs G0 and H0 we will start with two infinite graphs, each containing
one free end. For example we could start with the graphs in Figure 8.9.

r(G0)
b

r(H0)
r

. . .

. . .

Figure 8.9: A possible choice for G0 and H0, where the dots indicate a ray.

The induction hypotheses remain the same, with the exception of (†7) and (†8) which are
replaced by

(†7’) Gn and Hn have exactly one limit end and infinitely many free ends when n > 1, and

(†8’) Rn ∪Bn ∩ Ω(Gn ∪Hn) = Ω′(Gn ∪Hn).

The arguments of Section 8.5.5 will then go through mutatis mutandis: for the proof of the
analogue of Lemma 8.5.12, use Corollary 8.4.5 instead of Corollary 8.4.4.

To show that the construction then yields the desired non-reconstructible pair of graphs with
countably many ends, we have to check that (†7’) holds for the limit graphs G and H. It is
clear that since Rn ∪Bn ∩ Ω(Gn ∪ Hn) = Ω′(Gn ∪ Hn), every free end in a graph Gn or Hn

remains free in the limit. Moreover, a similar argument to that in Section 8.5.3 shows that any
pair of rays in G or H which were not in a free end in some Gn or Hn are equivalent in G or H,
respectively.
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However, since the end space of a locally finite connected graph is a compact metrizable
space, and therefore has a countable dense subset, such a graph has at most countably many
free ends, since they are isolated in Ω(G). Hence, both G and H have at most countably many
free ends, and one limit end, and so both graphs have countably many ends.
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Chapter 9

Topological ubiquity of trees

9.1 Introduction

Let C be a relation between graphs, for example the subgraph relation ⊆, the topological minor
relation 6 or the minor relation 4. We say that a graph G is C-ubiquitous if whenever Γ is a
graph with nG C Γ for all n ∈ N, then one also has ℵ0G C Γ, where αG is the disjoint union of
α many copies of G.

Two classic results of Halin [71, 72] say that both the ray and the double ray are⊆-ubiquitous,
i.e. any graph which contains arbitrarily large collections of disjoint (double) rays must contain
an infinite collection of disjoint (double) rays. However, even quite simple graphs can fail to be
⊆ or 6-ubiquitous, see e.g. [7, 130, 91], examples of which, due to Andreae [14], are depicted in
Figures 9.1 and 9.2 below.

. . .

Figure 9.1: A graph which is not ⊆-ubiquitous.

. . .

Figure 9.2: A graph which is not 6-ubiquitous.

However, for the minor relation, no such simple examples of non-ubiquitous graphs are
known. Indeed, one of the most important problems in the theory of infinite graphs is the
so-called Ubiquity Conjecture due to Andreae [13].

Conjecture 9.1.1. [The Ubiquity Conjecture] Every locally finite connected graph is 4-ubiquitous.

In [13], Andreae constructed a graph that is not 4-ubiquitous. However, this construction
relies on the existence of a counterexample to the well-quasi-ordering of infinite graphs under
the minor relation, for which counterexamples are only known with very large cardinality [122].
In particular, it is still an open question whether or not there exists a countable connected graph
which is not 4-ubiquitous.

In his most recent paper on ubiquity to date, Andreae [14] exhibited infinite families of
locally finite graphs for which the ubiquity conjecture holds. The present paper is the first in a
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series of papers [25, 26, 27] making further progress towards the ubiquity conjecture, with the
aim being to show that all graphs of bounded tree-width are ubiquitous.

As a first step towards this, we in particular need to deal with infinite trees, for which one
even gets affirmative results regarding ubiquity under the topological minor relation. Halin
showed in [73] that all trees of maximum degree 3 are 6-ubiquitous. Andreae improved this
result to show that all locally finite trees are 6-ubiquitous [8], and asked if his result could be
extended to arbitrary trees [8, p. 214]. Our main result of this paper answers this question in
the affirmative.

Theorem 9.1.2. Every tree is ubiquitous with respect to the topological minor relation.

The proof will use some results about the well-quasi-ordering of trees under the topological
minor relation of Nash-Williams [101] and Laver [93], as well as some notions about the topo-
logical structure of infinite graphs [49]. Interestingly, most of the work in proving Theorem 9.1.2
lies in dealing with the countable case, where several new ideas are needed. In fact, we will prove
a slightly stronger statement in the countable case, which will allow us to derive the general
result via transfinite induction on the cardinality of the tree, using some ideas from Shelah’s
singular compactness theorem [119].

To explain our strategy, let us fix some notation. When H is a subdivision of G we write
G 6∗ H. Then, G 6 Γ means that there is a subgraph H ⊆ Γ which is a subdivision of G,
that is, G 6∗ H. If H is a subdivision of G and v a vertex of G, then we denote by H(v) the
corresponding vertex in H. More generally, given a subgraph G′ ⊆ G, we denote by H(G′) the
corresponding subdivision of G′ in H.

Now, suppose we have a rooted tree T and a graph Γ. Given a vertex t ∈ T , let Tt denote
the subtree of T rooted in t. We say that a vertex v ∈ Γ is t-suitable if there is some subdivision
H of Tt in Γ with H(t) = v. For a subtree S ⊆ T we say that a subdivision H of S in Γ is
T -suitable if for each vertex s ∈ V (S) the vertex H(s) is s-suitable, i.e. for every s ∈ V (S) there
is a subdivision H ′ of Ts such that H ′(s) = H(s).

An S-horde is a sequence (Hi : i ∈ N) of disjoint suitable subdivisions of S in Γ. If S′ is a
subtree of S, then we say that an S-horde (Hi : i ∈ N) extends an S′-horde (H ′i : i ∈ N) if for
every i ∈ N we have Hi(S

′) = H ′i.

In order to show that an arbitrary tree T is 6-ubiquitous, our rough strategy will be to
build, by transfinite recursion, S-hordes for larger and larger subtrees S of T , each extending
all the previous ones, until we have built a T -horde. However, to start the induction it will be
necessary to show that we can build S-hordes for countable subtrees S of T . This will be done
in the following key result of this paper:

Theorem 9.1.3. Let T be a tree, S a countable subtree of T and Γ a graph such that nT 6 Γ
for every n ∈ N. Then there is an S-horde in Γ.

Note that Theorem 9.1.3 in particular implies 6-ubiquity of countable trees.

We remark that whilst the relation 4 is a relaxation of the relation 6, which is itself a
relaxation of the relation ⊆, it is not clear whether ⊆-ubiquity implies 6-ubiquity, or whether
6-ubiquity implies 4-ubiquity. In the case of Theorem 9.1.2 however, it is true that arbitrary
trees are also 4-ubiquitous, although the proof involves some extra technical difficulties that
we will deal with in a later paper [27]. We note, however, that it is surprisingly easy to show
that countable trees are 4-ubiquitous, since it can be derived relatively straightforwardly from
Halin’s grid theorem, see [25, Theorem 1.7].

This paper is structured as follows: In Section 9.2, we provide background on rooted trees,
rooted topological embeddings of rooted trees (in the sense of Kruskal and Nash-Williams), and
ends of graphs. In our graph theoretic notation we generally follow the textbook of Diestel
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[43]. Next, Sections 9.3 to 9.5 introduce the key ingredients for our main ubiquity result. Sec-
tion 9.3, extending ideas from Andreae’s [8], lists three useful corollaries of Nash-Williams’ and
Laver’s result that (labelled) trees are well-quasi-ordered under the topological minor relation,
Section 9.4 investigates under which conditions a given family of disjoint rays can be rerouted
onto another family of disjoint rays, and Section 9.5 shows that without loss of generality, we
already have quite a lot of information about how exactly our copies of nG are placed in the
host graph Γ.

Using these ingredients, we give a proof of the countable case, i.e. of Theorem 9.1.3, in
Section 9.6. Finally, Section 9.7 contains the induction argument establishing our main result,
Theorem 9.1.2.

9.2 Preliminaries

Definition 9.2.1. A rooted graph is a pair (G, v) where G is a graph and v ∈ V (G) is a vertex
of G which we call the root. Often, when it is clear from the context which vertex is the root of
the graph, we will refer to a rooted graph (G, v) as simply G.

Given a rooted tree (T, v), we define a partial order ≤, which we call the tree-order, on V (T )
by letting x ≤ y if the unique path between y and v in T passes through x. See [43, Section 1.5]
for more background. For any edge e ∈ E(T ) we denote by e− the endpoint closer to the root
and by e+ the endpoint further from the root. For any vertex t we denote by N+(t) the set of
children of t in T , the neighbours s of t satisfying t ≤ s. The subtree of T rooted at t is denoted
by (Tt, t), that is, the induced subgraph of T on the set of vertices {s ∈ V (T ) : t ≤ s}.

We say that a rooted tree (S,w) is a rooted subtree of a rooted tree (T, v) if S is a subgraph
of T such that the tree order on (S,w) agrees with the induced tree order from (T, v). In this
case we write (S,w) ⊆r (T, v).

We say that a rooted tree (S,w) is a rooted topological minor of a rooted tree (T, v) if there
is a subgraph S′ of T which is a subdivision of S such that for any x ≤ y ∈ V (S), S′(x) ≤ S′(y)
in the tree-order on T . We call such an S′ a rooted subdivision of S. In this case we write
(S,w) 6r (T, v), cf. [43, Section 12.2].

Definition 9.2.2 (Ends of a graph, cf. [43, Chapter 8]). An end in an infinite graph Γ is an
equivalence class of rays, where two rays R and S are equivalent if and only if there are infinitely
many vertex disjoint paths between R and S in Γ. We denote by Ω(Γ) the set of ends in Γ. Given
any end ε ∈ Ω(Γ) and a finite set X ⊆ V (Γ) there is a unique component of Γ−X which contains
a tail of every ray in ε, which we denote by C(X, ε).

A vertex v ∈ V (Γ) dominates an end ω if there is a ray R ∈ ω such that there are infinitely
many vertex disjoint v –R -paths in Γ.

Definition 9.2.3. For a path or ray P and vertices v, w ∈ V (P ), let vPw denote the subpath
of P with endvertices v and w. If P is a ray, let Pv denote the finite subpath of P between the
initial vertex of P and v, and let vP denote the subray (or tail) of P with initial vertex v.

Given two paths or rays P and Q which are disjoint but for one of their endvertices, we
write PQ for the concatenation of P and Q, that is the path, ray or double ray P ∪ Q. Since
concatenation of paths is associative, we will not use parentheses. Moreover, if we concatenate
paths of the form vPw and wQx, then we omit writing w twice and denote the concatenation by
vPwQx.
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9.3 Well-quasi-orders and κ-embeddability

Definition 9.3.1. Let X be a set and let C be a binary relation on X. Given an infinite cardinal
κ we say that an element x ∈ X is κ-embeddable (with respect to C) in X if there are at least
κ many elements x′ ∈ X such that x C x′.

Definition 9.3.2 (well-quasi-order). A binary relation C on a set X is a well-quasi-order if it
is reflexive and transitive, and for every sequence x1, x2, . . . ∈ X there is some i < j such that
xi C xj.

Lemma 9.3.3. Let X be a set and let C be a well-quasi-order on X. For any infinite cardinal
κ the number of elements of X which are not κ-embeddable with respect to C in X is less than
κ.

Proof. For x ∈ X let Ux = {y ∈ X : x C y}. Now suppose for a contradiction that the set A ⊆ X
of elements which are not κ-embeddable with respect to C in X has size at least κ. Then, we
can recursively pick a sequence (xn ∈ A)n∈N such that xm 6C xn for m < n. Indeed, having
chosen all xm with m < n it suffices to choose xn to be any element of the set A \⋃m<n Uxm ,
which is nonempty since A has size κ but each Uxm has size < κ.

By construction we have xm 6C xn for m < n, contradicting the assumption that C is a
well-quasi-order on X.

We will use the following theorem of Nash-Williams on well-quasi-ordering of rooted trees,
and its extension by Laver to labelled rooted trees.

Theorem 9.3.4 (Nash-Williams [101]). The relation 6r is a well-quasi order on the set of
rooted trees.

Theorem 9.3.5 (Laver [93]). The relation 6r is a well-quasi order on the set of rooted trees
with finitely many labels, i.e. for every finite number k ∈ N, whenever (T1, c1), (T2, c2), . . . is a
sequence of rooted trees with k-colourings ci : Ti → [k], there is some i < j such that there exists
a subdivision H of Ti with H ⊆r Tj and ci(t) = cj(H(t)) for all t ∈ Ti.1

Together with Lemma 9.3.3 these results give us the following three corollaries:

Definition 9.3.6. Let (T, v) be an infinite rooted tree. For any vertex t of T and any infinite
cardinal κ, we say that a child t′ of t is κ-embeddable if there are at least κ children t′′ of t such
that Tt′ is a rooted topological minor of Tt′′.

Corollary 9.3.7. Let (T, v) be an infinite rooted tree, t ∈ V (T ) and T = {Tt′ : t′ ∈ N+(t)}.
Then for any infinite cardinal κ, the number of children of t which are not κ-embeddable is less
than κ.

Proof. By Theorem 9.3.4 the set T = {Tt′ : t′ ∈ N+(t)} is well-quasi-ordered by 6r and so the
claim follows by Lemma 9.3.3 applied to T , 6r, and κ.

Corollary 9.3.8. Let (T, v) be an infinite rooted tree, t ∈ V (T ) a vertex of infinite degree and
(ti ∈ N+(t) : i ∈ N) a sequence of countably many of its children. Then there exists Nt ∈ N such
that for all n > Nt,

{t} ∪
⋃
i>Nt

Tti 6r {t} ∪
⋃
i>n

Tti

(considered as trees rooted at t) fixing the root t.

1In fact, Laver showed that rooted trees labelled by a better-quasi-order are again better-quasi-ordered under
6r respecting the labelling, but we shall not need this stronger result.
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Proof. Consider a labelling c : Tt → [2] mapping t to 1, and all remaining vertices of Tt to 2. By
Theorem 9.3.5, the set T = {{t} ∪⋃i>n Tti : n ∈ N} is well-quasi-ordered by 6r respecting the
labelling, and so the claim follows by applying Lemma 9.3.3 to T and 6r with κ = ℵ0.

Definition 9.3.9 (Self-similarity). A ray R = r1r2r3 . . . in a rooted tree (T, v) which is upwards
with respect to the tree order displays self-similarity of T if there are infinitely many n such that
there exists a subdivision H of Tr0 with H ⊆r Trn and H(R) ⊆ R.

Corollary 9.3.10. Let (T, v) be an infinite rooted tree and let R = r1r2r3 . . . be a ray which
is upwards with respect to the tree order. Then there is a k ∈ N such that rkR displays self-
similarity of T .2

Proof. Consider a labelling c : T → [2] mapping the vertices on the ray R to 1, and labelling all
remaining vertices of T with 2. By Theorem 9.3.5, the set T = {(Tri , ci) : i ∈ N}, where ci is
the natural restriction of c to Tri , is well-quasi-ordered by 6r respecting the labellings. Hence
by Lemma 9.3.3, the number of indices i such that Tri is not ℵ0-embeddable in T is finite. Let
k be larger than any such i. Then, since Trk is ℵ0-embeddable in T , there are infinitely many
rj ∈ rkR such that Trk 6r Trj respecting the labelling, i.e. mapping the ray to the ray, and
hence rkR displays the self similarity of T .

9.4 Linkages between rays

In this section we will establish a toolkit for constructing a disjoint system of paths from one
family of disjoint rays to another.

Definition 9.4.1 (Tail of a ray). Given a ray R in a graph Γ and a finite set X ⊆ V (Γ) the
tail of R after X, denoted by T (R,X), is the unique infinite component of R in Γ−X.

Definition 9.4.2 (Linkage of families of rays). Let R = (Ri : i ∈ I) and S = (Sj : j ∈ J) be
families of vertex disjoint rays, where the initial vertex of each Ri is denoted xi. A family of
paths P = (Pi : i ∈ I), is a linkage from R to S if there is an injective function σ : I → J such
that

• each Pi joins a vertex x′i ∈ Ri to a vertex yσ(i) ∈ Sσ(i);

• the family T = (xiRix
′
iPiyσ(i)Sσ(i) : i ∈ I) is a collection of disjoint rays.

We say that T is obtained by transitioning from R to S along the linkage P. Given a finite set
of vertices X ⊆ V (Γ), we say that P is after X if x′i ∈ T (Ri, X) and x′iPiyσ(i)Sσ(i) avoids X for
all i ∈ I.

Lemma 9.4.3 (Weak linking lemma). Let Γ be a graph and ε ∈ Ω(Γ). Then for any families
R = (Ri : i ∈ [n]) and S = (Sj : j ∈ [n]) of vertex disjoint rays in ε and any finite set X of
vertices, there is a linkage from R to S after X.

Proof. Let us write xi for the initial vertex of each Ri and let x′i be the initial vertex of the tail
T (Ri, X). Furthermore, let X ′ = X ∪⋃i∈[n]Rix

′
i. For i ∈ [n] we will construct inductively finite

disjoint connected subgraphs Ki ⊆ Γ for each i ∈ [n] such that

• Ki meets T (Sj , X
′) and T (Rj , X

′) for every j ∈ [n];

• Ki avoids X ′.

2A slightly weaker statement, without the additional condition that H(R) ⊆ R appeared in [8, Lemma 1].
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Suppose that we have constructed K1, . . . ,Km−1 for some m ≤ n. Let us write Xm = X ′ ∪⋃
i<m V (Ki). Since R1, . . . , Rn and S1, . . . , Sn lie in the same end ε, there exist paths Qi,j

between T (Ri, Xm) and T (Sj , Xm) avoiding Xm for all i 6= j ∈ [n]. Let Km = F ∪⋃i 6=j∈[n]Qi,j ,
where F consists of an initial segment of each T (Ri, Xm) sufficiently large to make Km connected.
Then it is clear that Km is disjoint from all previous Ki and satisfies the claimed properties.

Let K =
⋃n
i=1Ki and for each j ∈ [n], let yj be the initial vertex of T (Sj , V (K)). Note that

by construction T (Sj , V (K)) avoids X for each j, since K1 meets T (Sj , X) and so T (Sj , V (K)) ⊆
T (Sj , X).

We claim that there is no separator of size < n between {x′1, . . . , x′n} and {y1, . . . , yn} in the
subgraph Γ′ ⊆ Γ where Γ′ = K ∪⋃n

j=1 T (Rj , X
′) ∪ T (Sj , X

′). Indeed, any set of < n vertices
must avoid at least one ray Ri, at least one graph Km and one ray Sj . However, since Km is
connected and meets Ri and Sj , the separator does not separate x′i from yj .

Hence, by a version of Menger’s theorem for infinite graphs [43, Proposition 8.4.1], there is
a collection of n disjoint paths Pi from x′i to yσ(i) in Γ′. Since Γ′ is disjoint from X and meets
each Rix

′
i in x′i only, it is clear that P = (Pi : i ∈ [n]) is as desired.

In some cases we will need to find linkages between families of rays which avoid more than
just a finite subset X. For this we will use the following lemma, which is stated in slightly more
generality than needed in this paper. Broadly the idea is that if we have a family of disjoint
rays (Ri : i ∈ [n]) tending to an end ε and a number a ∈ N, then there is some fixed number
N = N(a, n) such that if we have N disjoint graphs Hi, each with a specified ray Si tending to
ε, then we can ‘re-route’ the rays (Ri : i ∈ [n]) to some of the rays (Sj : j ∈ [N ]), in such a way
that we totally avoid a of the graphs Hi.

Lemma 9.4.4 (Strong linking lemma). Let Γ be a graph and ε ∈ Ω(Γ). Let X be a finite set
of vertices, a, n ∈ N, and R = (Ri : i ∈ [n]) a family of vertex disjoint rays in ε. Let xi be the
initial vertex of Ri and let x′i the initial vertex of the tail T (Ri, X).

Then there is a finite number N = N(R, X, a) with the following property: For every collec-
tion (Hj : j ∈ [N ]) of vertex disjoint subgraphs of Γ, all disjoint from X and each including a
specified ray Sj in ε, there is a set A ⊆ [N ] of size a and a linkage P = (Pi : i ∈ [n]) from R to
(Sj : j ∈ [N ]) which is after X and such that the family

T =
(
xiRix

′
iPiyσ(i)Sσ(i) : i ∈ [n]

)
avoids

⋃
k∈AHk.

Proof. Let X ′ = X ∪ ⋃i∈[n]Rix
′
i and let N0 = |X ′|. We claim that the lemma holds with

N = N0 + n3 + a.
Indeed suppose that (Hj : j ∈ [N ]) is a collection of vertex disjoint subgraphs as in the

statement of the lemma. Since the Hj are vertex disjoint, we may assume without loss of
generality that the family (Hj : j ∈ [n3 + a]) is disjoint from X ′.

For each i ∈ [n2] we will build inductively finite, connected, vertex disjoint subgraphs K̂i

such that

• K̂i contains x′i (mod n),

• K̂i meets exactly n of the Hj , that is |{ j ∈ [n3 + a] : K̂i ∩Hj 6= ∅}| = n, and

• K̂i avoids X ′.

Suppose we have done so for all i < m. Let Xm = X ′∪⋃i<m V (K̂i). We will build inductively
for t = 0, . . . , n increasing connected subgraphs K̂t

m that meet Ri (mod n), meet exactly t of the
Hj , and avoid Xm.
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We start with K̂0
m = ∅. For each t = 0, . . . n − 1, if T (Rm (mod n), Xm) meets some Hj not

met by K̂t
m then there is some initial vertex zt ∈ T (Rm (mod n), Xm) where it does so and we

set K̂t+1
m := K̂t

m ∪ T (Rm (mod n), Xm)zt. Otherwise we may assume T (Rm (mod n), Xm) does not
meet any such Hj . In this case, let j ∈ [n3 +a] be such that K̂t

m∩Hj = ∅. Since Rm (mod n) and
Sj belong to the same end ε, there is some path P between T (Rm (mod n), Xm) and T (Sj , Xm)
which avoids Xm. Since this path meets some Hk with k ∈ [n3 + a] which K̂t

m does not, there
is some initial segment P ′ which meets exactly one such Hk. To form K̂t+1

m we add this path to
K̂t
m together with an appropriately large initial segment of T (Rm (mod n), Xm) such that K̂t+1

m

is connected and contains x′m (mod n). Finally we let K̂m = K̂n
m.

Let K =
⋃
i∈[n2] K̂i. Since each K̂i meets exactly n of the Hj , the set

J = {j ∈ [n3 + a] : Hj ∩K 6= ∅}

satisfies |J | 6 n3. For each j ∈ J let yj be the initial vertex of T (Sj , V (K)).

We claim that there is no separator of size < n between {x′1, . . . x′n} and {yj : j ∈ J} in
the subgraph Γ′ ⊆ Γ where Γ′ = K ∪⋃j∈[n] T (Rj , X

′) ∪⋃j∈J Hj . Suppose for a contradiction
that there is such a separator S. Then S cannot meet every Ri, and hence avoids some Rq.
Furthermore, there are n distinct K̂i such that i = q (mod n), all of which are disjoint. Hence
there is some K̂r with r = q (mod n) disjoint from S. Finally, |{j ∈ J : K̂r ∩Hj 6= ∅}| = n and
so there is some Hs disjoint from S such that K̂r ∩Hs 6= ∅. Since K̂r meets T (Rq, X

′) and Hs,
there is a path from x′q to ys in Γ′, contradicting our assumption.

Hence, by a version of Menger’s theorem for infinite graphs [43, Proposition 8.4.1], there is
a family of disjoint paths P = (Pi : i ∈ [n]) in Γ′ from x′i to yσ(i). Furthermore, since |J | 6 n3

there is some subset A ⊆ [n3 + a] of size a such that Hk is disjoint from K for each k ∈ A.

Therefore, since Γ′ is disjoint from X ′ and meets each Rix
′
i in x′i only, the family P is a

linkage from R to (Sj)j∈[n3+a] which is after X such that

T =
(
xiRix

′
iPiyσ(i)Sσ(i) : i ∈ [n]

)
avoids

⋃
k∈AHk.

We will also need the following result, which allows us to work with paths instead of rays if
the end ε is dominated by infinitely many vertices.

Lemma 9.4.5. Let Γ be a graph and ε an end of Γ which is dominated by infinitely many
vertices. Let x1, x2, . . . , xk be distinct vertices. If there are disjoint rays from the xi to ε then
there are disjoint paths from the xi to distinct vertices yi which dominate ε.

Proof. We argue by induction on k. The base case k = 0 is trivial, so let us assume k > 0.

Consider any family of disjoint rays Ri, each from xi to ε. Let yk be any vertex dominating
ε. Let P be a yk –

⋃k
i=1Ri -path. Without loss of generality the endvertex u of P in

⋃k
i=1Ri lies

on Rk. Then by the induction hypothesis applied to the graph Γ − RkuP we can find disjoint
paths in that graph from the xi with i < k to vertices yi which dominate ε. These paths together
with RkuP then form the desired collection of paths.

To go back from paths to rays we will use the following lemma.

Lemma 9.4.6. Let Γ be a graph and ε an end of Γ which is dominated by infinitely many
vertices. Let y1, y2, . . . , yk be vertices, not necessarily distinct, dominating Γ. Then there are
rays Ri from the respective yi to ε which are disjoint except at their initial vertices.
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Proof. We recursively build for each n ∈ N paths Pn1 , . . . , P
n
k , each Pni from yi to a vertex yni

dominating ε, disjoint except at their initial vertices, such that for m < n each Pni properly
extends Pmi . We take P 0

i to be a trivial path. For n > 0, build the Pni recursively in i: To
construct Pni , we start by taking Xn

i to be the finite set of all the vertices of the Pnj with j < i
or Pn−1

j with j > i. We then choose a vertex yni outside of Xn
i which dominates ε and a path

Qni from yn−1
i to yni internally disjoint from Xn

i . Finally we let Pni := Pn−1
i yn−1Q

n
i .

Finally, for each i 6 k, we let Ri be the ray
⋃
n∈N P

n
i . Then the Ri are disjoint except at

their initial vertices, and they are in ε, since each of them contains infinitely many dominating
vertices of ε.

9.5 G-tribes and concentration of G-tribes towards an end

For showing that a given graph G is ubiquitous with respect to a fixed relation C, we shall
assume that nG C Γ for every n ∈ N and need to show that this implies that ℵ0G C Γ. Since
each subgraph witnessing that nG C Γ will be a collection of n disjoint subgraphs each being a
witness for G C Γ, it will be useful to introduce some notation for talking about these families
of collections of n disjoint witnesses for each n.

To do this formally, we need to distinguish between a relation like the topological minor
relation and the subdivision relation. Recall that we write G 6∗ H if H is a subdivision of G
and G 6 Γ if G is a topological minor of Γ. We can interpret the topological minor relation as
the composition of the subdivision relation and the subgraph relation.

Given two relations R and S, let their composition S ◦R be the relation defined by x(S ◦R)z
if and only if there is a y such that xRy and ySz.

Hence we have that G (⊆ ◦ 6∗) Γ if and only if there exists H such that G 6∗ H ⊆ Γ, that
is, if and only if G 6 Γ.

While in this paper we will only work with the topological minor relation, we will state the
following definition and lemmas in greater generality, so that we may apply them in later papers
in this series [25, 26, 27].

In general, we want to consider a pair (C, J) of binary relations of graphs with the following
properties.

(R1) C = (⊆ ◦ J);

(R2) Given a set I and a family (Hi : i ∈ I) of pairwise disjoint graphs with G J Hi for all
i ∈ I, then |I| ·G J ⋃{Hi : i ∈ I}.

We call a pair (C,J) with these properties compatible.

Other examples of compatible pairs are (⊆,∼=), where ∼= denotes the isomorphism relation,
as well as (4,4∗), where G 4∗ H if H is an inflated copy of G.

Definition 9.5.1 (G-tribes). Let G and Γ be graphs, and let (C,J) be a compatible pair of
relations between graphs.

• A G-tribe in Γ (with respect to (C,J)) is a collection F of finite sets F of disjoint
subgraphs H of Γ such that G J H for each member of F H ∈ ⋃F .

• A G-tribe F in Γ is called thick, if for each n ∈ N there is a layer F ∈ F with |F | > n;
otherwise, it is called thin.3

3A similar notion of thick and thin families was also introduced by Andreae in [8] (in German) and in [14].
The remaining notions, and in particular the concept of a concentrated G-tribe, which will be the backbone of
essentially all our results in this series of papers, is new.
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• A G-tribe F ′ in Γ is a G-subtribe of a G-tribe F in Γ, denoted by F ′ C F , if there is an
injection Ψ: F ′ → F such that for each F ′ ∈ F ′ there is an injection ϕF ′ : F

′ → Ψ(F ′)
such that V (H ′) ⊆ V (ϕF ′(H

′)) for each H ′ ∈ F ′. The G-subtribe F ′ is called flat, denoted
by F ′ ⊆ F , if there is such an injection Ψ satisfying F ′ ⊆ Ψ(F ′).

• A thick G-tribe F in Γ is concentrated at an end ε of Γ, if for every finite vertex set X of Γ,
the G-tribe FX = {FX : F ∈ F} consisting of the layers FX = {H ∈ F : H 6⊆ C(X, ε)} ⊆ F
is a thin subtribe of F .

Hence, for a given compatible pair (C,J), if we wish to show that G is C-ubiquitous, we will
need to show that the existence of a thick G-tribe in Γ with respect to (C,J) implies ℵ0G C Γ.
We first observe that removing a thin G-tribe from a thick G-tribe always leaves a thick G-tribe.

Lemma 9.5.2 (cf. [8, Lemma 3] or [14, Lemma 2]). Let F be a thick G-tribe in Γ and let F ′ be
a thin subtribe of F , witnessed by Ψ: F ′ → F and (ϕF ′ : F

′ ∈ F ′). For F ∈ F , if F ∈ Ψ(F ′),
let Ψ−1(F ) = {F ′F } and set F̂ = ϕF ′F (F ′F ). If F /∈ Ψ(F ′), set F̂ = ∅. Then

F ′′ := {F \ F̂ : F ∈ F}

is a thick flat G-subtribe of F .

Proof. F ′′ is obviously a flat subtribe of F . As F ′ is thin, there is a k ∈ N such that |F ′| ≤ k
for every F ′ ∈ F ′. Thus |F̂ | ≤ k for all F ∈ F . Let n ∈ N. As F is thick, there is a layer F ∈ F
satisfying |F | ≥ n+ k. Thus |F \ F̂ | ≥ n+ k − k = n.

Given a thick G-tribe, the members of this tribe may have different properties, for example,
some of them contain a ray belonging to a specific end ε of Γ whereas some of them do not.
The next lemma allows us to restrict onto a thick subtribe, in which all members have the same
properties, as long as we consider only finitely many properties. E.g. we find a subtribe in which
either all members contain an ε-ray, or none of them contain such a ray.

Lemma 9.5.3 (Pigeon hole principle for thick G-tribes). Suppose for some k ∈ N, we have
a k-colouring c :

⋃F → [k] of the members of some thick G-tribe F in Γ. Then there is a
monochromatic, thick, flat G-subtribe F ′ of F .

Proof. Since F is a thick G-tribe, there is a sequence (ni : i ∈ N) of natural numbers and a
sequence (Fi ∈ F : i ∈ N) such that

n1 6 |F1| < n2 6 |F2| < n3 6 |F3| < · · · .

Now for each i, by pigeon hole principle, there is one colour ci ∈ [k] such that the subset F ′i ⊆ Fi
of elements of colour ci has size at least ni/k. Moreover, since [k] is finite, there is one colour
c∗ ∈ [k] and an infinite subset I ⊆ N such that ci = c∗ for all i ∈ I. But this means that
F ′ := {F ′i : i ∈ I} is a monochromatic, thick, flat G-subtribe.

In this series of papers we will be interested in graph relations such as ⊆, 6 and 4. Given a
connected graph G and a compatible pair of relations (C,J) we say that a G-tribe F w.r.t (C,J)
is connected if every member H of F is connected. Note that for relations J like ∼=,≤∗,4∗, if
G is connected and G J H, then H is connected. In this case, any G-tribe will be connected.

Lemma 9.5.4. Let G be a connected graph (of arbitrary cardinality), (C,J) a compatible pair
of relations of graphs and Γ a graph containing a thick connected G-tribe F w.r.t. (C,J). Then
either ℵ0G C Γ, or there is a thick flat subtribe F ′ of F and an end ε of Γ such that F ′ is
concentrated at ε.

171



Proof. For every finite vertex set X ⊆ V (Γ), only a thin subtribe of F can meet X, so by Lemma
9.5.2 a thick flat subtribe F ′′ is contained in the graph Γ − X. Since each member of F ′′ is
connected, any member H of F ′′ is contained in a unique component of Γ −X. If for any X,
infinitely many components of Γ − X contain a J-copy of G, the union of all these copies is
a J-copy of ℵ0G in Γ by (R2), hence ℵ0G C Γ. Thus, we may assume that for each X, only
finitely many components contain elements from F ′′, and hence, by colouring each H with a
colour corresponding to the component of Γ − X containing it, we may assume by the pigeon
hole principle for G-tribes, Lemma 9.5.3, that at least one component of Γ−X contains a thick
flat subtribe of F .

Let C0 = Γ and F0 = F and consider the following recursive process: If possible, we choose
a finite vertex set Xn in Cn such that there are two components Cn+1 6= Dn+1 of Cn−Xn where
Cn+1 contains a thick flat subtribe Fn+1 ⊆ Fn and Dn+1 contains at least one J-copy Hn+1 of
G. Since by construction all Hn are pairwise disjoint, we either find infinitely many such Hn

and thus, again by (R2), an ℵ0G C Γ, or our process terminates at step N say. That is, we have
a thick flat subtribe FN contained in a subgraph CN such that there is no finite vertex set XN

satisfying the above conditions.

Let F ′ := FN . We claim that for every finite vertex set X of Γ, there is a unique component
CX of Γ − X that contains a thick flat G-subtribe of F ′. Indeed, note that if for some finite
X ⊆ Γ there are two components C and C ′ of Γ−X both containing thick flat G-subtribes of F ′,
then since every G-copy in F ′ is contained in CN , it must be the case that C∩CN 6= ∅ 6= C ′∩CN .
But then XN = X ∩CN 6= ∅ is a witness that our process could not have terminated at step N .

Next, observe that whenever X ′ ⊇ X, then CX′ ⊆ CX . By a theorem of Diestel and Kühn,
[49], it follows that there is a unique end ε of Γ such that C(X, ε) = CX for all finite X ⊆ Γ. It
now follows easily from the uniqueness of CX = C(X, ε) that F ′ is concentrated at this ε.

We note that concentration towards an end ε is a robust property in the following sense:

Lemma 9.5.5. Let G be a connected graph (of arbitrary cardinality), (C,J) a compatible pair
of relations of graphs and Γ a graph containing a thick connected G-tribe F w.r.t. (C,J) con-
centrated at an end ε of Γ. Then the following assertions hold:

1. For every finite set X, the component C(X, ε) contains a thick flat G-subtribe of F .

2. Every thick subtribe F ′ of F is concentrated at ε, too.

Proof. Let X be a finite vertex set. By definition, if the G-tribe F is concentrated at ε, then
F is thick, and the subtribe FX consisting of the sets FX = {H ∈ F : H 6⊆ C(X, ε)} ⊆ F for
F ∈ F is a thin subtribe of F , i.e. there exists k ∈ N such that |FX | 6 k for all FX ∈ FX .

For (1), observe that the G-tribe F ′ = {F \ FX : F ∈ F} is a thick flat subtribe of F by
Lemma 9.5.2, and all its members are contained in C(X, ε) by construction.

For (2), observe that if F ′ is a subtribe of F , then for every F ′ ∈ F ′ there is an injection
ϕF ′ : F

′ → F for some F ∈ F . Therefore, |ϕ−1
F ′ (FX)| 6 k for FX ⊆ F as defined above, and so

only a thin subtribe of F ′ is not contained in C(X, ε).

9.6 Countable subtrees

In this section we prove Theorem 9.1.3. Let S be a countable subtree of T . Our aim is to
construct an S-horde (Qi : i ∈ N) of disjoint suitable subdivisions of S in Γ inductively. By
Lemma 9.5.4, we may assume without loss of generality that there are an end ε of Γ and a thick
T -tribe F concentrated at ε.
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In order to ensure that we can continue the construction at each stage, we will require the
existence of additional structure for each n. But the details of what additional structure we use
will vary depending on how many vertices dominate ε. So, after a common step of preprocessing,
in Section 9.6.1, the proof of Theorem 9.1.3 splits into two cases according to whether the number
of ε-dominating vertices in Γ is finite (Section 9.6.2) or infinite (Section 9.6.3).

9.6.1 Preprocessing

We begin by picking a root v for S, and also consider T as a rooted tree with root v. Let V∞(S)
be the set of vertices of infinite degree in S.

Definition 9.6.1. Given S and T as above, define a spanning locally finite forest S∗ ⊆ S by

S∗ := S \
⋃

t∈V∞(S)

{tti : ti ∈ N+(t), i > Nt},

where Nt is as in Corollary 9.3.8. We will also consider every component of S∗ as a rooted tree
given by the induced tree order from T .

Definition 9.6.2. An edge e of S∗ is an extension edge if there is a ray in S∗ starting at e+

which displays self-similarity of T . For each extension edge e we fix one such a ray Re. Write
Ext(S∗) ⊆ E(S∗) for the set of extension edges.

Consider the forest S∗ − Ext(S∗) obtained from S∗ by removing all extension edges. Since
every ray in S∗ must contain an extension edge by Corollary 9.3.10, each component of S∗ −
Ext(S∗) is a locally finite rayless tree and so is finite (this argument is inspired by [8, Lemma 2]).
We enumerate the components of S∗−Ext(S∗) as S∗0 , S

∗
1 , . . . in such a way that for every n > 0,

the set

Sn := S

[⋃
i6n

V (S∗i )

]
is a finite subtree of S containing the root r. Let us write ∂(Sn) = ES∗(Sn, S

∗ \ Sn), and note
that ∂(Sn) ⊆ Ext(S∗). We make the following definitions:

• For a given T -tribe F and ray R of T , we say that R converges to ε according to F if for
all members H of F the ray H(R) is in ε. We say that R is cut from ε according to F if for
all members H of F the ray H(R) is not in ε. Finally we say that F determines whether
R converges to ε if either R converges to ε according to F or R is cut from ε according to
F .

• Similarly, for a given T -tribe F and vertex t of T , we say that t dominates ε according to
F if for all members H of F the vertex H(t) dominates ε. We say that t is cut from ε
according to F if for all members H of F the vertex H(t) does not dominate ε. Finally we
say that F determines whether t dominates ε if either t dominates ε according to F or t is
cut from ε according to F .

• Given n ∈ N, we say a thick T -tribe F agrees about ∂(Sn) if for each extension edge
e ∈ ∂(Sn), it determines whether Re converges to ε. We say that it agrees about V (Sn) if
for each vertex t of Sn, it determines whether t dominates ε.

• Since ∂(Sn) and V (Sn) are finite for all n, it follows from Lemma 9.5.3 that given some
n ∈ N, any thick T -tribe has a flat thick T -subtribe F such that F agrees about ∂(Sn)
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and V (Sn). Under these circumstances we set

∂ε(Sn) := {e ∈ ∂(Sn) : Re converges to ε according to F} ,
∂¬ε(Sn) := {e ∈ ∂(Sn) : Re is cut from ε according to F} ,
Vε(Sn) := {t ∈ V (Sn) : t dominates ε according to F} , and

V¬ε(Sn) := {t ∈ V (Sn) : t is cut from ε according to F} .

• Also, under these circumstances, let us write S¬εn for the component of the forest S −
∂ε(Sn)−{e ∈ ES(Sn, S \Sn) : e− ∈ Vε(Sn)} containing the root of S. Note that Sn ⊆ S¬εn .

The following lemma contains a large part of the work needed for our inductive construction.

Lemma 9.6.3 (T -tribe refinement lemma). Suppose we have a thick T -tribe Fn concentrated at
ε which agrees about ∂(Sn) and V (Sn) for some n ∈ N. Let f denote the unique edge from Sn
to Sn+1 \Sn. Then there is a thick T -tribe Fn+1 concentrated at ε with the following properties:

(i) Fn+1 agrees about ∂(Sn+1) and V (Sn+1).

(ii) Fn+1 ∪ Fn agree about ∂(Sn) \ {f} and V (Sn).

(iii) S¬εn+1 ⊇ S¬εn .

(iv) For all H ∈ Fn+1 there is a finite X ⊆ Γ such that H(S¬εn+1)∩(X ∪ CΓ(X, ε)) = H(Vε(Sn+1)).

Moreover, if f ∈ ∂ε(Sn), and Rf = v0v1v2 . . . ⊆ S∗ (with v0 = f+) denotes the ray displaying
self-similarity of T at f , then we may additionally assume:

(v) For every H ∈ Fn+1 and every k ∈ N, there is H ′ ∈ Fn+1 with

• H ′ ⊆r H
• H ′(Sn) = H(Sn),

• H ′(Tv0) ⊆r H(Tvk), and

• H ′(Rf ) ⊆ H(Rf ).

Proof. Concerning (v), if f ∈ ∂ε(Sn) recall that according to Definition 9.6.2, the ray Rf satisfies
that for all k ∈ N we have Tv0 6r Tvk such that Rf gets embedded into itself. In particular, there
is a subtree T̂1 of Tv1 which is a rooted subdivision of Tv0 with T̂1(Rf ) ⊆ Rf , considering T̂1 as a
rooted tree given by the tree order in Tv1 . If we define recursively for each k ∈ N T̂k = T̂k−1(T̂1)
then it is clear that (T̂k : k ∈ N) is a family of rooted subdivisions of Tv0 such that for each k ∈ N

• T̂k ⊆ Tvk ;

• T̂k ⊇ T̂k+1;

• T̂k(Rf ) ⊆ Rf

Hence, for every subdivision H of T with H ∈ ⋃Fn and every k ∈ N, the subgraph H(T̂k)
is also a rooted subdivision of Tv0 . Let us construct a subdivision H(k) of T by letting H(k) be
the minimal subtree of H containing H(T \Tv0)∪H(T̂k), where H(k)(T \Tv0) = H(T \Tv0) and
H(k)(Tv0) = H(T̂k). Note that

H(k)(Tv0) = H(T̂k) ⊆r H(k−1)(Tv0) = H(T̂k−1) ⊆r . . . ⊆r H(Tvk).
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In particular, for every subdivision H ∈ ⋃Fn of T and every k ∈ N, there is a subdivision
H(k) ⊆ H of T such that H(k)(S¬εn ) = H(S¬εn ), H(k)(Tv0) ⊆r H(Tvk), and H(k)(Rf ) ⊆ H(Rf ).
By the pigeon hole principle, there is an infinite index set KH = {kH1 , kH2 , . . .} ⊆ N such that
{{H(k)} : k ∈ KH} agrees about ∂(Sn+1). Consider the thick subtribe F ′n = {F ′i : F ∈ Fn, i ∈ N}
of Fn with

(†) F ′i := {H(kHi ) : H ∈ F}.

Observe that F ′n ∪ Fn still agrees about ∂(Sn) and V (Sn). (If f ∈ ∂¬ε(Sn), then skip this part
and simply let F ′n := Fn.)

Concerning (iii), observe that for every H ∈ ⋃F ′n, since the rays H(Re) for e ∈ ∂¬ε(Sn) do
not tend to ε, there is a finite vertex set XH such that H(Re)∩C(XH , ε) = ∅ for all e ∈ ∂¬ε(Sn).
Furthermore, since XH is finite, for each such extension edge e there exists xe ∈ Re such that

H(Txe) ∩ C(XH , ε) = ∅.

By definition of extension edges, cf. Definition 9.6.2, for each e ∈ ∂¬ε(Sn) there is a rooted
embedding of Te+ into H(Txe). Hence, there is a subdivision H̃ of T with H̃ 6 H and H̃(Sn) =
H(Sn) such that H̃(Te+) ⊆ H(Txe) for each e ∈ ∂¬ε(Sn).

Note that if e ∈ ∂¬ε(Sn) and g is an extension edge with e 6 g ∈ ∂(Sn+1) \ ∂(Sn), then
H̃(Rg) ⊆ H̃(Se+) ⊆ H(Sxe), and so

(‡) H̃(Rg) doesn’t tend to ε.

Define F̃n to be the thick T -subtribe of F ′n consisting of the H̃ for every H in
⋃F ′n.

Now use Lemma 9.5.3 to chose a maximal thick flat subtribe F∗n of F̃n which agrees about
∂(Sn+1) and V (Sn+1), so it satisfies (i) and (ii). By (‡), the tribe F∗n satisfies (iii), and by
maximality and (†), it satisfies (v).

In our last step, we now arrange for (iv) while preserving all other properties. For each
H ∈ ⋃F∗n. Since H(Sn+1) is finite, we may find a finite separator YH such that

H(Sn+1) ∩ (YH ∪ C(YH , ε)) = H(Vε(Sn+1)).

Since YH is finite, for every vertex t ∈ V¬ε(Sn+1), say with N+(t) = (ti)i∈N, there exists nt ∈ N
such that C(YH , ε)∩H(Ttj ) = ∅ for all j > nt. Using Corollary 9.3.8, for every such t there is a
rooted embedding

{t} ∪
⋃
j>Nt

Ttj 6r {t} ∪
⋃
j>nt

Ttj .

fixing the root t. Hence there is a subdivisionH’ of T withH ′ 6 H such thatH ′(T\S) = H(T\S)
and for every t ∈ V¬ε(Sn+1)

H ′

{t} ∪ ⋃
j>Nt

Ttj

 ∩ C(YH , ε) = ∅.

Moreover, note that by construction of F̃n, every such H ′ automatically satisfies that

H(Se+) ∩ C(XH ∪ YH , ε) = ∅

for all e ∈ ∂¬ε(Sn+1). Let Fn+1 consist of the set of H ′ as defined above for all H ∈ F∗n. Then
XH ∪ YH is a finite separator witnessing that Fn+1 satisfies (iv).
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9.6.2 Only finitely many vertices dominate ε

We first note as in Lemma 9.5.4, that for every finite vertex set X ⊆ V (Γ) only a thin subtribe
of F can meet X, so a thick subtribe is contained in the graph Γ−X. By removing the set of
vertices dominating ε, we may therefore assume without loss of generality that no vertex of Γ
dominates ε.

Definition 9.6.4 (Bounder, extender). Suppose that some thick T -tribe F which is concentrated
at ε agrees about Sn for some given n ∈ N, and Qn1 , Q

n
2 , . . . , Q

n
n are disjoint subdivisions of S¬εn

(note, S¬εn depends on F).

• A bounder for the (Qni : i ∈ [n]) is a finite set X of vertices in Γ separating all the Qi from
ε, i.e. such that

C(X, ε) ∩
n⋃
i=1

Qni = ∅.

• An extender for the (Qni : i ∈ [n]) is a family En = (Ene,i : e ∈ ∂ε(Sn), i ∈ [n]) of rays in
Γ tending to ε which are disjoint from each other and also from each Qni except at their
initial vertices, and where the start vertex of Ene,i is Qni (e−).

To prove Theorem 9.1.3, we now assume inductively that for some n ∈ N, with r := bn/2c
and s := dn/2e we have:

1. A thick T -tribe Fr in Γ concentrated at ε which agrees about ∂ (Sr), with a boundary
∂ε (Sr) such that S¬εr−1 ⊆ S¬εr .4

2. a family (Qni : i ∈ [s]) of s pairwise disjoint T -suitable subdivisions of S¬εr in Γ with
Qni (S¬εr−1) = Qn−1

i for all i 6 s− 1,

3. a bounder Xn for the (Qni : i ∈ [s]), and

4. an extender En = (Ene,i : e ∈ ∂ε (S¬εr ) , i ∈ [s]) for the (Qni : i ∈ [s]).

The base case n = 0 it easy, as we simply may choose F0 6r F to be any thick T -subtribe
in Γ which agrees about ∂(S0), and let all other objects be empty.

So, let us assume that our construction has proceeded to step n > 0. Our next task splits into
two parts: First, if n = 2k−1 is odd, we extend the already existing k subdivisions (Qni : i ∈ [k])
of S¬εk−1 to subdivisions (Qn+1

i : i ∈ [k]) of S¬εk . And secondly, if n = 2k is even, we construct a
further disjoint copy Qn+1

k+1 of S¬εk .
Construction part 1: n = 2k − 1 is odd. By assumption, Fk−1 agrees about ∂(Sk−1).

Let f denote the unique edge from Sk−1 to Sk \ Sk−1. We first apply Lemma 9.6.3 to Fk−1 in
order to find a thick T -tribe Fk concentrated at ε satisfying properties (i)–(v). In particular, Fk
agrees about ∂(Sk) and S¬εk−1 ⊆ S¬εk

We first note that if f /∈ ∂ε(Sk−1), then S¬εk−1 = S¬εk , and we can simply take Qn+1
i := Qni

for all i ∈ [k], En+1 := En and Xn+1 := Xn.
Otherwise, we have f ∈ ∂ε(Sk−1). By Lemma 9.5.5(2) Fk is concentrated at ε, and so we

may pick a collection {H1, . . . ,HN} of disjoint subdivisions of T from some F ∈ Fk, all of which
are contained in C(Xn, ε), where N = |En|. By Lemma 9.4.3 there is some linkage P ⊆ C(Xn, ε)
from

En to (Hj(Rf ) : j ∈ [N ]),

4Note that since ε is undominated, every thick T -tribe agrees about the fact that Vε(Si) = ∅ for all i ∈ N.
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which is after Xn. Let us suppose that the linkage P joins a vertex xe,i ∈ Ene,i to yσ(e,i) ∈
Hσ(e,i)(Rf ) via a path Pe,i ∈ P. Let zσ(e,i) be a vertex in Rf such that yσ(e,i) 6 Hσ(e,i)(zσ(e,i))
in the tree order on Hσ(e,i)(T ).

By property (v) of Fk in Lemma 9.6.3, we may assume without loss of generality that for
each Hj there is a another member H ′j ⊆ Hj of Fk such that H ′j(Tf+) ⊆r Hj(Tzj ). Let P̂j ⊆ H ′j
denote the path from Hj(yj) to H ′j(f

+).
Now for each i ∈ [k], define

Qn+1
i = Qni ∪ Enf,ixf,iPf,iyσ(f,i)P̂σ(f,i) ∪H ′σ(f,i)(S

¬ε
k \ S¬εk−1).

By construction, each Qn+1
i is a T -suitable subdivision of S¬εk .

By Lemma 9.6.3(iv) we may find a finite set Xn+1 ⊆ Γ with Xn ⊆ Xn+1 such that

C(Xn+1, ε) ∩
( ⋃
i∈[k]

Qn+1
i

)
= ∅.

This set Xn+1 will be our bounder.
Define an extender En+1 = (En+1

e,i : e ∈ ∂ε(Sk), i ∈ [k]) for the Qn+1
i as follows:

• For e ∈ ∂ε(Sk−1) \ {f}, let En+1
e,i := Ene,ixe,iPe,iyσ(e,i)Hσ(e,i)(Rf ).

• For e ∈ ∂ε(Sk) \ ∂(Sk−1), let En+1
e,i := H ′σ(e,i)(Re).

Since each Hσ(e,i), H
′
σ(e,i) ∈

⋃Fk, and Fk determines that Rf converges to ε, these are indeed
ε rays. Furthermore, since H ′σ(e,i) ⊆ Hσ(e,i) and {H1, . . . ,HN} are disjoint, it follows that the
rays are disjoint.

Construction part 2: n = 2k is even. If ∂ε(Sk) = ∅, then S¬εk = S, and so picking any
element Qn+1

k+1 from Fk with Qn+1
k+1 ⊆ C(Xn, ε) gives us a further copy of S disjoint from all the

previous ones. Using Lemma 9.6.3(iv), there is a suitable bounder Xn+1 ⊇ Xn for Qn+1
k+1 , and

we are done. Otherwise, pick e0 ∈ ∂ε(Sk) arbitrary.
Since Fk is concentrated at ε, we may pick a collection {H1, . . . ,HN} of disjoint subdivi-

sions of T from Fk all contained in C(Xn, ε), where N is large enough so that we may apply
Lemma 9.4.4 to find a linkage P ⊆ C(Xn, ε) from

En to (Hi(Re0) : i ∈ [N ]),

after Xn, avoiding say H1. Let us suppose the linkage P joins a vertex xe,i ∈ Ene,i to yσ(e,i) ∈
Hσ(e,i)(Re0) via a path Pe,i ∈ P. Define

Qn+1
k+1 = H1(S¬εk ).

Note that Qn+1
k+1 is a T -suitable subdivision of S¬εk .

By Lemma 9.6.3(iv) there is a finite set Xn+1 ⊆ Γ with Xn ⊆ Xn+1 such that C(Xn+1, ε) ∩
Qn+1
k+1 = ∅. This set Xn+1 will be our new bounder.

Define the extender En+1 = (En+1
e,i : e ∈ ∂ε(Sk+1), i ∈ [k + 1]) of ε-rays as follows:

• For i ∈ [k], let En+1
e,i := Ene,ixe,iPe,iyσ(e,i)Hσ(e,i)(Re0).

• For i = k + 1, let En+1
e,k+1 := H1(Re) for all e ∈ ∂ε(Sk+1).

Once the construction is complete, let us define Hi :=
⋃
n>2i−1Q

n
i .

Since
⋃
n∈N S

¬ε
n = S, and due to the extension property (2), the collection (Hi)i∈N is an

S-horde.
We remark that our construction so far suffices to give a complete proof that countable trees

are 6-ubiquitous. Indeed, it is well-known that an end of Γ is dominated by infinitely many
distinct vertices if and only if Γ contains a subdivision of Kℵ0 [43, Exercise 19, Chapter 8], in
which case proving ubiquity becomes trivial:
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Lemma 9.6.5. For any countable graph G, we have ℵ0 ·G ⊆ Kℵ0.

Proof. By partitioning the vertex set of Kℵ0 into countably many infinite parts, we see that
ℵ0 ·Kℵ0 ⊆ Kℵ0 . Also, clearly G ⊆ Kℵ0 . Hence, we have ℵ0 ·G ⊆ ℵ0 ·Kℵ0 ⊆ Kℵ0 .

9.6.3 Infinitely many vertices dominate ε

The argument in this case is very similar to that in the previous subsection. We define bounders
and extenders just as before. We once more assume inductively that for some n ∈ N, with
r := bn/2c, we have objects given by (1)–(4) as in the last section, and which in addition satisfy

(5) Fr agrees about V (Sr).

(6) For any t ∈ Vε(Sr) the vertex Qni (t) dominates ε.

The base case is again trivial, so suppose that our construction has proceeded to step n > 0.
The construction is split into two parts just as before, where the case n = 2k, in which we need
to refine our T -tribe and find a new copy Qn+1

k+1 of S¬εk , proceeds just as in the last section.

If n = 2k − 1 is odd, and if f ∈ ∂¬ε(Sk−1) or ∂ε(Sk−1), then we proceed as in the last
subsection. But these are no longer the only possibilities. It follows from the definition of S¬εk
that there is one more option, namely that f− ∈ Vε(Sk). In this case we modify the steps of the
construction as follows:

We first apply Lemma 9.6.3 to Fk−1 in order to find a thick T -tribe Fk−1 which agrees about
∂(Sk) and V (Sk).

Then, by applying Lemma 9.4.5 to tails of the rays Ene,i in CΓ(Xn, ε), we obtain a family
Pn+1 of paths Pn+1

e,i which are disjoint from each other and from the Qni except at their initial
vertices, where the initial vertex of Pn+1

e,i is Qni (e−) and the final vertex yn+1
e,i of Pn+1

e,i dominates
ε.

Since Fk is concentrated at ε, we may pick a collection {H1, . . . ,Hk} of disjoint subdivisions
of T from Fk all contained in C(Xn ∪

⋃Pn+1, ε).

Now for each i ∈ [k], define

Q̂n+1
i = Qni ∪Hi(f

−) ∪Hi(S
¬ε
k \ S¬εk−1).

These are almost T -suitable subdivisions of S¬εk , except we need to add a path between Qni (f−)
and Hi(f

−).

By applying Lemma 9.4.5 to tails of the rays Hi(Re) inside C(Xn ∪
⋃Pn+1, ε) with e ∈

∂ε(Sk+1) \ ∂(Sk) we can construct a family P ′n+1 := {Pn+1
e,i : e ∈ ∂ε(Sk+1) \ ∂ε(Sk), i 6 k} of

paths which are disjoint from each other and from the Q̂n+1
i except at their initial vertices,

where the initial vertex of Pn+1
e,i is Hi(e

−) and the final vertex yn+1
e,i of Pn+1

e,i dominates ε.
Therefore the family

Pn+1 ∪ P ′n+1 = (Pn+1
e,i : e ∈ ∂ε(Sk+1), i ∈ [k])

is a family of disjoint paths, which are also disjoint from the Q̂n+1
i except at their initial vertices,

where the initial vertex of Pn+1
e,i is Hi(e

−) or Qni (e−) and the final vertex yn+1
e,i of Pn+1

e,i dominates
ε.

Since Qni (f−) and Hi(f
−) both dominate ε for all i, we may recursively build a sequence

P̂n+1 = {P̂i : 1 6 i 6 k} of disjoint paths P̂i from Qni (f−) to Hi(f
−) with all internal vertices

in C(Xn+1 ∪
(⋃P ′n+1 ∪

⋃Pn+1

)
, ε). Letting Qn+1

i = Q̂n+1
i ∪ P̂i, we see that each Qn+1

i is a
T -suitable subdivision of S¬εk in Γ.

Our new bounder will be Xn+1 := Xn ∪
⋃ P̂n+1 ∪

⋃P ′n+1 ∪
⋃Pn+1.
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Finally, let us apply Lemma 9.4.6 to Y := {yn+1
e,i : e ∈ ∂ε(Sn+1), i 6 k} in Γ[Y ∪C(Xn+1, ε)].

This gives us a family of disjoint rays

Ên+1 = (Ên+1
e,i : e ∈ ∂ε(Sk+1), i ∈ [k])

such that Ên+1
e,i has initial vertex yn+1

e,i . Let us define our new extender En+1 given by

• En+1
e,i = Qni (e−)Pn+1

e,i yn+1
e,i Ên+1

e,i if e ∈ ∂ε(Sk), i ∈ [k];

• En+1
e,i = Hi(e

−)Pn+1
e,i yn+1

e,i Ên+1
e,i if e ∈ ∂ε(Sk+1) \ ∂(Sk), i ∈ [k].

This concludes the proof of Theorem 9.1.3.

9.7 The induction argument

We consider T as a rooted tree with root r. In Section 9.6 we constructed an S-horde for any
countable subtree S of T . In this section we will extend an S-horde for some specific countable
subtree S to a T -horde, completing the proof of Theorem 9.1.2.

Recall that for a vertex t of T and an infinite cardinal κ we say that a child t′ of t is
κ-embeddable if there are at least κ children t′′ of t such that Tt′ is a (rooted) topological
minor of Tt′′ (Definition 9.3.6). By Corollary 9.3.7, the number of children of t which are not
κ-embeddable is less than κ.

Definition 9.7.1 (κ-closure). Let T be an infinite tree with root r.

• If S is a subtree of T and S′ is a subtree of S, then we say that S′ is κ-closed in S if for
any vertex t of S′ all children of t in S are either in S′ or else are κ-embeddable.

• The κ-closure of S′ in S is the smallest κ-closed subtree of S including S′.

Lemma 9.7.2. Let S′ be a subtree of S. If κ is a uncountable regular cardinal and S′ has size
less than κ, then the κ-closure of S′ in S also has size less than κ.

Proof. Let S′(0) := S′ and define inductively S′(n+ 1) to consist of S′(n) together with all non-
κ-embeddable children contained in S for all vertices of S′(n). It is clear that

⋃
n∈N S

′(n) is the
κ-closure of S′. If κn denotes the size of S′(n), then κn < κ by induction with Corollary 9.3.7.
Therefore, the size of the κ-closure is bounded by

∑
n∈N κn < κ, since κ has uncountable

cofinality.

We will construct the desired T -horde via transfinite induction on the cardinals µ 6 |T |. Our
first lemma illustrates the induction step for regular cardinals.

Lemma 9.7.3. Let κ be an uncountable regular cardinal. Let S be a rooted subtree of T of size
at most κ and let S′ be a κ-closed rooted subtree of S of size less than κ. Then any S′-horde
(Hi : i ∈ N) can be extended to an S-horde.

Proof. Let (sα : α < κ) be an enumeration of the vertices of S such that the parent of any
vertex appears before that vertex in the enumeration, and for any α let Sα be the subtree of T
with vertex set V (S′) ∪ {sβ : β < α}. Let S̄α denote the κ-closure of Sα in S, and observe that
|S̄α| < κ by Lemma 9.7.2.

We will recursively construct for each α an S̄α-horde (Hα
i : i ∈ N) in Γ, where each of these

hordes extends all the previous ones. For α = 0 we let H0
i = Hi for each i ∈ N. For any limit

ordinal λ we have S̄λ =
⋃
β<λ S̄β, and so we can take Hλ

i =
⋃
β<λH

β
i for each i ∈ N.
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For any successor ordinal α = β+ 1, if sβ ∈ S̄β, then S̄α = S̄β, and so we can take Hα
i = Hβ

i

for each i ∈ N. Otherwise, S̄α is the κ-closure of S̄β + sβ, and so S̄α − S̄β is a subtree of Tsβ .
Furthermore, since sβ is not contained in S̄β, it must be κ-embeddable.

Let s be the parent of sβ. By suitability of the Hβ
i , we can find for each i ∈ N some

subdivision Ĥi of Ts with Ĥi(s) = Hβ
i (s). We now build the Hα

i recursively in i as follows:
Let ti be a child of s such that Tti has a rooted subdivision K of Tsβ , and such that

Ĥi(Tti + s)− Ĥi(s) is disjoint from all Hα
j with j < i and from all Hβ

j . Since there are κ
disjoint possibilities for K, and all Hα

j with j < i and all Hβ
j cover less than κ vertices in Γ, such

a choice of K is always possible. Then let Hα
i be the union of Hβ

i with Ĥi(K(S̄α − S̄β) + sti).
This completes the construction of the (Hα

i : i ∈ N). Obviously, each Hα
i for i ∈ N is a

subdivision of S̄α with Hα
i (S̄γ) = Hγ

i for all γ < α, and all of them are pairwise disjoint for
i 6= j ∈ N. Moreover, Hα

i is T -suitable since for all vertices Hα
i (t) whose t-suitability is not

witnessed in previous construction steps, their suitability is witnessed now by the corresponding
subtree of Ĥi. Hence (

⋃
α<κH

α
i : i ∈ N) is the desired S-horde extending (Hi : i ∈ N).

Our final lemma will deal with the induction step for singular cardinals. The crucial ingre-
dient will be to represent a tree S of singular cardinality µ as a continuous increasing union
of <µ-sized subtrees (S% : % < cf(µ)) where each S% is |S%|+-closed in S. This type of argu-
ment is based on Shelah’s singular compactness theorem, see e.g. [119], but can be read without
knowledge of the paper.

Definition 9.7.4 (S-representation). For a tree S with |S| = µ, we call a sequence S = (S% : % <
cf(µ)) of subtrees of S with |S%| = µ% an S-representation if

• (µ% : % < cf(µ)) is a strictly increasing continuous sequence of cardinals less than µ which
is cofinal for µ,

• S% ⊆ S%′ for all % < %′, i.e. S is increasing,

• for every limit λ < cf(µ) we have
⋃
%<λ S% = Sλ, i.e. S is continuous,

• ⋃%<cf(µ) S% = S, i.e. S is exhausting,

• S% is µ+
% -closed in S for all % < cf(µ), where µ+

% is the successor cardinal of µ%.

Moreover, for a tree S′ ⊆ S we say that S is an S-representation extending S′ if additionally

• S′ ⊆ S% for all % < cf(µ).

Lemma 9.7.5. For every tree S of singular cardinality and every subtree S′ of S with |S′| < |S|
there is an S-representation extending S′.

Proof. Let |S| = µ be singular, and let |S′| = κ. Let (sα : α < µ) be an enumeration of the
vertices of S. Let γ be the cofinality of µ and let (µ% : % < γ) be a strictly increasing continuous
cofinal sequence of cardinals less than µ with µ0 > γ and µ0 > κ. By recursion on i we choose
for each i ∈ N a sequence (Si% : % < γ) of subtrees of S of cardinality µ%, where the vertices of
each Si% are enumerated as (si%,α : α < µ%), such that:

1. Si% is µ+
% -closed.

2. S′ is a subtree of Si%.

3. Si%′ is a subtree of Si% for %′ < %.

4. sα ∈ Si% for α < µ%.
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5. sj%′,α ∈ Si% for any j < i, % 6 %′ < γ and α < µ%

This is achieved by recursion on % as follows: For any given % < γ, let Xi
% be the set of all

vertices which are forced to lie in Si% by conditions 2–5, that is, all vertices of S′ or of Si%′ with
%′ < %, all sβ with β < µ% and all sj%′,α with j < i, % 6 %′ < γ and α < µ%. Then Xi

% has
cardinality µ% and so it is included in a subtree of S of cardinality µ%. We take Si% to be the
µ+
% -closure of this subtree in S. Note that, since µ+

% is regular, it follows from Lemma 9.7.2 that
Si% has cardinality µ%.

For each % < γ, let S% :=
⋃
i∈N S

i
%. Then each S% is a union of µ+

% -closed trees and so is
µ+
% -closed itself. Furthermore, each S% clearly has cardinality µ%.

It follows from 4 that S =
⋃
%<γ S%. Thus, it remains to argue that our sequence is indeed

continuous, i.e. that for any limit ordinal λ < γ we have Sλ =
⋃
%<λ S%. The inclusion

⋃
%<λ S% ⊆

Sλ is clear from 3. For the other inclusion, let s be any element of Sλ. Then there is some i ∈ N
with s ∈ Siλ and so there is some α < µα with s = siλ,α. Then by continuity there is some σ < λ
with α < µσ and so s ∈ Si+1

σ ⊆ Sσ ⊆
⋃
%<λ S%.

Lemma 9.7.6. Let µ be a cardinal. Then for any rooted subtree S of T of size µ and any
uncountable regular cardinal κ 6 µ, any S′-horde (Hi : i ∈ N) of a κ-closed rooted subtree S′ of
S of size less than κ can be extended to an S-horde.

Proof. The proof is by transfinite induction on µ. If µ is regular, we let S′′ be the µ-closure
of S′ in S. Thus S′′ has size less than µ. So by the induction hypothesis (Hi : i ∈ N) can be
extended to an S′′-horde, which by Lemma 9.7.3 can be further extended to an S-horde.

So let us assume that µ is singular, and write γ = cf(µ). By Lemma 9.7.5, fix an S-
representation S = (S% : % < cf(µ)) extending S′ with |S′| < |S0|.

We now recursively construct for each % < γ an S%-horde (H%
i : i ∈ N), where each of these

hordes extends all the previous ones and (Hi : i ∈ N). Using that each S% is µ+
% -closed in S,

we can find (H0
i : i ∈ N) by the induction hypothesis, and if % is a successor ordinal we can

find (H%
i : i ∈ N) by again using the induction hypothesis. For any limit ordinal λ we set

Hλ
i =

⋃
%<λH

%
i for each i ∈ N, which yields an Sλ-horde by the continuity of S.

This completes the construction of the H%
i . Then (

⋃
%<γ H

%
i : i ∈ N) is an S-horde extending

(Hi : i ∈ N).

Finally, with the right induction start we obtain the following theorem and hence a proof of
Theorem 9.1.2.

Theorem 9.7.7. Let T be a tree and Γ a graph such that nT 6 Γ for every n ∈ N. Then there
is a T -horde, and hence ℵ0T 6 Γ.

Proof. By Theorem 9.1.3, we may assume that T is uncountable. Let S′ be the ℵ1-closure of
the root {r} in T . Then S′ is countable by Lemma 9.7.2 and so there is an S′-horde in Γ by
Theorem 9.1.3. This can be extended to a T -horde in Γ by Lemma 9.7.6 with µ = |T |.
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Chapter 10

Ubiquity of graphs with non-linear
end structure

10.1 Introduction

This paper is the second in a series of papers making progress towards a conjecture of Andreae
on the ubiquity of graphs. Given a graph G and some relation C between graphs we say that G
is C-ubiquitous if whenever Γ is a graph such that nG C Γ for all n ∈ N, then ℵ0G C Γ, where
αG denotes the disjoint union of α many copies of G. For example, a classic result of Halin [71]
says that the ray is ⊆-ubiquitous, where ⊆ is the subgraph relation.

Examples of graphs which are not ubiquitous with respect to the subgraph or topological mi-
nor relation are known (see [14] for some particularly simple examples). In [13] Andreae initiated
the study of ubiquity of graphs with respect to the minor relation 4. He constructed a graph
which is not 4-ubiquitous, however the construction relied on the existence of a counterexample
to the well-quasi-ordering of infinite graphs under the minor relation, for which only examples
of very large cardinality are known [122]. In particular, the question of whether there exists a
countable graph which is not 4-ubiquitous remains open. Most importantly, however, Andreae
[13] conjectured that at least all locally finite graphs, those with all degrees finite, should be
4-ubiquitous.

Conjecture 9.1.1. [The Ubiquity Conjecture] Every locally finite connected graph is 4-ubiquitous.

In [14] Andreae proved that his conjecture holds for a large class of locally finite graphs. The
exact definition of this class is technical, but in particular his result implies the following.

Theorem 10.1.1 (Andreae, [14, Corollary 2]). Let G be a connected, locally finite graph of
finite tree-width such that every block of G is finite. Then G is 4-ubiquitous.

Note that every end in such a graph G must have degree1 one.
Andreae’s proof employs deep results about well-quasi-orderings of labelled (infinite) trees

[92]. Interestingly, the way these tools are used does not require the extra condition in Theo-
rem 10.1.1 that every block of G is finite and so it is natural to ask if his proof can be adapted
to remove this condition. And indeed, it is the purpose of the present and subsequent paper in
our series, [26], to show that this is possible, i.e. that all connected, locally finite graphs of finite
tree-width are 4-ubiquitous.

The present paper lays the groundwork for this extension of Andreae’s result. The funda-
mental obstacle one encounters when trying to extend Andreae’s methods is the following: Let

1A precise definitions of rays, the ends of a graph, their degree, and what it means for a ray to converge to an
end can be found in Section 10.2.
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R

S

P
Figure 10.1: A linkage between R and S.

[n] = {1, 2, . . . , n}. In the proof we often have two families of disjoint rays R = (Ri : i ∈ [n])
and S = (Sj : j ∈ [m]) in Γ, which we may assume all converge1 to a common end of Γ, and we
wish to find a linkage between R and S, that is, an injective function σ : [n]→ [m] and a set P
of disjoint finite paths Pi from xi ∈ Ri to yσ(i) ∈ Sσ(i) such that the walks

T = (RixiPiyσ(i)Sσ(i) : i ∈ [n])

formed by following each Ri along to xi, then following the path Pi to yσ(i), then following the
tail of Sσ(i), form a family of disjoint rays (see Figure 10.1). Broadly, we can think of this as
‘re-routing’ the rays R to some subset of the rays in S. Since all the rays in R and S converge
to the same end of Γ, it is relatively simple to show that, as long as n 6 m, there is enough
connectivity between the rays in Γ so that such a linkage always exists.

However, in practice it is not enough for us to be guaranteed the existence of some injection
σ giving rise to a linkage, but instead we want to choose σ in advance, and be able to find a
corresponding linkage afterwards.

In general, however, it is quite possible that for certain choices of σ no suitable linkage exists.
Consider for example the case where Γ is the half grid (briefly denoted by Z�N), which is the
graph whose vertex set is Z × N and where two vertices are adjacent if they differ in precisely
one co-ordinate and the difference in that co-ordinate is one. If we consider two sufficiently large
families of disjoint rays R and S in Γ, then it is not hard to see that both R and S inherit a
linear ordering from the planar structure of Γ, which must be preserved by any linkage between
them.

Analysing this situation gives rise to the following definition: We say that an end ε of a
graph G is linear if for every finite set R of at least three disjoint rays in G which converge to ε
we can order the elements of R as R = {R1, R2, . . . , Rn} such that for each 1 6 k < i < ` 6 n,
the rays Rk and R` belong to different ends of G− V (Ri).

Thus the half grid has a unique end and it is linear. On the other end of the spectrum,
let us say that a graph G has nowhere-linear end structure if no end of G is linear. Since ends
of degree at most two are automatically linear, every end of a graph with nowhere-linear end
structure must have degree at least three.

Our main theorem in this paper is the following.
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Theorem 10.1.2. Every locally finite connected graph with nowhere-linear end structure is 4-
ubiquitous.

Roughly, if we assume that every end of G has nonlinear structure, then the fact that nG 4 Γ
for all n ∈ N allows us to deduce that Γ must also have some end with a sufficiently complicated
structure that we can always find suitable linkages for all σ as above. In fact, this property is
so strong that we do not need to follow Andreae’s strategy for such graphs. We can use the
linkages to directly build a Kℵ0-minor of Γ, and it follows that ℵ0G 4 Γ.

In later papers in the series, we shall need to make more careful use of the ideas developed
here. We shall analyse the possible kinds of linkages which can arise between two families of
rays converging to a given end. If some end of Γ admits many different kinds of linkages, then
we can again find a Kℵ0-minor. If not, then we can use the results of the present paper to show
that certain ends of G are linear. This extra structure allows us to carry out an argument like
that of Andreae, but using only the limited collection of these maps σ which we know to be
present. This technique will be key to extending Theorem 10.1.1 in [26].

Independently of these potential later developments, our methods already allow us to estab-
lish new ubiquity results for many natural graphs and graph classes.

As a first concrete example, let G be the full grid, a graph not previously known to be
ubiquitous. The full grid (briefly denoted by Z�Z) is analogously defined as the half grid but
with Z×Z as vertex set. The grid G is one-ended, and for any ray R in G, the graph G−V (R)
still has at most one end. Hence the unique end of G is non-linear, and so Theorem 10.1.2 has
the following corollary:

Corollary 10.1.3. The full grid is 4-ubiquitous.

Using an argument similar in spirit to that of Halin [73], we also establish the following
theorem in this paper:

Theorem 10.1.4. Any connected minor of the half grid N�Z is 4-ubiquitous.

Since every countable tree is a minor of the half grid, Theorem 10.1.4 implies that all count-
able trees are 4-ubiquitous, see Corollary 10.7.4. We remark that while all trees are ubiquitous
with respect to the topological minor relation, [24], the problem whether all uncountable trees
are 4-ubiquitous has remained open, and we hope to resolve this in a paper in preparation [27].

In a different direction, if G is any locally finite connected graph, then it is possible to show
that G�Z or G�N either have nowhere-linear end structure, or are a subgraph of the half grid
respectively. Hence, Theorems 10.1.2 and 10.1.4 together have the following corollary.

Theorem 10.1.5. For every locally finite connected graph G, both G�Z and G�N are 4-
ubiquitous.

Finally, we will also show the following result about non-locally finite graphs. For k ∈ N, we
let the k-fold dominated ray be the graph DRk formed by taking a ray together with k additional
vertices, each of which we make adjacent to every vertex in the ray. For k 6 2, DRk is a minor
of the half grid, and so ubiquitous by Theorem 10.1.4. In our last theorem, we show that DRk
is ubiquitous for all k ∈ N.

Theorem 10.1.6. The k-fold dominated ray DRk is 4-ubiquitous for every k ∈ N.

The paper is structured as follows: In Section 10.2 we introduce some basic terminology for
talking about minors. In Section 10.3 we introduce the concept of a ray graph and linkages
between families of rays, which will help us to describe the structure of an end. In Sections 10.4
and 10.5 we introduce a pebble-pushing game which encodes possible linkages between families
of rays and use this to give a sufficient condition for an end to contain a countable clique minor.
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In Section 10.6 we re-introduce some concepts from [24] and show that we may assume that the
G-minors in Γ are concentrated towards some end ε of Γ. In Section 10.7 we use the results of the
previous section to prove Theorem 10.1.4 and finally in Section 10.8 we prove Theorem 10.1.2
and its corollaries.

10.2 Preliminaries

In our graph theoretic notation we generally follow the textbook of Diestel [43]. Given two
graphs G and H the cartesian product G�H is a graph with vertex set V (G) × V (H) with an
edge between (a, b) and (c, d) if and only if a = c and (b, d) ∈ E(H) or (a, c) ∈ E(G) and b = d.

Definition 10.2.1. A one-way infinite path is called a ray and a two-way infinite path is called
a double ray.

For a path or ray P and vertices v, w ∈ V (P ), let vPw denote the subpath of P with end-
vertices v and w. If P is a ray, let Pv denote the finite subpath of P between the initial vertex
of P and v, and let vP denote the subray (or tail) of P with initial vertex v.

Given two paths or rays P and Q which are disjoint but for one of their endvertices, we write
PQ for the concatenation of P and Q, that is the path, ray or double ray P ∪Q. Moreover, if
we concatenate paths of the form vPw and wQx, then we omit writing w twice and denote the
concatenation by vPwQx.

Definition 10.2.2 (Ends of a graph, cf. [43, Chapter 8]). An end of an infinite graph Γ is an
equivalence class of rays, where two rays R and S are equivalent if and only if there are infinitely
many vertex disjoint paths between R and S in Γ. We denote by Ω(Γ) the set of ends of Γ.

We say that a ray R ⊆ Γ converges (or tends) to an end ε of Γ if R is contained in ε. In
this case we call R an ε-ray.

Given an end ε ∈ Ω(Γ) and a finite set X ⊆ V (Γ) there is a unique component of Γ − X
which contains a tail of every ray in ε, which we denote by C(X, ε).

For an end ε ∈ Γ we define the degree of ε in Γ as the supremum of all sizes of sets containing
vertex disjoint ε-rays. If an end has finite degree, we call it thin. Otherwise, we call it thick.

A vertex v ∈ V (Γ) dominates an end ε ∈ Ω(Γ) if there is a ray R ∈ ω such that there are
infinitely many v –R -paths in Γ that are vertex disjoint except from v.

We will use the following two basic facts about infinite graphs.

Proposition 10.2.3. [43, Proposition 8.2.1] An infinite connected graph contains either a ray
or a vertex of infinite degree.

Proposition 10.2.4. [43, Exercise 8.19] A graph G contains a subdivided Kℵ0 as a subgraph if
and only if G has an end which is dominated by infinitely many vertices.

Definition 10.2.5 (Inflated graph, branch set). Given a graph G we say that a pair (H,ϕ) is
an inflated copy of G, or an IG, if H is a graph and ϕ : V (H)→ V (G) is a map such that:

• For every v ∈ V (G) the branch set ϕ−1(v) induces a non-empty, connected subgraph of H;

• There is an edge in H between ϕ−1(v) and ϕ−1(w) if and only if (v, w) ∈ E(G) and this
edge, if it exists, is unique.

When there is no danger of confusion we will simply say that H is an IG instead of saying
that (H,ϕ) is an IG, and denote by H(v) = ϕ−1(v) the branch set of v.

Definition 10.2.6 (Minor). A graph G is a minor of another graph Γ, written G 4 Γ, if there
is some subgraph H ⊆ Γ such that H is an inflated copy of G.
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Definition 10.2.7 (Extension of inflated copies). Suppose G ⊆ G′ as subgraphs, and that H
is an IG and H ′ is an IG′. We say that H ′ extends H (or that H ′ is an extension of H) if
H ⊆ H ′ as subgraphs and H(v) ⊆ H ′(v) for all v ∈ V (G) ∩ V (G′).

Note that since H ⊆ H ′, for every edge (v, w) ∈ E(G), the unique edge between the branch
sets H ′(v) and H ′(w) is also the unique edge between H(v) and H(w).

Definition 10.2.8 (Tidiness). An IG (H,ϕ) is called tidy if

• H[ϕ−1(v)] is a tree for all v ∈ V (G);

• H(v) is finite if dG(v) is finite.

Note that every IG H contains a subgraph H ′ such that (H ′, ϕ � V (H ′)) is a tidy IG,
although this choice may not be unique. In this paper we will always assume without loss of
generality that each IG is tidy.

Definition 10.2.9 (Restriction). Let G be a graph, M ⊆ G a subgraph of G, and let (H,ϕ) be
an IG. The restriction of H to M , denoted by H(M), is the IG given by (H(M), ϕ′) where
ϕ′−1(v) = ϕ−1(v) for all v ∈ V (M) and H(M) consists of union of the subgraphs of H induced
on each branch set ϕ−1(v) for each v ∈ V (M) together with the edge between ϕ−1(u) and ϕ−1(v)
for each (u, v) ∈ E(M).

Note that if H is tidy, then H(M) will be tidy. Given a ray R ⊆ G and a tidy IG H in a
graph Γ, the restriction H(R) is a one-ended tree, and so every ray in H(R) will share a tail.
Later in the paper we will want to make this correspondence between rays in G and Γ more
explicit, with use of the following definition:

Definition 10.2.10 (Pullback). Let G be a graph, R ⊆ G a ray, and let H be a tidy IG. The
pullback of R to H is the subgraph H↓(R) ⊆ H where H↓(R) is subgraph minimal such that
(H↓(R), ϕ � V (H↓(R))) is an IM .

Note that, since H is tidy, H↓(R) is well defined. As well shall see, H↓(R) will be a ray.

Lemma 10.2.11. Let G be a graph and let H be a tidy IG. If R ⊆ G is a ray, then the pullback
H↓(R) is also a ray.

Proof. Let R = x1x2 . . .. For each integer i > 1 there is a unique edge (vi, wi) ∈ E(H) between
the branch sets H(xi) and H(xi+1). By the tidiness assumption, H(xi+1) induces a tree in H,
and so there is a unique path Pi ⊂ H(xi+1) from wi to vi+1 in H.

By minimality of H↓(R), it follows that H↓(R)(x1) = {v1} and H↓(R)(xi+1) = V (Pi) for
each i > 1. Hence H↓(R) is a ray.

10.3 The Ray Graph

Definition 10.3.1 (Ray graph). Given a finite family of disjoint rays R = (Ri : i ∈ I) in a
graph Γ the ray graph RGΓ(R) = RGΓ(Ri : i ∈ I) is the graph with vertex set I and with an
edge between i and j if there is an infinite collection of vertex disjoint paths from Ri to Rj in Γ
which meet no other Rk. When the host graph Γ is clear from the context we will simply write
RG(R) for RGΓ(R).

The following lemmas are simple exercises. For a family R of disjoint rays in G tending to
the same end and H ⊆ Γ being an IG the aim is to establish the following: if S is a family of
disjoint rays in Γ which contains the pullback H↓(R) of each R ∈ R, then the subgraph of the
ray graph RGΓ(S) induced on the vertices given by {H↓(R) : R ∈ R} is connected.
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Lemma 10.3.2. Let G be a graph and let R = (Ri : i ∈ I) be a finite family of disjoint rays in
G. Then RGG(R) is connected if and only if all rays in R tend to a common end ω ∈ Ω(G).

Lemma 10.3.3. Let G be a graph, R = (Ri : i ∈ I) be a finite family of disjoint rays in G and
let H be an IG. If R′ = (H↓(Ri) : i ∈ I) is the set of pullbacks of the rays in R in H, then
RGG(R) = RGH(R′).

Lemma 10.3.4. Let G be a graph, H ⊆ G, R = (Ri : i ∈ I) be a finite disjoint family of rays
in H and let S = (Sj : j ∈ J) be a finite disjoint family of rays in G−V (H), where I and J are
disjoint. Then RGH(R) is a subgraph of RGG(R∪S)

[
I
]
. In particular, if all rays in R tend to

a common end in H, then RGG(R∪ S)
[
I
]

is connected.

Recall that an end ω of a graph G is called linear if for every finite set R of at least three
disjoint ω-rays in G we can order the elements of R as R = {R1, R2, . . . , Rn} such that for each
1 6 k < i < ` 6 n, the rays Rk and R` belong to different ends of G− V (Ri).

Lemma 10.3.5. An end ω of a graph G is linear if and only if the ray graph of every finite
family of disjoint ω-rays is a path.

Proof. For the forward direction suppose ω is linear and {R1, R2, . . . , Rn} converge to ω, with
the order given by the definition of linear. It follows that there is no 1 6 k < i < ` 6 n such that
(k, `) is an edge in RG(Rj : j ∈ [n]). However, by Lemma 10.3.2 RG(Rj : j ∈ [n]) is connected,
and hence it must be the path 12 . . . n.

Conversely, suppose that the ray graph of every finite family of ω-rays is a path. Then,
every such family R can be ordered as {R1, R2, . . . , Rn} such that RG(R) is the path 12 . . . n. It
follows that, for each i, (k, `) 6∈ E(RG(R)) whenever 1 6 k < i < ` 6 n−1, and so by definition
of RG(R) there is no infinite collection of vertex disjoint paths from Rk to R` in G − V (Ri).
Therefore Rk and R` belong to different ends of G− V (Ri).

Definition 10.3.6 (Tail of a ray after a set). Given a ray R in a graph G and a finite set
X ⊆ V (G) the tail of R after X, denoted by T (R,X), is the unique infinite component of R in
G−X.

Definition 10.3.7 (Linkage of families of rays). Let R = (Ri : i ∈ I) and S = (Sj : j ∈ J)
be families of disjoint rays of Γ, where the initial vertex of each Ri is denoted xi. A family
P = (Pi : i ∈ I) of paths in Γ is a linkage from R to S if there is an injective function σ : I → J
such that

• Each Pi goes from a vertex x′i ∈ Ri to a vertex yσ(i) ∈ Sσ(i);

• The family T = (xiRix
′
iPiyσ(i)Sσ(i) : i ∈ I) is a collection of disjoint rays.

We say that T is obtained by transitioning from R to S along the linkage. We say the linkage
P induces the mapping σ. Given a vertex set X ⊆ V (G) we say that the linkage is after X if
X ∩ V (Ri) ⊆ V (xiRix

′
i) for all i ∈ I and no other vertex in X is used by T . We say that a

function σ : I → J is a transition function from R to S if for any finite vertex set X ⊆ V (G)
there is a linkage from R to S after X that induces σ.

We will need the following lemma from [24], which asserts the existence of linkages.

Lemma 10.3.8 (Weak linking lemma). Let Γ be a graph, ω ∈ Ω(Γ) and let n ∈ N. Then for
any two families R = (Ri : i ∈ [n]) and S = (Sj : j ∈ [n]) of vertex disjoint ω-rays and any finite
vertex set X ⊆ V (G), there is a linkage from R to S after X.
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10.4 A pebble-pushing game

Suppose we have a family of disjoint rays R = (Ri : i ∈ I) in a graph G and a subset J ⊆ I.
Often we will be interested in which functions we can obtain as transition functions between
(Ri : i ∈ J) and (Ri : i ∈ I). We can think of this as trying to ‘re-route’ the rays (Ri : i ∈ J) to
a different set of |J | rays in (Ri : i ∈ I).

To this end, it will be useful to understand the following pebble-pushing game on a graph.

Definition 10.4.1 (Pebble-pushing game). Let G = (V,E) be a finite graph. For any fixed
positive integer k we call a tuple (x1, x2, . . . , xk) ∈ V k a game state if xi 6= xj for all i, j ∈ [k]
with i 6= j.

The pebble-pushing game (on G) is a game played by a single player. Given a game state
Y = (y1, y2, . . . , yk), we imagine k labelled pebbles placed on the vertices (y1, y2, . . . , yk). We
move between game states by moving a pebble from a vertex to an adjacent vertex which does
not contain a pebble, or formally, a Y -move is a game state Z = (z1, z2 . . . , zk) such that there
is an ` ∈ [k] such that y`z` ∈ E and yi = zi for all i ∈ [k] \ {`}.

Let X = (x1, x2 . . . , xk) be a game state. The X-pebble-pushing game (on G) is a pebble-
pushing game where we start with k labelled pebbles placed on the vertices (x1, x2 . . . , xk).

We say a game state Y is achievable in the X-pebble-pushing game if there is a sequence
(Xi : i ∈ [n]) of game states for some n ∈ N such that X1 = X, Xn = Y and Xi+1 is an Xi-move
for all i ∈ [n− 1], that is, if it is a sequence of moves that pushes the pebbles from X to Y .

A graph G is k-pebble-win if Y is an achievable game state in the X-pebble-pushing game
on G for every two game states X and Y .

The following lemma shows that achievable game states on the ray graph RG(R) yield
transition functions from a subset of R to itself. Therefore, it will be useful to understand
which game states are achievable, and in particular the structure of graphs on which there are
unachievable game states.

Lemma 10.4.2. Let Γ be a graph, ω ∈ Ω(Γ), m > k be positive integers and let (Sj : j ∈ [m])
be a family of disjoint rays in ω. For every achievable game state Z = (z1, z2, . . . , zk) in the
(1, 2, . . . , k)-pebble-pushing game on RG(Sj : j ∈ [m]), the map σ defined via σ(i) := zi for every
i ∈ [k] is a transition function from (Si : i ∈ [k]) to (Sj : j ∈ [m]).

Proof. We first note that if σ is a transition function from (Si : i ∈ [k]) to (Sj : j ∈ [m]) and τ
is a transition function from (Si : i ∈ σ([k])) to (Sj : j ∈ [m]), then clearly τ ◦ σ is a transition
function from (Si : i ∈ [k]) to (Sj : j ∈ [m]).

Hence, it will be sufficient to show the statement holds when σ is obtained from (1, 2, . . . , k)
by a single move, that is, there is some t ∈ [k] and a vertex σ(t) 6∈ [k] such that σ(t) is adjacent
to t in RG(Sj : j ∈ [m]) and σ(i) = i for i ∈ [k] \ {t}.

So, let X ⊆ V (G) be a finite set. We will show that there is a linkage from (Si : i ∈ [k]) to
(Sj : j ∈ [m]) after X that induces σ. By assumption there is an edge (t, σ(t)) ∈ E(RG(Sj : j ∈
[m])). Hence, there is a path P between T (St, X) and T (Sσ(t), X) which avoids X and all other
Sj .

Then the family P = (P1, P2, . . . , Pk) where Pt = P and Pi = ∅ for each i 6= t is a linkage
from (Si : i ∈ [k]) to (Sj : j ∈ [m]) after X that induces σ.

We note that this pebble-pushing game is sometimes known in the literature as “permutation
pebble motion” [87] or “token reconfiguration” [32]. Previous results have mostly focused on
computational questions about the game, rather than the structural questions we are interested
in, but we note that in [87] the authors give an algorithm that decides whether or not a graph
is k-pebble-win, from which it should be possible to deduce the main result in this section,
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Lemma 10.4.9. However, since a direct derivation was shorter and self contained, we will not
use their results. We present the following simple lemmas without proof.

Lemma 10.4.3. Let G be a finite graph and X a game state.

• If Y is an achievable game state in the X-pebble-pushing game on G, then X is an achiev-
able game state in the Y -pebble-pushing game on G.

• If Y is an achievable game state in the X-pebble-pushing game on G and Z is an achievable
game state in the Y -pebble-pushing game on G, then Z is an achievable game state in the
X-pebble-pushing game on G.

Definition 10.4.4. Let G be a finite graph and let X = (x1, x2, . . . , xk) be a game state.
Given a permutation σ of [k] let us write Xσ = (xσ(1), xσ(2), . . . , xσ(k)). We define the pebble-
permutation group of (G,X) to be the set of permutations σ of [k] such that Xσ is an achievable
game state in the X-pebble-pushing game on G.

Note that by Lemma 10.4.3, the pebble-permutation group of (G,X) is a subgroup of the
symmetric group Sk.

Lemma 10.4.5. Let G be a graph and let X be a game state. If Y is an achievable game state
in the X-pebble-pushing game and σ is in the pebble-permutation group of Y , then σ is in the
pebble-permutation group of X.

Lemma 10.4.6. Let G be a finite connected graph and let X be a game state. Then G is
k-pebble-win if and only if the pebble-permutation group of (G,X) is Sk.

Proof. Clearly, if the pebble-permutation group is not Sk thenG is not k-pebble-win. Conversely,
since G is connected, for any game states X and Y there is some τ such that Y τ is an achievable
game state in the X-pebble-pushing game, since we can move the pebbles to any set of k vertices,
up to some permutation of the labels. We know by assumption that Xτ−1

is an achievable game
state in the X-pebble-pushing game. Therefore, by Lemma 10.4.3 Y is an achievable game state
in the X-pebble-pushing game.

Lemma 10.4.7. Let G be a finite connected graph and let X = (x1, x2, . . . , xk) be a game state.
If G is not k-pebble-win, then there is a two colouring c : X → {r, b} such that both colour classes
are non trivial and for all i, j ∈ [k] with c(xi) = r and c(xj) = b the transposition (ij) is not in
the pebble-permutation group.

Proof. Let us draw a graph H on {x1, x2, . . . , xk} by letting (xi, xj) be an edge if and only
if (ij) is in the pebble-permutation group of (G,X). It is a simple exercise to show that the
pebble-permutation group of (G,X) is Sk if and only if H has a single component.

Since G is not k-pebble-win, we therefore know by Lemma 10.4.6 that there are at least
two components in H. Let us pick one component C1 and set c(x) = r for all x ∈ V (C1) and
c(x) = b for all x ∈ X \ V (C1).

Definition 10.4.8. Given a graph G, a path x1x2 . . . xm in G is a bare path if dG(xi) = 2 for
all 2 6 i 6 m− 1.

Lemma 10.4.9. Let G be a finite connected graph with vertex set V which is not k-pebble-win
and with |V | > k + 2. Then there is a bare path P = p1p2 . . . pn in G such that |V \ V (P )| 6 k.
Furthermore, either every edge in P is a bridge in G, or G is a cycle.
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Proof. Let X = (x1, x2, . . . , xk) be a game state. Since G is not k-pebble-win, by Lemma 10.4.7
there is a two colouring c : {xi : i ∈ [k]} → {r, b} such that both colour classes are non trivial
and for all i, j ∈ [k] with c(xi) = r and c(xj) = b the transposition (ij) is not in the pebble
permutation group. Let us consider this as a three colouring c : V → {r, b, 0} where c(v) = 0 if
v 6∈ {x1, x2, . . . , xk}.

For every achievable game state Z = (z1, z2, . . . , zk) in the X-pebble-pushing game we define
a three colouring cZ given by cZ(zi) = c(xi) for all i ∈ [k] and by cZ(v) = 0 for all v /∈
{z1, z2, . . . , zk}. We note that, for any achievable game state Z there is no zi ∈ c−1

Z (r) and
zj ∈ c−1

Z (b) such that (ij) is in the pebble permutation group of (G,Z). Indeed, if it were, then
by Lemma 10.4.3 X(ij) is an achievable game state in the X-pebble-pushing game, contradicting
the fact that c(xi) = r and c(xj) = b.

Since G is connected, for every achievable game state Z there is a path P = p1p2 . . . pm in G
with cZ(p1) = r, cZ(pm) = b and cZ(pi) = 0 otherwise. Let us consider an achievable game
state Z for which G contains such a path P of maximal length.

We first claim that there is no v 6∈ P with cZ(v) = 0. Indeed, suppose there is such a vertex v.
Since G is connected there is some v–P path Q in G and so, by pushing pebbles towards v on
Q, we can achieve a game state Z ′ such that cZ′ = cZ on P and there is a vertex v′ adjacent
to P such that cZ′(v

′) = 0. Clearly v′ cannot be adjacent to p1 or pm, since then we can push
the pebble on p1 or pm onto v′ and achieve a game state Z ′′ for which G contains a longer path
than P with the required colouring. However, if v′ is adjacent to p` with 2 6 ` 6 m − 1, then
we can push the pebble on p1 onto p` and then onto v′, then push the pebble from pm onto p1

and finally push the pebble on v′ onto p` and then onto pm.
However, if Z ′ = (z′1, z

′
2, . . . , z

′
k) with p1 = z′i and pm = z′j , then above shows that (ij) is in the

pebble-permutation group of (G,Z ′). However, cZ′(z
′
i) = cZ(p1) = r and cZ′(z

′
j) = cZ(pm) = b,

contradicting our assumptions on cZ′ .
Next, we claim that each pi with 3 6 i 6 m − 2 has degree 2. Indeed, suppose first that pi

with 3 6 i 6 m − 2 is adjacent to some other pj with 1 6 j 6 m such that pi and pj are not
adjacent in P . Then it is easy to find a sequence of moves which exchanges the pebbles on p1

and pm, contradicting our assumptions on cZ .
Suppose then that pi is adjacent to a vertex v not in P . Then, cZ(v) 6= 0, say without loss of

generality cZ(v) = r. However then, we can push the pebble on pm onto pi−1, push the pebble
on v onto pi and then onto pm and finally push the pebble on pi−1 onto pi and then onto v. As
before, this contradicts our assumptions on cZ .

Hence P ′ = p2p3 . . . pm−1 is a bare path in G, and since every vertex in V −V (P ′) is coloured
using r or using b, there are at most k such vertices.

Finally, suppose that there is some edge in P ′ which is not a bridge of G, and so no edge of
P ′ is a bridge of G. We wish to show that G is a cycle. We first make the following claim:

Claim 10.4.10. There is no achievable game state W = (w1, w2, . . . , wk) such that there is a
cycle C = c1c2 . . . crc1 and a vertex v 6∈ C such that:

• There exist distinct positive integers i, j, s and t such that cW (ci) = r, cW (cj) = b and
cW (cs) = cW (ct) = 0;

• v adjacent to some cv ∈ C.

Proof of Claim 10.4.10. Suppose for a contradiction there exists such an achievable game state
W . Since C is a cycle we may assume without loss of generality that ci = c1, cs = c2 = cv,
ct = c3 and cj = c4. If cW (v) = b, then we can push the pebble at v to c2 and then to c3, push
the pebble at c1 to c2 and then to v, and then push the pebble at c3 to c1. This contradicts
our assumptions on cW . The case where cW (v) = r is similar. Finally if cW (v) = 0, then we
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can push the pebble at c1 to c2 and then to v, then push the pebble at c4 to c1, then push the
pebble at v to c2 and then to c4. Again this contradicts our assumptions on cW .

Since no edge of P ′ is a bridge, it follows that G contains a cycle C containing P ′. If G
is not a cycle, then there is a vertex v ∈ V \ C which is adjacent to C. However by pushing
the pebble on p1 onto p2 and the pebble on pm onto pm−1, which is possible since |V | > k + 2,
we achieve a game state Z ′ such that C and v satisfy the assumptions of the above claim, a
contradiction.

10.5 Pebbly ends

Definition 10.5.1 (Pebbly). Let Γ be a graph and ω an end of Γ. We say ω is pebbly if for
every k ∈ N there is an n > k and a family R = (Ri : i ∈ [n]) of disjoint rays in ω such that
RG(R) is k-pebble-win. If for some k there is no such family R, we say ω is not k-pebble-win.

The following is an immediate corollary of Lemma 10.4.9.

Corollary 10.5.2. Let ω be an end of a graph Γ which is not k-pebble-win and let R = (Ri : i ∈
[m]) be a family of m > k + 2 disjoint rays in ω. Then there is a bare path P = p1p2 . . . pn in
RG(Ri : i ∈ [m]) such that |[m] \ V (P )| 6 k. Furthermore, either each edge in P is a bridge in
RG(Ri : i ∈ [m]), or RG(Ri : i ∈ [m]) is a cycle.

Hence, if an end in Γ is not pebbly, then we have some constraint on the behaviour of rays
towards this ends. In a later paper [26] we will investigate more precisely what can be said
about the structure of the graph towards this end. For now, the following lemma allows us to
easily find any countable graph as a minor of a graph with a pebbly end.

Lemma 10.5.3. Let Γ be a graph and let ω ∈ Ω(Γ) be a pebbly end. Then Kℵ0 4 Γ.

Proof. By assumption, there exists a sequence R1,R2, . . . of families of disjoint ω-rays such
that, for each k ∈ N, RG(Rk) is k-pebble-win. Let us suppose that

Ri = (Ri1, R
i
2, . . . , R

i
mi) for each i ∈ N.

Let us enumerate the vertices and edges of Kℵ0 by choosing some bijection σ : N∪N(2) → N
such that σ(i, j) > σ(i), σ(j) for every {i, j} ∈ N(2) and also σ(1) < σ(2) < · · · . For each k ∈ N
let Gk be the graph on vertex set Vk = {i ∈ N : σ(i) 6 k} and edge set Ek = {{i, j} ∈ N(2) :
σ(i, j) 6 k}.

We will inductively construct subgraphs Hk of Γ such that Hk is an IGk extending Hk−1.
Furthermore for each k ∈ N if V (Gk) = [n] then there will be tails T1, T2, . . . , Tn of n distinct
rays in Rn such that for every i ∈ [n] the tail Ti meets Hk in a vertex of the branch set of i, and
is otherwise disjoint from Hk. We will assume without loss of generality that Ti is a tail of Rni .

Since σ(1) = 1 we can takeH1 to be the initial vertex of R1
1. Suppose then that V (Gn−1) = [r]

and we have already constructed Hn−1 together with appropriate tails Ti of Rri for each i ∈ [r].
Suppose firstly that σ−1(n) = r + 1 ∈ N.

Let X = V (Hn−1). There is a linkage from (Ti : i ∈ [r]) to (Rr+1
1 , Rr+1

2 , . . . , Rr+1
r ) after X

by Lemma 10.3.8, and, after relabelling, we may assume this linkage induces the identity on [r].
Let us suppose the linkage consists of paths Pi from xi ∈ Ti to yi ∈ Rr+1

i .

Since X ∪⋃i Pi ∪
⋃
i Tixi is a finite set, there is some vertex yr+1 on Rr+1

r+1 such that the tail
yr+1R

r+1
r+1 is disjoint from X ∪⋃i Pi ∪

⋃
i Tixi.

To form Hn we add the paths Tixi ∪ Pi to the branch set of each i 6 r and set yr+1 as the
branch set for r + 1. Then Hn is an IGn extending Hn−1 and the tails yjR

r+1
j are as claimed.
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Suppose then that σ−1(n) = {u, v} ∈ N(2) with u, v 6 r. We have tails Ti of Rri for each
i ∈ [r] which are disjoint from Hn−1 apart from their initial vertices. Let us take tails Tj of Rrj
for each j > r which are also disjoint from Hn−1. Since RG(Rr) is r-pebble-win, it follows that
RG(Ti : i ∈ [mr]) is also r-pebble-win. Furthermore, since by Lemma 10.3.2 RG(Ti : i ∈ [mr]) is
connected, there is some neighbour w ∈ [mr] of u in RG(Ti : i ∈ [mr]).

Let us first assume that w /∈ [r]. Since RG(Ti : i ∈ [mr]) is r-pebble-win, the game state
(1, 2, . . . , v − 1, w, v + 1, . . . , r) is an achievable game state in the (1, 2, . . . , r)- pebble-pushing
game and hence by Lemma 10.4.2 the function ϕ1 given by ϕ1(i) = i for all i ∈ [r] \ {v} and
ϕ1(v) = w is a transition function from (Ti : i ∈ [r]) to (Ti : i ∈ [mr]).

Let us take a linkage from (Ti : i ∈ [r]) to (Ti : i ∈ [mr]) inducing ϕ1 which is after V (Hn−1).
Let us suppose the linkage consists of paths Pi from xi ∈ Ti to yi ∈ Ti for i 6= v and Pv from
xv ∈ Tv to yv ∈ Tw. Let

X = V (Hn−1) ∪
⋃
i∈[r]

Pi ∪
⋃
i∈[r]

Tixi

Since u is adjacent to w in RG(Ti : i ∈ [mr]) there is a path P̂ between T (Tu, X) and
T (Tw, X) which is disjoint from X and from all other Ti, say P̂ is from x̂ ∈ Tu to ŷ ∈ Tw.

Finally, since RG(Ti : i ∈ [mr]) is r-pebble-win, the game state (1, 2, . . . , r) is an achievable
game state in the (1, 2, . . . , v−1, w, v+1, . . . , r)-pebble-pushing game and hence by Lemma 10.4.2
the function ϕ2 given by ϕ2(i) = i for all i ∈ [r] \ {v} and ϕ2(w) = v is a transition function
from (Ti : i ∈ [r] \ {v} ∪ {w}) to (Ti : i ∈ [mr]).

Let us take a further linkage from (Ti : i ∈ [r] \ {v} ∪ {w}) to (Ti : i ∈ [mr]) inducing ϕ2

which is after X ∪ P̂ ∪Tux̂∪ yvTwŷ. Let us suppose the linkage consists of paths P ′i from x′i ∈ Ti
to y′i ∈ Ti for i ∈ [r] \ {v} and P ′v from x′v ∈ Tw to y′v ∈ Tv.

In the case that w ∈ [r], w < v, say, the game state

(1, 2, . . . , w − 1, v, w + 1, . . . , v − 1, w, v + 1, . . . r)

is an achievable game state in the (1, 2, . . . , r)-pebble pushing-game and we get, by a similar
argument, all Pi, xi, yi, P

′
i , x
′
i, y
′
i and P̂ .

We build Hn from Hn−1 by adjoining the following paths:

• for each i 6= v we add the path TixiPiyiTix
′
iP
′
iy
′
i to Hn−1, adding the vertices to the branch

set of i;

• we add P̂ to Hn−1, adding the vertices of V (P̂ ) \ {ŷ} to the branch set of u;

• we add the path TvxvPvyvTwx
′
vP
′
vy
′
v to Hn−1, adding the vertices to the branch set of v.

We note that, since ŷ ∈ yvTwx′v the branch sets for u and v are now adjacent. Hence Hn is
an IGn extending Hn−1. Finally the rays y′iTi for i ∈ [r] are appropriate tails of the used rays
of Rr.

As every countable graph is a subgraph of Kℵ0 , a graph with a pebbly end contains every
countable graph as a minor. Thus, as ℵ0G is countable, if G is countable, we obtain the following
corollary:

Corollary 10.5.4. Let Γ be a graph with a pebbly end ω and let G be a countable graph. Then
ℵ0G 4 Γ.
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10.6 G-tribes and concentration of G-tribes towards an end

To show that a given graph G is 4-ubiquitous, we shall assume that nG 4 Γ holds for every
n ∈ N an show that this implies ℵ0G 4 Γ. To this end we use the following notation for such
collections of nG in Γ, most of which we established in [24].

Definition 10.6.1 (G-tribes). Let G and Γ be graphs.

• A G-tribe in Γ (with respect to the minor relation) is a family F of finite collections F of
disjoint subgraphs H of Γ such that each member H of F is an IG.

• A G-tribe F in Γ is called thick, if for each n ∈ N there is a layer F ∈ F with |F | > n;
otherwise, it is called thin.

• A G-tribe F ′ in Γ is a G-subtribe 1 of a G-tribe F in Γ, denoted by F ′ 4 F , if there is
an injection Ψ: F ′ → F such that for each F ′ ∈ F ′ there is an injection ϕF ′ : F

′ → Ψ(F ′)
such that V (H ′) ⊆ V (ϕF ′(H

′)) for each H ′ ∈ F ′. The G-subtribe F ′ is called flat, denoted
by F ′ ⊆ F , if there is such an injection Ψ satisfying F ′ ⊆ Ψ(F ′).

• A thick G-tribe F in Γ is concentrated at an end ε of Γ, if for every finite vertex set X of Γ,
the G-tribe FX = {FX : F ∈ F} consisting of the layers FX = {H ∈ F : H 6⊆ C(X, ε)} ⊆ F
is a thin subtribe of F . It is strongly concentrated at ε if additionally, for every finite
vertex set X of Γ, every member H of F intersects C(X, ε).

We note that, every thick G-tribe F contains a thick subtribe F ′ such that every H ∈ ⋃F
is a tidy IG. We will use the following lemmas from [24].

Lemma 10.6.2 (Removing a thin subtribe, [24, Lemma 5.2]). Let F be a thick G-tribe in Γ
and let F ′ be a thin subtribe of F , witnessed by Ψ: F ′ → F and (ϕF ′ : F

′ ∈ F ′). For F ∈ F , if
F ∈ Ψ(F ′), let Ψ−1(F ) = {F ′F } and set F̂ = ϕF ′F (F ′F ). If F /∈ Ψ(F ′), set F̂ = ∅. Then

F ′′ := {F \ F̂ : F ∈ F}

is a thick flat G-subtribe of F .

Lemma 10.6.3 (Pigeon hole principle for thick G-tribes, [24, Lemma 5.3]). Suppose for some
k ∈ N, we have a k-colouring c :

⋃F → [k] of the members of some thick G-tribe F in Γ. Then
there is a monochromatic, thick, flat G-subtribe F ′ of F .

Note that, in the following lemma, it is necessary that G is connected, so that every member
of the G-tribe is a connected graph.

Lemma 10.6.4 ([24, Lemma 5.4]). Let G be a connected graph and Γ a graph containing a thick
G-tribe F . Then either ℵ0G 4 Γ, or there is a thick flat subtribe F ′ of F and an end ε of Γ
such that F ′ is concentrated at ε.

Lemma 10.6.5 ([24, Lemma 5.5]). Let G be a connected graph and Γ a graph containing a thick
G-tribe F concentrated at an end ε of Γ. Then the following assertions hold:

1. For every finite set X, the component C(X, ε) contains a thick flat G-subtribe of F .

2. Every thick subtribe F ′ of F is concentrated at ε, too.

1When G is clear from the context we will often refer to a G-subtribe as simply a subtribe.
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Lemma 10.6.6. Let G be a connected graph and Γ a graph containing a thick G-tribe F con-
centrated at an end ε ∈ Ω(Γ). Then either ℵ0G 4 Γ, or there is a thick flat subtribe of F which
is strongly concentrated at ε.

Proof. Suppose that no thick flat subtribe of F is strongly concentrated at ε. We construct
an ℵ0G 4 Γ by recursively choosing disjoint IGs H1, H2, . . . in Γ as follows: Having chosen
H1, H2, . . . ,Hn such that for some finite set Xn we have

Hi ∩ C(Xn, ε) = ∅

for all i ∈ [n], then by Lemma 10.6.5(1), there is still a thick flat subtribe F ′n of F contained in
C(Xn, ε). Since by assumption, F ′n is not strongly concentrated at ε, we may pick Hn+1 ∈ F ′n
and a finite set Xn+1 ⊇ Xn with Hn+1 ∩ C(Xn+1, ε) = ∅. Then the union of all the Hi is an
ℵ0G 4 Γ.

The following lemma will show that we can restrict ourself to thick G-tribes which are
concentrated at thick ends.

Lemma 10.6.7. Let G be a connected graph and Γ a graph containing a thick G-tribe F con-
centrated at an end ε ∈ Ω(Γ) which is thin. Then ℵ0G 4 Γ.

Proof. Since ε is thin, we know by Proposition 10.2.4 that only finitely many vertices dominate
ε. Deleting these yields a subgraph of Γ in which there is still a thick G-tribe concentrated at ε.
Hence we may assume without loss of generality that ε is not dominated by any vertex in Γ.

Let k ∈ N be the degree of ε. By [69, Corollary 5.5] there is a sequence of vertex sets
(Sn : n ∈ N) such that:

• |Sn| = k,

• C(Sn+1, ε) ⊆ C(Sn, ε), and

• ⋂n∈NC(Sn, ε) = ∅.

Suppose there is a thick subtribe F ′ of F which is strongly concentrated at ε. For any F ∈ F ′
there is an NF ∈ N such that H \C(SNF , ε) 6= ∅ for all H ∈ F by the properties of the sequence.
Furthermore, since F ′ is strongly concentrated, H ∩ C(SNF , ε) 6= ∅ as well for each H ∈ F .

Let F ∈ F ′ be such that |F | > k. Since G is connected, so is H, and so from the above it
follows that H ∩ SNF 6= ∅ for each H ∈ F , contradicting the fact that |SNF | = k < |F |. Thus
ℵ0G 4 Γ by Lemma 10.6.6.

Note that, whilst concentration is hereditary for subtribes, strong concentration is not. How-
ever if we restrict to flat subtribes, then strong concentration is a hereditary property.

Let us show see how ends of the members of a strongly concentrated tribe relate to ends of
the host graph Γ. Let G be a connected graph and H ⊆ Γ an IG. By Lemmas 10.3.2 and 10.3.4,
if ω ∈ Ω(G) and R1 and R2 ∈ ω then the pullbacks H↓(R1) and H↓(R2) belong to the same end
ω′ ∈ Ω(Γ). Hence, H determines for every end ω ∈ G a pullback end H(ω) ∈ Ω(Γ). The next
lemma is where we need to use the assumption that G is locally finite.

Lemma 10.6.8. Let G be a locally finite connected graph and Γ a graph containing a thick
G-tribe F strongly concentrated at an end ε ∈ Ω(Γ) where every member is a tidy IG. Then
either ℵ0G 4 Γ, or there is a flat subtribe F ′ of F such that for every H ∈ ⋃F ′ there is an end
ωH ∈ Ω(G) such that H(ωH) = ε.
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Proof. Since G is locally finite and every H ∈ ⋃F is tidy, the branch sets H(v) are finite for each
v ∈ V (G). If ε is dominated by infinitely many vertices, then we know by Proposition 10.2.4 that
Γ contains a topological Kℵ0 minor, in which case ℵ0G 4 Γ, since every locally finite connected
graph is countable. If this is not the case, then there is some k ∈ N such that ε is dominated
by k vertices and so for every F ∈ F at most k of the H ∈ F contain vertices which dominate ε
in Γ. Therefore, there is a thick flat subtribe F ′ of F such that no H ∈ ⋃F ′ contains a vertex
dominating ε in Γ. Note that F ′ is still strongly concentrated at ε, and every branch set of every
H ∈ ⋃F ′ is finite.

Since F ′ is strongly concentrated at ε, for every finite vertex set X of Γ every H ∈ ⋃F ′
intersects C(X, ε). By a standard argument, since H as a connected infinite graph does not
contain a vertex dominating ε in Γ, instead H contains a ray RH ∈ ε.

Since each branch set H(v) is finite, RH meets infinitely many branch sets. Let us consider
the subgraph K ⊆ G consisting of all the edges (v, w) such that RH uses an edge between
H(v) and H(w). Note that, since there is a edge in H between H(v) and H(w) if and only if
(v, w) ∈ E(G), K is well-defined and connected.

K is then an infinite connected subgraph of a locally finite graph, and as such contains a ray
SH in G. Since the edges between H(v) and H(w), if they exist, were unique, it follows that
the pullback H↓(SH) of SH has infinitely many edges in common with RH , and so tends to ε in
Γ. Therefore, if SH tends to ωH in Ω(G), then H(ωH) = ε.

10.7 Ubiquity of minors of the half grid

Here, and in the following, we denote by H the infinite, one-ended, cubic hexagonal half grid
(see Figure 10.2). The following theorem of Halin is one of the cornerstones of infinite graph
theory.

Figure 10.2: The hexagonal half grid H.

Theorem 10.7.1 (Halin, see [43, Theorem 8.2.6]). Whenever a graph Γ contains a thick end,
then H 6 Γ.

In [73], Halin used this result to show that every topological minor of H is ubiquitous with
respect to the topological minor relation 6. In particular, trees of maximum degree 3 are
ubiquitous with respect to 6.

However, the following argument, which is a slight adaptation of Halin’s, shows that every
connected minor of H is ubiquitous with respect to the minor relation. In particular, the
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dominated ray, the dominated double ray, and all countable trees are ubiquitous with respect
to the minor relation.

The main difference to Halin’s original proof is that, since he was only considering locally
finite graphs, he was able to assume that the host graph Γ was also locally finite.

Lemma 10.7.2 ([73, (4) in Section 3]). ℵ0H is a topological minor of H.

Theorem 10.1.4. Any connected minor of the half grid N�Z is 4-ubiquitous.

Proof. Suppose G 4 N�Z is a minor of the half grid, and Γ is a graph such that nG 4 Γ for
each n ∈ N. By Lemma 10.6.4 we may assume there is an end ε of Γ and a thick G-tribe F
which is concentrated at ε. By Lemma 10.6.7 we may assume that ε is thick. Hence H 6 Γ by
Theorem 10.7.1, and with Lemma 10.7.2 we obtain

ℵ0G 4 ℵ0(N�Z) 4 ℵ0H 6 H 6 Γ.

Lemma 10.7.3. H contains every countable tree as a minor.

Proof. It is easy to see that the infinite binary tree T2 embeds into H as a topological minor. It
is also easy to see that countably regular tree T∞ where every vertex has infinite degree embeds
into T2 as a minor. And obviously, every countable tree T is a subgraph of T∞. Hence we have

T ⊆ T∞ 4 T2 6 H

from which the result follows.

Corollary 10.7.4. All countable trees are ubiquitous with respect to the minor relation.

Proof. This is an immediate consequence of Lemma 10.7.3 and Theorem 10.1.4.

10.8 Proof of main results

Lemma 10.8.1. Let ε be a non-pebbly end of Γ and let F be a G-tribe such that for every
H ∈ ⋃F there is an end ωH ∈ Ω(G) such that H(ωH) = ε. Then there is a thick flat subtribe
F ′ such that ωH is linear for every H ∈ ⋃F ′ .

Proof. Let F ′ be the flat subtribe of F given by F ′ = {F ′ : F ∈ F} with

F ′ = {H : H ∈ F and ωH is not linear}.

Suppose for a contradiction that F ′ is thick. Then, there is some F ∈ F which contains k + 2
disjoint IGs, H1, H2, . . . ,Hk+2, where k is such that ε is not k-pebble-win. By assumption ωHi
is not linear for each i, and so for each i there is a family of disjoint rays {Ri1, Ri2, . . . , Rimi} in
G tending to ωHi whose ray graph in G is not a path. Let

S = (H↓i (Rij) : i ∈ [k + 2], j ∈ [mi]).

By construction S is a disjoint family of rays which tend to ε in Γ and by Lemma 10.3.3 and
Lemma 10.3.4RGΓ(S) contains disjoint subgraphsK1,K2, . . . ,Kk+2 such thatKi

∼= RGG(Rij : j ∈
[mi]). However, by Corollary 10.5.2, there is a set X of vertices of size at most k such that
RGΓ(S)−X is a bare path P . However, then some Ki ⊆ P is a path, a contradiction.

Since F is the union of F ′ and F ′′ where F ′′ = {F ′′ : F ∈ F} with

F ′′ = {H : H ∈ F and ωH is linear},

it follows that F ′′ is thick.
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Theorem 10.1.2. Every locally finite connected graph with nowhere-linear end structure is 4-
ubiquitous.

Proof. Let Γ be a graph such that nG 4 Γ holds for every n ∈ N. Hence, Γ contains a thick
G-tribe F . By Lemmas 10.6.4 and 10.6.6 we may assume that F is strongly concentrated at
an end ε of Γ and so by Lemma 10.6.8 we may assume that for every H ∈ ⋃F there is an end
ωH ∈ Ω(G) such that H(ωH) = ε.

Since ωH is not linear for each H ∈ ⋃F , it follows by Lemma 10.8.1 that ε is pebbly, and
hence by Corollary 10.5.4 ℵ0G 4 Γ.

Figure 10.3: The ray graphs in the full grid are cycles.

Corollary 10.1.3. The full grid is 4-ubiquitous.

Proof. Let G be the full grid. Since G − R has at most one end for any ray R ∈ G, by
Lemma 10.3.2 the ray graph RG(R) is 2-connected for any finite family of three or more rays.
Hence, by Theorem 10.1.2 G is 4-ubiquitous

Remark. In fact, every ray graph in the full grid is a cycle (see Figure 10.3).

Theorem 10.1.5. For every locally finite connected graph G, both G�Z and G�N are 4-
ubiquitous.

Proof. IfG is a path or a ray, thenG�Z is a subgraph of the half grid N�Z and thus4-ubiquitous
by Theorem 10.1.4. If G is a double ray then G�Z is the full grid and thus 4-ubiquitous by
Corollary 10.1.3. Otherwise let G′ be a finite connected subgraph of G which is not a path. For
any end ω of G�Z there is a ray R of Z such that all rays of the form {v}�R for v ∈ V (G) go
to ω. But then G′ is a subgraph of RGG�Z(({v}�R)v∈V (G′)), so this ray-graph is not a path,
hence by Lemma 10.3.5 G�Z has nowhere-linear end structure and is therefore 4-ubiquitous by
Theorem 10.1.2.
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Finally let us prove Theorem 10.1.6. Recall that for k ∈ N let DRk denote the graph formed
by taking a ray R together with k vertices v1, v2, . . . , vk adjacent to every vertex in R. We shall
need the following strengthening of Proposition 10.2.3.

A comb is a union of a ray R with infinitely many disjoint finite paths, all having precisely
their first vertex on R. The last vertices of these paths are the teeth of the comb.

Proposition 10.8.2. [43, Proposition 8.2.2] Let U be an infinite set of vertices in a connected
graph G. Then G either contains a comb with all teeth in U or a subdivision of an infinite star
with all leaves in U .

Theorem 10.1.6. The k-fold dominated ray DRk is 4-ubiquitous for every k ∈ N.

Proof. Note that if k 6 2 then DRk is a minor of the half grid, and hence ubiquity follows from
Theorem 10.1.4.

Suppose then that k > 3 and Γ is a graph which contains a thick DRk-tribe F each of whose
members is tidy. By Lemma 10.6.6 we may assume that there is an end ε of Γ such that F is
concentrated at ε. If there are infinitely many vertices dominating ε, then ℵ0DRk 4 Kℵ0 6 Γ
holds by Proposition 10.2.4. So we may assume that only finitely many vertices dominate ε.
By taking a thick subtribe if necessary, we may assume that no member of F contains such a
vertex.

As before, if we can show that ε is pebbly, then we will be done by Corollary 10.5.4. So
suppose for a contradiction that ε is not r-pebble-win for some r ∈ N.

Let R be the ray as stated in the definition of DRk and let v1, v2, . . . , vk ∈ V (DRk) be the
vertices adjacent to each vertex of R. For each H ∈ ⋃F and each i ∈ [k] we have the H(vi) is
a connected subgraph of Γ. Let U be the set of all vertices in H(vi) which are the endpoint of
some edge in H between H(vi) and H(w) with w ∈ R. Since vi dominated R, U is infinite, and
so by Proposition 10.8.2 H(vi) either contains a comb with all teeth in U or a subdivision of an
infinite star with all leaves in U . However in the latter case the centre of the star would dominate
ε, and so each H(vi) contains such a comb, whose spine we denote by RH,i. Let RH = H↓(R)
be the pullback of the ray R in H. Now we set RH = (RH,1, RH,2, . . . , RH,k, RH).

Since RH,i is the spine of a comb, all of whose leaves are in U , it follows that in the graph
RGH(RH) each RH,i is adjacent to RH . Hence RGH(RH) contains a vertex of degree k > 3.

There is some layer F ∈ F of size ` > r + 1, say F = (Hi : i ∈ [`]). For every i ∈ [r + 1] we
set RHi = (RHi,1, RHi,2, . . . , RHi,k, RHi). Let us now consider the family of disjoint rays

R =
r+1⋃
i=1

RHi .

By construction R is a family of disjoint rays which tend to ε in Γ and by Lemma 10.3.3
and Lemma 10.3.4 RGΓ(R) contains r + 1 vertices whose degree is at least k > 3. However,
by Corollary 10.5.2, there is a vertex set X of size at most r such that RGΓ(R) −X is a bare
path P . But then some vertex whose degree is at least 3 is contained in the bare path, a
contradiction.
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Chapter 11

Ubiquity of locally finite graphs with
extensive tree decompositions

11.1 Introduction

Given a graph G and some relation C between graphs we say that G is C-ubiquitous if whenever
Γ is a graph such that nG C Γ for all n ∈ N, then ℵ0G C Γ, where αG is the disjoint union
of α many copies of G. A classic result of Halin [71, Satz 1] says that the ray is ⊆-ubiquitous,
where ⊆ is the subgraph relation. That is, any graph which contains arbitrarily large collections
of vertex-disjoint rays must contain an infinite collection of vertex-disjoint rays. Later, Halin
showed that the double ray is also ⊆-ubiquitous [72].

However, not all graphs are ⊆-ubiquitous, and in fact even trees can fail to be ⊆-ubiquitous
(see for example [130]). The question of ubiquity for classes of graphs has also been considered
for other graph relations. In particular, whilst there are still reasonably simple examples of
graphs which are not 6-ubiquitous (see [91, 7]), where 6 is the topological minor relation, it
was shown by Andreae that all rayless countable graphs [9] and all locally finite trees [8] are
6-ubiquitous. The latter result was recently extended to the class of all trees by the authors
[24].

In [13] Andreae initiated the study of ubiquity of graphs with respect to the minor relation,
4. He constructed a graph which was not 4-ubiquitous, however the construction relied on
the existence of a counterexample to the well-quasi-ordering of infinite graphs under the minor
relation, for which only examples of very large cardinality are known [122]. In particular, the
question whether there exists a countable graph which is not 4-ubiquitous remains open.

Andreae conjectured that at least all locally finite graphs, those with all degrees finite, should
be 4-ubiquitous.

Conjecture 9.1.1. [The Ubiquity Conjecture] Every locally finite connected graph is 4-ubiquitous.

In [14] Andreae proved that his conjecture holds for a large class of locally finite graphs. The
exact definition of this class is technical, but in particular his result implies the following.

Theorem 11.1.1 (Andreae, [14, Corollary 1]). Let G be a locally finite, connected graph with
finitely many ends such that every block of G is finite. Then G is 4-ubiquitous.

Theorem 11.1.2 (Andreae, [14, Corollary 2]). Let G be a locally finite, connected graph of
finite tree-width such that every block of G is finite. Then G is 4-ubiquitous.
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Note, in particular, that if G is such a graph, then the degree of every end in G must be
one.1 In this paper we will extend Andreae’s approach to prove that an even larger class of
locally finite graphs is 4-ubiquitous, removing the assumption of finite blocks. Again, the exact
definition of this class will be technical, but in particular it will imply the following results,
extending Theorems 11.1.1 and 11.1.2:

Theorem 11.1.3. Let G be a locally finite, connected graph with finitely many ends such that
every end of G has finite degree. Then G is 4-ubiquitous.

Theorem 11.1.4. Every locally finite, connected graph of finite tree-width is 4-ubiquitous.

The proof uses in an essential way some known results about the well-quasi-ordering of
graphs under the minor relation, including Thomas’ result [123] that graphs of bounded tree
width are well-quasi-ordered under the minor relation. Our methods, building on Andreae’s,
give a blueprint by which stronger results about the well-quasi-ordering of graphs can be used
to prove the ubiquity of larger classes of graphs. A more precise discussion of this connection
will be given in Section 11.10.

In Section 11.2 we will give a sketch of the key ideas in the proof, at the end of which we
will give a short overview of the structure of the paper.

11.2 Proof sketch

To give a flavour of the main ideas involved in the proof, let’s begin by considering the case of
a locally finite connected graph G with a single end ω, where ω has finite degree d (this means
that there is a family (Ai : 1 6 i 6 d) of d disjoint rays in ω, but no family of more than d
such rays). Our construction will exploit the fact that graphs of this kind have a very particular
structure. More precisely, there is a tree-decomposition (S,V) of G, where S = s0s1s2 . . . is a
ray and such that, if we denote Vsn by Vn and

⋃
l>n Vl by Gn for each n, the following holds:

1. each Vn is finite;

2. every vertex of G appears in only finitely many Vn;

3. all the Ai begin in V0, and

4. for each m > 1 there are infinitely many n > m such that Gm is a minor of Gn, in such
a way that for any edge e of Gm and any i 6 d, e is an edge of Ai if and only if the edge
representing it in this minor is.

Property 4 seems rather strong, and the reason it can always be achieved has to do with
the well-quasi-ordering of finite graphs. For details of how this works, see Section 11.5. The
skeptical reader who does not yet see how to achieve this may consider the argument in this
section as showing ubiquity simply for graphs G with a decomposition of the above kind.

Now we suppose that we are given some graph Γ such that nG 4 Γ for each n, and we wish
to show that ℵ0G 4 Γ. Consider a G-minor H in Γ. Any ray R of G can then be expanded to a
ray H(R) in the copy H of G in Γ, and since G only has one end, all rays H(R) go to the same
end εH of Γ; we shall say that H goes to the end εH .

We now show that we can suppose without loss of generality that all G-minors go to the
same end ε of Γ. For suppose that there are two G-minors H and H ′ with εH 6= εH′ . Since G
is locally finite, we may assume that all branch sets of H and H ′ are finite. Thus there is a
finite set X such that each of H and H ′ only uses vertices from one component of Γ − X. In

1A precise definitions of the ends of a graph and their degree can be found in Section 11.3.
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any (|X|+ 2n)G-minor of Γ, only at most |X| of the G-minors involved can meet X, and each
of the remaining 2n must be included in some component of G−X. Without loss of generality
at most n of them are in the component that meets H, and so Γ−H has an nG-minor.

Thus there is a G-minor H0 of Γ such that Γ1 := Γ −H0 still has an nG-minor for each n.
If there are two G-minors going to different ends of Γ1 then we may as above find a G-minor
H1 of Γ1 such that Γ2 := Γ1 − H1 has an nG-minor for any n. Proceeding in this way we
either find infinitely many disjoint G-minors H0, H1, H2, . . ., giving an ℵ0G-minor, or else after
finitely many steps we find a subgraph Γk of Γ which has an nG-minor for any n and in which
all G-minors go to the same end ε.

So from now on we will assume that all G-minors of Γ go to the same end ε. From any
G-minor H we obtain rays H(Ai) corresponding to our marked rays Ai in G. We will call this
collection of rays the bundle of rays given by H.

Our aim now is to build up an ℵ0G-minor of Γ recursively. At stage n we hope to construct
n disjoint G[

⋃
m6n Vm]-minors Hn

1 , H
n
2 , . . . H

n
n , such that for each such Hn

m there is a family
(Rnm,i : i 6 k) of disjoint rays to ε, where the path in Hn

m corresponding to the initial segment of
the ray Ai in

⋃
m6nGm is an initial segment of Rnm,i, but these rays are otherwise disjoint from

the various Hn
l and from each other. We aim to do this in such a way that each Hn

m extends
all previous H l

m for l 6 n, so that at the end of our construction we can obtain infinitely many
disjoint G-minors as (

⋃
n>mH

n
m : m ∈ N). The rays chosen at later stages need not bear any

relation to those chosen at earlier stages; we just need them to exist so that there is some hope
of continuing the construction.

We will again refer to the families (Rnm,i : i 6 k) of rays starting at the various Hn
m as the

bundles of rays from those Hn
m.

bundleHn
1

Rn1,1
Rn1,2
Rn1,3

Hn
2

Rn2,1
Rn2,2
Rn2,3

Hn
3

Rn3,1
Rn3,2
Rn3,3

Hn
4

Rn4,1
Rn4,2
Rn4,3

...

The rough idea for getting from the nth to the n + 1st stage of this construction is now as
follows: we choose a very large family H of disjoint G-minors in Γ. We throw away all those
which meet any previous Hn

m and we consider the family of rays corresponding to the Ai in the
remaining minors. Then it is possible to find a collection of paths transitioning from the Rnm,i
from stage n onto these new rays. Precisely what we need is captured in the following definition,
which also introduces some helpful terminology for dealing with such transitions:

Definition 11.2.1 (Linkage of families of rays). Let R = (Ri : i ∈ I) and S = (Sj : j ∈ J) be
families of disjoint rays, where the initial vertex of each Ri is denoted xi. A family of paths
P = (Pi : i ∈ I), is a linkage from R to S if there is an injective function σ : I → J such that
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• Each Pi goes from a vertex x′i ∈ Ri to a vertex yσ(i) ∈ Sσ(i);

• The family T = (xiRix
′
iPiyσ(i)Sσ(i) : i ∈ I) is a collection of disjoint rays.2 We write

R ◦P S for the family T as well Ri ◦P S for the ray in T with initial vertex xi.

We say that T is obtained by transitioning from R to S along the linkage. We say the linkage
P induces the mapping σ. We further say that P links R to S. Given a set X we say that the
linkage is after X if X ∩Ri ⊆ xiRix′i for all i ∈ I and no other point in X is used by T .

Thus our aim is to find a linkage from the Rnm,i to the new rays after all the Hn
m. That this

is possible is guaranteed by the following lemma from [24]:

Lemma 11.2.2 (Weak linking lemma [24, Lemma 4.3]). Let Γ be a graph and ω ∈ Ω(Γ). Then
for any collections R = (R1, . . . , Rn) and S = (S1, . . . , Sn) of vertex disjoint rays in ω and any
finite set X of vertices, there is a linkage from R to S after X.

The aim is now to use property 4 of our tree decomposition of G to find copies of Vn+1

sufficiently far along the new rays that we can stick them on to our Hn
m to obtain suitable Hn+1

m .
There are two difficulties at this point in this argument. The first is that, as well as extending
the existing Hn

m to Hn+1
m we also need to introduce Hn+1

n+1 . To achieve this, we ensure that one
of the G-minors in H is disjoint from all the paths in the linkage, so that we may take an initial
segement of it as Hn+1

n+1 . This is possible because of a slight strengthening of the linking lemma
above; see [24, Lemma 4.4] or 9.4.4 for a precise statement.

A more serious difficulty is that in order to stick the new Vn+1 onto Hn
m we need the following

property:

For each of the bundles corresponding to an Hn
m, the rays in the bundle

are linked precisely to the rays in the bundle coming from some H ∈ H.
This happens in such a way that each Rnm,i is linked to H(Ai).

(∗)

Thus we need a great deal of control over which rays get linked to which. We can keep track
of which rays are linked to which as follows:

Definition 11.2.3 (Transition function). Let R = (Ri : i ∈ I) and S = (Sj : j ∈ J) be families of
disjoint rays, where the initial vertex of each Ri is denoted xi. We say that a function σ : I → J
is a transition function from R to S if for any finite set X of vertices there is a linkage from R
to S after X that induces σ.

So our aim is to find a transition function assigning new rays to the Rnm so as to achieve (∗).
One reason for expecting this to be possible is that the new rays all go to the same end, and
so they are joined up by many paths. We might hope to be able to use these paths to move
between the rays, allowing us some control over which rays are linked to which. The structure
of possible jumps is captured by a graph whose vertex set is the set of rays:

Definition 11.2.4 (Ray graph). Given a finite family of disjoint rays R = (Ri : i ∈ I) in a
graph Γ the ray-graph, RGΓ(R) = RGΓ(Ri : i ∈ I) is the graph with vertex set I and with an
edge between i and j if there is an infinite collection of vertex disjoint paths from Ri to Rj which
meet no other Rk. When the host graph Γ is clear from the context we will simply write RG(R)
for RGΓ(R).

2Where we use the notation as in [43], see also Definition 11.3.3.
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Unfortunately, the collection of possible transition functions can be rather limited. Consider,
for example, the case of families of disjoint rays in the grid. Any such family has a natural cyclic
order, and any transition function must preserve this cyclic order. This paucity of transition
functions is reflected in the sparsity of the ray graphs, which are all just cycles.

In Sections 11.6 and 11.7 we therefore carefully analyse the possibilities for how the ray
graphs and transition functions associated to a given thick3 end may look. We find that there
are just 3 possibilities.

The easiest case is that in which the rays to the end are very joined up, in the sense that any
injective function between two families of rays is a transition function. This case was already
dealt with in [25]. The second possibility is that which we saw above for the grid: all ray
graphs are cycles, and all transition functions between them preserve the cyclic order. The third
possibility is that all ray graphs consist of a path together with a bounded number of further
junk vertices, where these junk vertices are hanging at the ends of the paths (formally: all
interior vertices on this central paths have degree 2 in the ray graph). In this case, the transition
functions must preserve the linear order along the paths.

The second and third cases can be dealt with using similar ideas, so we will focus on the
third one here.

The structure of the ray graphs and transition functions can be used to get around the
problem discussed above, by slightly strengthening the properties required of the rays in the
recursive construction. More precisely, we want that the ray graph of a slightly larger family
R of disjoint rays, consisting of the Rnm,i and some extra ‘junk’ rays, should have all the Rnm,i
on the central path, arranged in such a way that for each n and m the Rnm,i are consecutive in
order from Rnm,1 to Rnm,k.

Of course, in order that this is possible we must first ensure that the Ai are arranged in
order so that for every n we can find n disjoint G-minors H such that there is some ray graph
in which, for each H, the rays H(Ai) appear in order along the central path. Since there are
only finitely many possible orders, there must be an order with this property.

Then our extra order assumptions ensure that, by transitioning between rays using edges of
the ray graph, we can modify the linkage so that (∗) holds.

There is one last subtle difficulty which we have to address, once more relating to the fact
that we want to introduce a new Hn+1

n+1 together with its private bundle of rays corresponding
to its copies of Ai’s, disjoint from all the other Hn+1

m and their bundles. Recall that the strong
linking lemma allows us to find a linkage which avoids one of the G-minors in H, but this linkage
may not have property (∗). We can modify it to one satisfying (∗) by diverting the rays along
some of the paths between the new rays. But then some of the rays through which we divert
may be forced to intersects the rays emanating from Hn+1

n+1 , if these rays from Hn+1
n+1 lie between

rays from the same bundle of some Hn
m.

However, we can get around this by using the paths between the rays in R to jump between
them before the linkage, so as to rearrange which bundles make use of (the tails of) which rays.
More precisely, we first take a large but finite set of paths between the rays which is rich enough
to allow us to rearrange which bundles end up where as much as possible. We collect these
together in a transition box. Only then do we choose the linkage from R to the rays from H,
and we make sure that this linkage is after the transition box. Then, when we later see how the
bundles should be arranged in order that the rays emanating from Hn+1

n+1 do not appear between
rays from the same bundle, we can go back and perform a suitable rearrangement within the
transition box, see Figure 11.1.

This completes the sketch of the proof that locally finite graphs with a single end of finite
degree are ubiquitous. Our results in this paper are for a more general class of graphs, but one

3An end is thick if there are infinitely many disjoint rays to it.
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Hn
m

Hn+1
n+1

...

...

transition box

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

linkage

· · ·

· · ·

Figure 11.1: The transitioning strategy between the old and new bundles.

which is chosen to ensure that arguments of the kind outlined above will work for them. Hence
we still need a tree-decomposition with properties similar to (1)-(4) from our ray-decomposition
above. Tree decompositions with these properties are called extensive, and the details can be
found in Section 11.4.

However, certain aspects of the sketch above must be modified to allow for the fact that we
are now dealing with graphs G with multiple, indeed possibly infinitely many, ends. For any
end δ of G and any G-minor H of Γ, all rays H(R) with R in δ belong to the same end H(δ) of
Γ. But for different values of δ, the ends H(δ) may well be different.

So there is no hope of finding a single end ε of Γ to which all rays in all G-minors converge.
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Nevertheless, we can still find an end ε towards which the G-minors are concentrated, in the sense
that for any finite X there are arbitrarily large families of G-minors in the same component of
G − X as ε. See Section 10.6 for details. In that section we introduce the term tribe for a
collection of arbitrarily large families of disjoint G-minors.

The recursive construction will work pretty much as before, in that at each step n we will
again have embedded Gn-minors for some large finite part Gn of G, together with a number of
rays to ε corresponding to some canonical rays going to certain ends δ of G.

In order for this to work, we need some consistency about which H(δ) are equal to ε and
which are not. It is clear that for any finite set ∆ of ends of G there is some subset ∆′ such that
there is a tribe of G-minors H converging to ε with the property that the set of δ in ∆ with
H(δ) = ε is ∆′. This is because there are only finitely many options for this set. But if G has
infinitely many ends, there is no reason why we should be able to do this for all ends of G at
once.

Our solution is to keep track of only finitely many ends of G at any stage in the construction,
and to maintain at each stage a tribe concentrated towards ε which is consistent for all these
finitely many ends. Thus in our construction consistency of questions such as which ends δ of G
converge to ε or of the proper linear order in the ray graph of the families of canonical rays to
those ends is achieved dynamically during the construction, rather than being fixed in advance.
The ideas behind this dynamic process have already been used successfully in our earlier paper
[24], where they appear in slightly simpler circumstances.

The paper is structured as follows. In Section 10.2 we give precise definitions of some of
the basic concepts we will be using, and prove some of their fundamental properties. In Section
11.4 we introduce extensive tree decompositions and in Section 11.5 we illustrate that many
locally finite graphs can be given such decompositions. Sections 11.6 and 11.7 are devoted to
the possible collections of ray graphs and transition functions between them which can occur in
a thick end. In Section 10.6 we introduce the notion of tribes and of their concentration towards
an end and begin building some tools for the main recursive construction, which is given in
Section 9.6. We conclude with a discussion of the future outlook in Section 11.10.

11.3 Preliminaries

In this paper we follow the convention that 0 is not an element of the set N of natural numbers.

For a graph G = (V,E) and W ⊆ V we write G[W ] for the induced subgraph. For two
vertices v, w of a connected graph G, we write dist(v, w) for the edge-length of a shortest v−w
path. A path P = v0v1 . . . vn in a graph G is called a bare path if degG(vi) = 2 for all inner
vertices vi for 0 < i < n.

11.3.1 Rays and ends

Definition 11.3.1 (Rays and initial vertices of rays). A one-way infinite path is called a ray
and a two-way infinite path is called a double ray. For a ray R let init(R) denote the initial
vertex of R, that is the unique vertex of degree 1 in R. For a set R of rays let init(R) denote
the set of initial vertices of the rays in R.

Definition 11.3.2 (Tail of a ray). Given a ray R in a graph G and a finite set X ⊆ V (G) the
tail of R after X, T (R,X), is the unique infinite component of R in G−X.

Definition 11.3.3 (Concatenation of paths and rays). For a path or ray P and vertices v, w ∈
V (P ), let vPw denote the subpath of P with endvertices v and w, and v̊P ẘ for the subpath
strictly between v and w. If P is a ray, let Pv denote the finite subpath of P between the initial
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vertex of P and v, and let vP denote the subray (or tail) of P with initial vertex v. Similarly,
we write P v̊ and v̊P for the corresponding paths without the vertex v.

Given two paths or rays P and Q which which intersect in a single vertex only, which is an
endvertex in both P and Q, we write PQ for the concatenation of P and Q, that is the path,
ray or double ray P ∪Q. Moreover, if we concatenate paths of the form vPw and wQx, then we
omit writing w twice and denote the concatenation by vPwQx.

For a ray R = r0r1 . . . let R− denote the tail r1R of R starting at r1. Given a set R of rays
let R− denote the set {R− : R ∈ R}
Definition 11.3.4 (Ends of a graph, cf. [43, Chapter 8]). An end of an infinite graph Γ is an
equivalence class of rays, where two rays R and S are equivalent if and only if there are infinitely
many vertex disjoint paths between R and S in Γ. We denote by Ω(Γ) the set of ends of Γ.

We say that a ray R ⊆ Γ converges (or tends) to an end ε of Γ if R is contained in ε. In
this case we call R an ε-ray.

Given an end ε ∈ Ω(Γ) and a finite set X ⊆ V (Γ) there is a unique component of Γ − X
which contains a tail of every ray in ε, which we denote by C(X, ε).

For an end ε ∈ Γ we define the degree of ε in Γ, denoted by deg(ε) ∈ N∪{∞}, as the largest
cardinality of a collection of vertex disjoint ε-rays. An end with finite/infinite degree is called
thin/ thick.

11.3.2 Inflated copies of graphs

Definition 11.3.5 (Inflated graph, branch set). Given a graph G we say that a pair (H,ϕ) is
an inflated copy of G or an IG if H is a graph and ϕ : V (H)→ V (G) is a map such that:

• For every v ∈ V (G) the branch set ϕ−1(v) induces a non-empty, connected subgraph of H;

• There is an edge in H between ϕ−1(v) and ϕ−1(w) if and only if (v, w) ∈ E(G) and this
edge, if it exists, is unique.

When there is no danger of confusion we will simply say that H is an IG instead of saying
that (H,ϕ) is an IG, and denote by H(v) = ϕ−1(v) the branch set of v.

Definition 11.3.6 (Minor). A graph G is a minor of another graph Γ, written G 4 Γ, if there
is some subgraph H ⊆ Γ such that H is an inflated copy of G.

Definition 11.3.7 (Extension of inflated copies). Suppose G ⊆ G′ as subgraphs, and that H
is an IG and H ′ is an IG′. We say that H ′ extends H (or that H ′ is an extension of H) if
H ⊆ H ′ as subgraphs and H(v) ⊆ H ′(v) for all v ∈ V (G) ∩ V (G′).

If H ′ is an extension of H and X ⊂ V (G) is such that H ′(x) = H(x) for every x ∈ X then
we say H ′ is an extension of H fixing X.

Note that since H ⊆ H ′, for every edge (v, w) ∈ E(G), the unique edge between the branch
sets H ′(v) and H ′(w) is also the unique edge between H(v) and H(w).

Definition 11.3.8 (Tidiness). An IG (H,ϕ) is called tidy if

• H[ϕ−1(v)] is a tree for all v ∈ V (G);

• H(v) is finite if dG(v) is finite.

Note that every IG H contains a subgraph H ′ such that (H ′, ϕ � V (H ′)) is a tidy IG,
although this choice may not be unique. In this paper we will always assume without loss of
generality that each IG is tidy.
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Definition 11.3.9 (Restriction). Let G be a graph, M ⊆ G a subgraph of G, and let (H,ϕ) be
an IG. The restriction of H to M , denoted by H(M), is the IG given by (H(M), ϕ′) where
ϕ′−1(v) = ϕ−1(v) for all v ∈ V (M) and H(M) consists of union of the subgraphs of H induced
on each branch set ϕ−1(v) for each v ∈ V (M) together with the edge between ϕ−1(u) and ϕ−1(v)
for each (u, v) ∈ E(M).

Note that if H is tidy, then H(M) will be tidy. Given a ray R ⊆ G and a tidy IG H in a
graph Γ, the restriction H(R) is a one-ended tree, and so every ray in H(R) will share a tail.
Later in the paper we will want to make this correspondence between rays in G and Γ more
explicit, with use of the following definition:

Definition 11.3.10 (Pullback). Let G be a graph, R ⊆ G a ray, and let H be a tidy IG. The
pullback of R to H is the subgraph H↓(R) ⊆ H where H↓(R) is subgraph minimal such that
(H↓(R), ϕ � V (H↓(R))) is an IM .

Note that, since H is tidy, H↓(R) is well defined. As well shall see, H↓(R) will be a ray.

Lemma 11.3.11. Let G be a graph and let H be a tidy IG. If R ⊆ G is a ray, then the pullback
H↓(R) is also a ray.

Proof. Let R = x1x2 . . .. For each integer i > 1 there is a unique edge (vi, wi) ∈ E(H) between
the branch sets H(xi) and H(xi+1). By the tidiness assumption, H(xi+1) induces a tree in H,
and so there is a unique path Pi ⊂ H(xi+1) from wi to vi+1 in H.

By minimality of H↓(R), it follows that H↓(R)(x1) = {v1} and H↓(R)(xi+1) = V (Pi) for
each i > 1. Hence H↓(R) is a ray.

Definition 11.3.12. Let G be a graph, R be a family of disjoint rays in G and let H be a tidy
IG. We will write H↓(R) for the family (H↓(R) : R ∈ R).

Definition 11.3.13. For an end ω of G and H ⊂ Γ a tidy IG, we denote by H(ω) the unique
end of Γ containing all rays H↓(R) for R ∈ ω.

It is an easy check that if two rays R and S in G are equivalent, then also H↓(R) and H↓(S)
are rays (Lemma 11.3.11) which are equivalent in H, and hence also equivalent in Γ.

11.3.3 Transitional linkages and the strong linking lemma

Definition 11.3.14. We say a linkage is transitional if the function which it induces between
the corresponding ray graphs is a transition function.

Lemma 11.3.15. Let Γ be a graph and ε ∈ Ω(Γ). Then for any collections R = (R1, . . . , Rn)
and S = (S1, . . . , Sn) of ε-rays in Γ there is a finite set X such that every linkage after X is
transitional.

Proof. By definition, for every function σ : [n] → [n] which is not a transition function from
R to S there is a finite set Xσ ⊆ V (Γ) such that there is no linkage from R to S after Xσ

which induces σ. If we let Φ be the set of σ which are not transition functions then the set
X :=

⋃
σ∈ΦXσ satisfies the conclusion of the lemma.

In addition to Lemma 11.2.2 we will also need the following stronger linking lemma, which
is a slight modification of [24, Lemma 4.4]:
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Lemma 11.3.16 (Strong linking lemma). Let Γ be a graph and ω ∈ Ω(Γ). Let X be a finite set of
vertices, n ∈ N, and R = (Ri : i ∈ [n]) a family of vertex disjoint rays in ω. Let xi = init(Ri) and
x′i = init(T (Ri, X)). Then there is a finite number N = N(R, X) with the following property:
For every collection (Hj : j ∈ [N ]) of vertex disjoint subgraphs of Γ, all disjoint from X and each
including a specified ray Sj in ω, there is a j ∈ [N ] and a transitional linkage P = (Pi : i ∈ [n])
from R to (Sj : j ∈ [N ]) which is after X and such that the family

T =
(
xiRix

′
iPiyσ(i)Sσ(i) : i ∈ [n]

)
avoids Hj.

Proof. Let Y ⊆ V (Γ) be a finite set as in Lemma 11.3.15. We apply the strong linking lemma
established in [24, Lemma 4.4] to the set X ∪ Y to obtain this version of the strong linking
lemma.

Lemma and Definition 11.3.17. Let Γ be a graph, ε ∈ Ω(Γ), X ⊆ V (Γ) be finite, and let
R = (Ri : i ∈ I1), S = (Si : i ∈ I2) be two finite families of disjoint ε-rays with |I1| 6 |I2|. Then
there is a finite subgraph Y ⊆ C(X, ε) such that for any transition function σ between R and S
there is a linkage Pσ from R to S inducing σ with

⋃Pσ ⊆ Γ[Y ].

We call such a set Y a transition box between R and S (after X).

Proof. Let σ : I1 → I2 be a transition function between R and S. By definition there is a
linkage Pσ from R to S after X which induces σ. Note that, since Pσ is after X, it follows that⋃Pσ ⊆ C(X, ε).

Let Φ be the set of all transition functions between R and S and let Y =
⋃
σ∈Φ Pσ. Then Y

is a transition box between R and S (after X).

Remark and Definition 11.3.18. Let Γ be a graph and ε ∈ Ω(Γ). Let R1, R2, R3 be finite
families of disjoint ε-rays, P1 a transitional linkage from R1 to R2 and P2 a transitional linkage
from R2 to R3 after

⋃P2.

1. P2 is also a transitional linkage from (R1 ◦P1 R2) to R3.

2. The linkage from R1 to R3 yielding the rays (R1 ◦P1 R2) ◦P2 R3, which we call the con-
catenation P1 + P2 of P1 and P2 is transitional.

The following lemmas are simple exercises.

Lemma 11.3.19. Let (Ri : i ∈ I) be a disjoint finite family of ε-rays, then the ray graph
RG(Ri : i ∈ I) is connected. Also, if R′i is a tail of Ri for each i ∈ I, then RG(Ri : i ∈
I) = RG(R′i : i ∈ I).

Lemma 11.3.20 ([25, Lemma 3.4]). Let G be a graph, H ⊆ G, R = (Ri : i ∈ I) be a finite
disjoint family of rays in H and let S = (Sj : j ∈ J) be a finite disjoint family of rays in
G− V (H), where I and J are disjoint. Then RGH(R) is a subgraph of RGG(R∪ S)

[
I
]
.

11.4 Extensive tree-decompositions and self minors

The purpose of this section is to explain the extensive tree decompositions mentioned in the
proof sketch. Some ideas motivating this definition are already present in Andreae’s proof that
locally finite trees are ubiquitous under the topological minor relation [8, Lemma 2].
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11.4.1 Separations and tree-decompositions of graphs

Definition 11.4.1. Let T be a tree with a root v ∈ V (T ). Given nodes x, y ∈ V (T ) let us
denote by xTy the unique path in T between x and y, by Tx denote the component of T − E(vTx)
containing x, and by Tx the tree T − Tx.

Given an edge e = tt′ ∈ E(T ), we say that t is the lower vertex of e, denoted by e−, if
t ∈ vT t′. In this case, t′ is the higher vertex of e, denoted by e+.

If S is a subtree of a tree T let us write ∂(S) = E(S, T \ S) for the edge cut between S and
its complement in T .

Definition 11.4.2. Let G = (V,E) be a graph. A separation of G is a pair (A,B) of subsets
of vertices such that A∪B = V and such that there is no edge between B \A and A \B. Given
a separation (A,B) we write G[B] for the graph obtained by deleting all edges in the separator
A ∩B from G[B].

A reader unfamiliar with tree-decompositions may also consult [43, Section 12.3].

Definition 11.4.3 (Tree-decomposition). Given a graph G = (V,E) a tree-decomposition of G
is a pair (T,V) consisting of a rooted tree T , together with a collection of subsets of vertices
V = (Vt ⊆ V (G) : t ∈ V (T )) such that:

• V (G) =
⋃V;

• For every edge e ∈ E(G) there is a t ∈ V (T ) such that e lies in G[Vt];

• Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 ∈ V (t1Tt3).

The vertex sets Vt for t ∈ V (T ) are called the parts of the tree-decomposition (T,V).

Definition 11.4.4 (Tree-width). Suppose (T,V) is a tree-decomposition of a graph G. The
width of (T,V) is the number sup {|Vt| − 1: t ∈ V (T )} ∈ N∪ {∞}. The tree-width of a graph G
is the least width of any tree-decomposition of G.

Definition 11.4.5 (Separations induced by tree-decompositions). Given a tree-decomposition
(T,V) of a graph G, and an edge e ∈ E(T ), let

• A(e) :=
⋃{Vt′ : t′ /∈ V (Te+)},

• B(e) :=
⋃{Vt′ : t′ ∈ V (Te+)}, and

• S(e) := A(e) ∩B(e) = Ve− ∩ Ve+.

Then (A(e), B(e)) is a separation of G (cf. [43, 12.3.1]). We call B(e) the bough of (T,V)
rooted in e and S(e) the separator of B(e). When writing G[B(e)] it is implicitly understood
that this refers to the separation (A(e), B(e)) (cf. Definition 11.4.2.)

Definition 11.4.6. Let (T,V) be a tree-decomposition of a graph G. For a subtree S ⊆ T let us
write

G(S) = G

 ⋃
t∈V (S)

Vt


and if H is an IG we write H(S) = H(G(S)) for the restriction of H to G(S).

Definition 11.4.7 (Self-similar bough). Let (T,V) be a tree-decomposition of a graph G. Given
e ∈ E(T ), the bough B(e) is called self-similar (towards an end ω of G), if there is a set
{Re,s : s ∈ S(e)} of disjoint ω-rays in G such that for all n ∈ N there is an edge e′ ∈ E(Te+)
with dist(e, e′) > n such that
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• for each s ∈ S(e) the ray Re,s starts in s and meets S(e′);

• there is a subgraph W ⊆ G[B(e′)] which is an inflated copy of G[B(e)];

• for each s ∈ S(e), we have V (Re,s) ∩ S(e′) ⊆W (s).

Such an W is called a witness for the self-similarity of B(e) of distance at least n.

Definition 11.4.8 (Extensive tree-decomposition). A tree-decomposition (T,V) of G is exten-
sive if

• T is a locally finite, rooted tree;

• each part of (T,V) is finite;

• every vertex of G appears in only finitely many parts of V, and

• for each e ∈ E(T ), the bough B(e) is self-similar towards some end ωe of G.

The following is the main result of this paper.

Theorem 11.4.9. Every locally finite connected graph admitting an extensive tree-decomposition
is 4-ubiquitous.

11.4.2 Self minors and push-outs

The existence of an extensive tree-decomposition of a graph G will imply the existence of many
self-minors of G, which will be essential to our proof.

Throughout this subsection, let G denote a locally finite, connected graph with an extensive
tree-decomposition (T,V).

Definition 11.4.10. Let (A,B) be a separation of G with A ∩ B = {v1, v2, . . . , vn}. Suppose
H1, H2 are subgraphs of a graph Γ where H1 is an inflated copy of G[A], H2 is an inflated copy
of G[B] and for all vertices x, y ∈ G, H1(x) ∩H2(y) 6= ∅ only if x = y = vi for some i. Suppose
further that P is a family of disjoint paths (Pi : i ∈ [n]) in Γ such that each Pi is a path from
H1(vi) to H2(vi) which is otherwise disjoint from H1 ∪H2. Note that Pi may be a single vertex
if H1(vi) ∩H2(vi) 6= ∅.

We write H1 ⊕P H2 for the IG given by (H,φ) where H =
⋃
i∈[n] Pi ∪H1 ∪H2 and

H(v) = φ−1(v) :=


H1(vi) ∪ V (Pi) ∪H2(vi) if v = vi ∈ A ∩B,
H1(v) if v ∈ A \B,
H2(v) if v ∈ B \A.

Definition 11.4.11 (Push-out). A self minor G′ ⊆ G (meaning G′ is an IG) is called a
push-out of G along e to depth n for some e ∈ E(T ) if there is an edge e′ ∈ Re such that
dist(e−, e′−) > n and a subgraph W ⊆ B(e′) which is an IG[B(e)] such that G′ = G[A(e)]⊕P W ,
where P = (Ps : s ∈ S(e)) is defined as the family of paths where Ps is the initial segment of Re,s
up to the first point it meets W (s).

Similarly, if H is an IG then a subgraph H ′ of H is a push-out of H along e to depth n
for some e ∈ E(T ) if there is an edge e′ ∈ Re such that dist(e−, e′−) > n and a subgraph
W ⊆ H(B(e′)) which is an IG[B(e)] such that

H ′ = H(G[A(e)])⊕P W

212



where P = (Ps : s ∈ S(e)) is defined as the family of paths where Ps is the initial segment
of H↓(Re,s) up to the first point it meets W (s).

Note that, if G′ is a push-out of G along e to depth n then H(G′) has a subgraph which is a
push-out of H along e to depth n.

Lemma 11.4.12. For each e ∈ E(T ), each n ∈ N and each witness W of the self-similarity of
B(e) of distance at least n there is a corresponding push-out GW := G[A(e)]⊕P W of G along e
to depth n, where P = (Ps : s ∈ S(e)) is defined as the family of paths where Ps is the initial
segment of Re,s up to the first point it meets W (s).

Proof. Given an edge e ∈ E(T ), by Definition 11.4.7 for every n ∈ N there is a witness W for
the self-similarity of B(e) of distance at least n along the ray Re.

Explicitly there is a family of rays (Re,s : s ∈ S(e)) such that for every n ∈ N there is an
edge e′ ∈ E(Te+) of distance at least n from e, and a subgraph W ⊆ G[B(e′)], such that

• for each s ∈ S(e) the ray Re,s starts in s and meets S(e′);

• W is an inflated copy of G[B(e)];

• for each s ∈ S(e), we have V (Re,s) ∩ S(e′) ⊆W (s).

Since (A(e), B(e)) and (A(e′), B(e′)), and W ⊆ B(e′) it is clear that W ∩ G[A(e)] ⊆ S(e),
and since

Let us define P = (Ps : s ∈ S(e)) as in the statement of the lemma. It is clear that each Ps
is from G[A(e)](s) to W (s), and is otherwise disjoint from G[A(e)] ∪W .

Furthermore, since (A(e), B(e)) and (A(e′), B(e′)) are nested separations ofG, A(e)∩V (W ) ⊆
S(e) ∩ S(e′). Hence if W (s) ∩ G[A(e)](s′) 6= ∅ it follows that s′ ∈ S(e) ∩ S(e′), and hence
s′ ∈ V (Re,s′) ∩ S(e′) ⊂ W (s′), by Definition 11.4.7. In particular, W (s) ∩ G[A(e)](s′) 6= ∅ only
if s = s′ ∈ S(e).

Hence, by Definitions 11.4.10 and 11.4.11, G[A(e)] ⊕P W is well-defined and is indeed a
push-out of G along e to depth n.

The existence of push-out of G along e to arbitrary depths is in some sense the essence of
extensive tree-decompositions, and lies at the heart of our inductive construction in Section 11.9.

11.5 Existence of extensive tree-decompositions

The purpose of this section is to examine two classes of locally finite connected graphs that have
extensive tree-decompositions: Firstly, the class of graphs with finitely many ends, all of which
are thin, and secondly the class of graphs of finite tree-width. We will deduce the existence of
such tree-decompositions using some results about the well-quasi-ordering of certain classes of
graphs.

A quasi-order is a a reflexive and transitive binary relation, such as the minor relation
between graphs. A quasi-order 4 on a set X is a well-quasi-order if for all sequences x1, x2, . . . ∈
X there exists an i < j such that xi 4 xj . The following two alternative characterisations will
be useful.

Remark. A simple Ramsey type argument shows that if 4 is a well-quasi-order on X, then
every sequence x1, x2, . . . ∈ X contains an increasing subsequence xi1 , xi2 , . . . ∈ X. That is, an
increasing sequence i1 < i2 < . . . such that xij 4 xik for all j < k.

Also, it is simple to show that if 4 is a well-quasi-order on X and x1, x2, . . . ∈ X, then there
is an i0 ∈ N such that for every i > i0 there are infinitely many j ∈ N with xi 4 xj.
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A famous result of Robertson and Seymour [115], proved over a series of 20 papers, shows
that finite graphs are well-quasi-ordered under the minor relation. Thomas [123] showed that for
any k ∈ N the class of graphs with tree-width 6 k is well-quasi-ordered by the minor relation.

We will use slight strengthenings of both of these result, Lemma 11.5.2 and Lemma 11.5.9,
to show that our two classes of graphs admit extensive tree-decompositions.

In Section 11.10 we will discuss in more detail the connection between our proof and well-
quasi-ordering, and indicate how stronger well-quasi-ordering results could be used to prove the
ubiquity of larger classes of graphs.

11.5.1 Finitely many thin ends

We will consider the following strengthening of the minor relation.

Definition 11.5.1. Given ` ∈ N an `-pointed graph is a graph G together with a point function
π : [`] → V (G). For `-pointed graphs (G1, π1) and (G2, π2), we say (G1, π1) 4p (G2, π2) if
G1 4 G2 and this can be arranged in such a way that π2(i) is contained in the branch set of
π1(i) for every i ∈ [`].

Lemma 11.5.2. The set of `-pointed finite graphs is well-quasi-ordered under the relation 4p.

Proof. This follows from a stronger statement Robertson and Seymour proved in [112, 1.7].

We will also need the following structural characterisation of locally finite one-ended graphs
with a thin end due to Halin.

Lemma 11.5.3. Every one-ended, locally finite connected graph G with a thin end of degree
k ∈ N has a tree-decomposition (R,V) of G such that R = t0t1t2 . . . is a ray, and for every i ∈ N:

• |Vti | is finite;

• |S(ti−1ti)| = k;

• S(ti−1ti) ∩ S(titi+1) = ∅.

Proof. See [71, Satz 3′].

Note that in the above lemma, for a given finite set X ⊂ V (G), by taking the union over
an initial segment of parts, one may always assume that X ⊂ Vt0 . Moreover, note that since
S(ti−1ti) ∩ S(titi+1) = ∅, it follows that every vertex of G is contained in at most two parts of
the tree-decomposition.

Lemma 11.5.4. Every one-ended, locally finite connected graph G with a thin end has an
extensive tree decomposition (R,V) where R = t0t1t2 . . . is a ray with root t0.

Proof. Let k ∈ N be the degree of the thin end of G, and let R = {Rj : j ∈ [k]} be a maximal
collection of disjoint rays in G. Let (R′,W) be the tree-decomposition of G given by Lemma
11.5.3 where R′ = t′0t

′
1 . . . a ray.

Without loss of generality (taking the union over the first few parts, and considering tails
of rays if necessary) we may assume that each ray in R starts in S(t′0t

′
1). Note that each ray

in R meets the separator S(t′i−1t
′
i) for each i ∈ N. Since R is a disjoint family of k rays and

|S(t′i−1t
′
i)| = k for each i ∈ N, each vertex in S(t′i−1t

′
i) is contained in a unique ray in R.
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Let ` = 2k and consider a sequence (Gi, πi)i∈N of `-pointed finite graphs defined by Gi :=
G[Wt′i

] and

πi : [`]→ V (Gi), j 7→
{

the unique vertex in S(t′i−1t
′
i) ∩ V (Rj) for 1 ≤ j ≤ k,

the unique vertex in S(t′it
′
i+1) ∩ V (Rj−k) for k < j ≤ 2k = `.

By Lemma 11.5.2 and Remark there is an n0 such that for every n > n0 there are infinitely
many m > n with (Gn, πn) 4p (Gm, πm).

Let Vt0 :=
⋃n0
i=0Wt′i

and Vti := Wt′n0+i
for all i ∈ N. We claim that (R, (Vti : i ∈ N)) is the

desired extensive tree-decomposition of G where R = t0t1t2 . . . is a ray with root t0. The ray R
is a locally finite tree and all the parts are finite. Moreover, every vertex of G is contained in at
most two parts. It remains to show that for every i ∈ N, the bough B(ti−1ti) is self-similar.

Let e = ti−1ti. Let us labelR = {Re,s : s ∈ S(e)} where Re,s is the unique ray inR containing
s. We wish to show there is a witness W for the self-similarity of B(e) of distance at least n for
each n ∈ Nbb. Note that B(e) =

⋃
j>0Gn0+i+j . By the choice of n0 in Remark , there exists

m > i + n such that (Gn0+i, πn0+i) 4p (Gn0+m, πn0+m). Let e′ = tm−1tm. We will show that
there exists a W ⊆ G[B(e′)] witnessing the self-similarity of B(e).

Recursively, for each j > 0 we can find m = m0 < m1 < m2 < · · · with

(Gn0+i+j , πn0+i+j) 4p (Gn0+mj , πn0+mj ).

In particular there are subgraphs Hmj ⊆ Gn0+mj which are inflated copies of Gn0+i+j , all
compatible with the point-functions. In particular, S(t′n0+mj−1t

′
n0+mj ) ∪ S(t′n0+mj t

′
n0+mj+1) ⊂

Hmj for each j > 0.
Hence for, for every j ∈ N there is a unique Hmj−1 −Hmj subpath Pp,j of Rp. We claim that

W ′ :=
⋃
j>0

Hmj ∪
⋃
j∈N

⋃
p∈[k]

Pp,j

is a subgraph of G[B(e′)] that is an IG[B(e)].
To prove this claim, for each j ∈ N and each s ∈ S(tj−1tj), let Rp(s) ∈ R be the unique

ray with s ∈ Rp(s). Then W ′(s) = Hmj−1(s) ∪ Pp(s),j ∪ Hmj (s) is a connected branch set.
Indeed, by construction, every Pp,j is a path from πn0+mj−1(k + p) to πn0+mj (p). And since
the Hmj are pointed minors of Gn0+mj , it follows that πn0+mj−1(k + p(s)) ∈ Hmj−1(s) and
πn0+mj (p(s)) ∈ Hmj (s) are as desired.

Finally, since (Gn0+i, πn0+i) 4p (Gn0+m, πn0+m) as witnessed by Hm0 , the branch set of
each s ∈ S(ti−1ti) must indeed include V (Re,s) ∩ S(e′).

Lemma 11.5.5. If G is a locally finite connected graph with finitely many ends, each of which
is thin, then G has an extensive tree-decomposition.

Proof. Let Ω(G) = {ω1, . . . , ωn} be the set of the ends of G. Pick a finite set X ⊆ V of vertices
separating the ends of G, i.e. so that all Ci = C(X,ωi) are pairwise disjoint. Without loss of
generality we may assume that V (G) = X ∪⋃i∈[n]Ci.

Let Gi := G[Ci ∪ S]. Then each Gi is a locally finite connected one-ended graph, with a
thin end ωi, and hence by Lemma 11.5.4 each of the Gi admits an extensive tree-decomposition
(Ri,V i) with root ri ∈ V (Ri). Without loss of generality, X ⊂ V i

ri
for each i ∈ [n].

Let T be the tree formed by identifying the family of rays (Ri : i ∈ [n]) at their roots, let
r be the root of T , and let (T,V) be the tree-decompositions whose root part is

⋃
i∈[n] V

i
ri

,
and which otherwise agrees with the (Ri,V i). It is a simple check that (T,V) is an extensive
tree-decomposition of G.
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11.5.2 Finite tree-width

Definition 11.5.6. A rooted tree-decomposition (T,V) of G is lean if for any k ∈ N, any two
nodes t1, t2 ∈ V (T ) and any Xt1 ⊆ Vt1 , Xt2 ⊆ Vt2 such that |Xt1 |, |Xt2 | ≥ k there are either k
disjoint paths in G, between X1 and X2, or there is a vertex t on the path in T between tl and
t2 such that |Vt| < k.

Remark. Kř́ı̌z and Thomas [89] showed that if G has tree-width ≤m for some m ∈ N, then G
has a lean tree-decomposition of width ≤m.

Lemma 11.5.7. If G is a connected locally finite graph and (T, (Vt : t ∈ T )) a lean tree-
decomposition of G such that every Vt is finite, then there is a locally finite subtree S of T
such that (S, (Vt : t ∈ S)) is also a lean tree-decomposition of G.

Proof. Pick a arbitrary root r of T . We will build recursively finite subtrees of T whose union
will be the desired locally finite tree. Let S0 = L0 = {r}. For each n ∈ N let Ln be the set of
leaves of Sn.

Consider some t ∈ Ln. Since Vt is finite and G is locally finite, the set Ct of components of
G − Vt is finite. Then, for each edge e leaving Tn with t = e− we have, by the definition of a
tree-decomposition, that there is some subset Ce ⊆ Ct such that⋃

Ce ⊆ B(e) ⊆
⋃
Ce ∪ Vt.

For each of the finitely may sets C ⊆ Ct appearing as some Ce pick an arbitrary e which witnesses
this. Let Et ⊂ E(T ) be the set of all e chosen in this way, note that Et is finite. Let Sn+1 be
Sn ∪ Et.

Finally, we let S :=
⋃
n∈N Sn. It is simple to check that S is a locally finite tree and that

(S, {Vt | t ∈ S}) is indeed a lean tree-decomposition of G.

Lemma 11.5.8. Let G be a locally finite, connected graph, and let (T,V) be a lean tree-
decomposition of G with root r and width ≤m, with T locally finite. Then there exists a lean
tree-decomposition of G with width ≤m such that every bough is connected, and the decompo-
sition tree is locally finite. Moreover, we may assume that every vertex appears in only finitely
many parts.

Proof. Let D0 := {r} and (T0,V0) := (T,V). For i ∈ N let Di := {e ∈ E(Ti−1) : distTi(r, e
−) =

i}. Construct (Ti,Vi) from (Ti−1,Vi−1) by performing the following operation for each edge
e ∈ Di:

Let t = t+e and let C1, . . . , Cn be the connected components of B(e). Replace the subtree
Tt with nTt. For each s ∈ Tt there are k copies of s in nTt which we will call s1, . . . , sk. For
each s ∈ Tt and k ∈ [n] let Vsk := Ck ∩ Vs. Finally, let T̂ =

⋃
i∈N Ti[{t ∈ Ti | dTi(r, t) ≤ i}] and

V̂ = (Vt | t ∈ T̂ ).

It is simple to check that (T̂ , V̂) is a tree-decomposition of width ≤m, that T̂ is locally
finite, and by construction B(e) is connected for each e ∈ E(T ). Furthermore, suppose k ∈ N,
t1, t2 ∈ T̂ and Xt1 ⊆ V̂t1 , Xt2 ⊆ V̂t2 are such that |Xt1 |, |Xt2 | ≥ k. By construction, there are
nodes t′1 and t′2 of T such that Xt1 ⊆ V̂t1 ⊆ Vt′1 , Xt2 ⊆ V̂t2 ⊆ Vt′2 . Thus, since (T,V) is lean,
either there is a vertex t′ of T between t′1, t

′
2 such that |Vt′ | < k or there are k disjoint paths

between Xt1 and Xt2 in G. However, in the first case, by construction, there also is a node t of
T̂ between t1 and t2 such that V̂t ⊆ Vt′ . Thus, (T̂ , V̂) is indeed lean.

Suppose there is an edge e = st ∈ T̂ , such that B(e) if finite, but T̂t is infinite. Since
V̂x ⊆ B(e) for any vertex x ∈ V (T̂t), the set {V̂x : x ∈ V (T̂t)} is finite. Hence, there is a finite
subtree T t ⊆ T̂t which contains at least one node for each of these bags. Let us replace, for
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each minimal e ∈ E(T ) with B(e) finite, the subtree T̂t with T t, to give a tree T , and let
V = (V̂t : t ∈ V (T )). Then, (T ,V) is a lean-tree decomposition with width ≤m such that T is
locally finite and every bough B(e) is connected. Moreover it has the following property

(†) For every t ∈ V (T ), if T t is infinite, then so is B(e).

Finally, suppose for a contradiction that there are vertices which appear in infinitely many
parts of (T ,V). Let X be a ⊆-maximal set of vertices appearing as a subset in infinitely many
parts of (T ,V). Note that X is finite, since every part has size at most m. Since T is locally
finite and (T ,V) is a tree-decomposition, there is a ray R in T such that X appears as a subset
in every part corresponding to a node of R. We may assume without loss of generality that
R ⊆ T r where r = init(R). Since for each t ∈ R the subtree T t contains a tail of R, it is infinite,
and hence by (†) B(e) is infinite and X ⊂ B(e) for every e ∈ R,. Since B(e) is connected, X has
a neighbour in B(e)\X. However, since G is locally finite, X has only finitely many neighbours,
and by ⊆-maximality of X each neighbour appears in only finitely many parts of (T ,V), and so
in only finitely many sets B(e) with e ∈ R. This contradicts the fact that X has a neighbour in
every B(e) \X.

Lemma 11.5.9. For all k, ` ∈ N the class of `-pointed graphs with tree-width ≤k is well-quasi-
ordered under the relation 4p.

Proof. This is a consequence of a result of Thomas [123].

Lemma 11.5.10. Every locally finite connected graph of finite tree-width has an extensive tree-
decomposition.

Proof. Let G be a locally finite connected graph of tree-width m ∈ N. By Lemma 11.5.7 there
is a lean tree-decomposition (T,V) of G with width m, such that T is a locally finite tree with
root r. By Lemma 11.5.8 we may assume that every vertex is contained in only finitely many
parts of this tree-decomposition.

Let ε be an end of T and let R be the unique ε-ray starting at the root of T . Let dε =
lim infe∈R |S(e)|, and fix a tail tε0t

ε
1 . . . of R such that |S(tεi−1t

ε
i)| > dε for all i ∈ N. Note that

|S(tεik−1t
ε
ik

)| = dε for an infinite sequence i1 < i2 < · · · of indices.
Since (T,V) is lean, there are dε disjoint paths between S(tωik−1t

ω
ik

) and S(tωik+1−1t
ω
ik+1

) for
every k ∈ N. Moreover, since each S(tωik−1t

ω
ik

) is a separator of size dε, these paths are all inter-
nally disjoint. Hence, since every vertex appears in only finitely many parts, by concatenating
these paths, we get a family of dε many disjoint rays in G.

Fix one such family of rays (Rεj : j ∈ [dε]). We claim that there is an end ω of G such that
Rεj ∈ ω for all j ∈ [dε]. Indeed, if not then there is a finite set X separating some pair of rays
R and R′. However, since each vertex appears in only finitely many parts, there is some k ∈ N
such that X ∩ Vt = ∅ for all t ∈ Ttεik−1

. By construction R and R′ have tails in B(tωik+1−1t
ω
ik+1

))
which is connected, and disjoint from X, contradicting the fact that X separates R and R′.

For every k ∈ N we define a point-function πεik : [dε] → S(tεik−1t
ε
ik

) by letting πεik(j) be the
unique vertex in Rεj ∩ S(tεik−1t

ε
ik

).
By Lemma 11.5.9 and Remark , the sequence (G[B(tεik−1t

ε
ik

)], πεik)k∈N>0 has an increasing
subsequence (G[B(tεi−1t

ε
i)], π

ε
i )i∈Iε , i.e. for any k, j ∈ Iε, k < j we have

(G[B(tεk−1t
ε
k)], π

ε
k) 4p (G[B(tεj−1t

ε
j)], π

ε
j).

Let us define Fε = {tεk−1t
ε
k : k ∈ Iε} ⊂ E(T ).

Consider T− = T −⋃ε∈Ω(T ) Fε, and let us write C(T−) for the components of T−. We claim
that every component C ∈ C(T−) is a locally finite rayless tree, and hence finite. Indeed, if
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C contains a ray R ⊂ T then R is in an end ε of T and hence Fε ∩ R 6= ∅, a contradiction.
Consequently, also each set

⋃
t∈C Vt is finite.

Let us define a tree decomposition (T ′,V ′) on T ′ = T/C(T−) where V ′t′ =
⋃
t∈t′ Vt. We claim

this is an extensive tree-decomposition.

Clearly, T ′ is a locally finite tree, and each part of (T ′,V ′) is finite, and every vertex of G in
contained in only finitely many parts of the tree-decomposition. Give e ∈ E(T ′) there is some
ε ∈ Ω(T ) such that e ∈ Fε. Consider the family of rays (Re,j : j ∈ [dε]) given by Re,j = Rεj∩B(e).
Let ωe be the end of G in which the rays Re,j lie.

There is some k ∈ N such that e = tεk−1t
ε
k. Given n ∈ N let k′ ∈ Iε be such that there

are at least n indices ` ∈ Iε with k < ` < k′, and let e′ = tεk′−1t
ε
k′ . Note that e′ ∈ Fε and

hence e′ ∈ E(T ′). Furthermore, by construction e′ has distance at least n from e in T ′. Since
G[B(e)] = G[B(tεk−1t

ε)] and G[B(e′)] = G[B(tεk′−1t
ε
k′)] we have (G[B(e)], πεk) 4p (G[B(e′)], πεk′),

witnessing the self-similarity of B(e) towards ωe with the rays (Re,j : j ∈ [dε]).

Remark. If for every ` ∈ N the class of `-pointed locally finite graphs without thick ends is
well-quasi-ordered under 4p, then every locally finite graph without thick ends has an extensive
tree-decomposition. This follows by a simple adaptation of the proof above.

11.5.3 Special graphs

We note that, whilst Lemmas 11.5.5 and 11.5.10 show that a large class of locally finite graphs
have extensive tree-decompositions, for many other graphs it is possible to construct an extensive
tree-decomposition ‘by hand’. In particular, the fact that no graph in these classes has a thick
end is an artefact of the method of proof, rather than a necessary condition for the existence of
such a tree-decomposition, as is demonstrated by the following examples:

Remark. The grid Z × Z has an extensive tree-decomposition, as can be seen in Figure 11.2.
More explicitly, we can take a ray decomposition of the grid given by a sequence of increasing
diamond shaped regions around the origin. It is easy to check that every bough will self similar.

A similar argument shows that the half-grid has an extensive tree-decomposition. However,
we note that both of these graphs were already be shown to be ubiquitous in [25].

In fact, we do not know of any construction of a locally finite graph which does not admit
an extensive tree-decomposition.

Question 11.5.11. Do all locally finite graphs admit an extensive tree-decomposition?

11.6 The structure of non-pebbly ends

We will need a structural understanding of how the arbitrarily large families of IGs (for some
fixed graph G) can be arranged inside of some host graph Γ. In particular we are interested in
how the rays of these minors occupy a given end ε of Γ. In [25] we established the distinction
between pebbly and non-pebbly ends, cf. Definition 11.6.4. We showed that the existence of a
pebbly end of Γ already guarantees the existence of a Kℵ0-minor in Γ, and therefore the following
corollary holds:

Corollary 11.6.1 ([25, Corollary 6.4]). Let Γ be a graph with a pebbly end ω and let G be a
countable graph. Then ℵ0G 4 Γ.

We will now analyse the structure of non-pebbly ends and give a description of their shape.
For a fixed set of start vertices we will consider the possible families of disjoint rays with these
start vertices. This shall be made precise in the definition of polypods, cf. Definition 11.6.7 below.
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Figure 11.2: In the grid the boughs are self-similar.

We will investigate how these rays relate in terms of connecting paths between them and see
that, due to the non-pebbly structure of the end, the structure of possible connections between
the rays is somewhat restricted.

11.6.1 Pebble Pushing

Given a path P with end-vertices s and t we say the orientation of P from s to t to mean the
total order on the vertices of P where a ≤ b if and only if a lies on sPb, in this case we say that
a lies before b. Note that every path with at least one edge has precisely two orientations.

Given a cycle C a cyclic orientation of C is an orientation of the graph C which does not have
any sink. Note that any cycle has precisely two cyclic orientations. Given a cyclic orientation
and 3 distinct vertices x, y, z we say that they appear consecutively in the order (x, y, z) if y lies
on the unique directed path from x to z. Given two cycles C,C ′, each with a cyclic orientation,
we say that an injection f : V (C) → V (C ′) preserves the cyclic orientation if whenever three
distinct vertices x, y and z appear on C in the order (x, y, z) then their images appear on C ′ in
the order (f(x), f(y), f(z)).

A permutation of a finite set X is a bijection ν : X → X. A sequence (x1 . . . xn) of distinct
elements of X is called a cycle of ν if ν(xn) = x1 and ν(xi) = xi+1 for all i ∈ {1, . . . , n − 1}.
In this case n is called the length of the cycle, a cycle of length 1 is called trivial. The term
(x1 . . . xn) is also used to denote the bijection ν which contains the cycle (x1 . . . xn) and otherwise
is the identity on X \ {x1, . . . , xn}. It is a well-known fact that every bijection can be written
as a product of (disjoint) cycles.

We utilise the following results and definitions from [25].

Definition 11.6.2 (Pebble-pushing game). Let G = (V,E) be a graph. We call a tuple
(x1, . . . , xk) ∈ V k a game state (of order k) if xi 6= xj for all i, j ∈ [k] with i 6= j.

The pebble-pushing game (on G) is a game played by a single player. Given a game state
Y = (y1, . . . , yk), we imagine k labelled pebbles placed on the vertices (y1, . . . , yk). A move for a
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game state in the pebble-pushing game consists of moving a pebble from a vertex to an adjacent
vertex which does not contain a pebble, or formally, a Y -move is a game state Z = (z1, . . . , zk)
such that there is an ` ∈ [k] such that y`z` ∈ E and yi = zi for all i ∈ [k] \ {`}.

Let X = (x1, . . . , xk) be a game state. The X-pebble-pushing game (onG) is a pebble-pushing
game where we start with k labelled pebbles placed on the vertices (x1, . . . , xk).

We say a game state Y is achievable in the X-pebble-pushing game if there is a sequence
(Xi : i ∈ [n]) of game states for some n ∈ N such that X1 = X, Xn = Y and Xi+1 is a Xi-move
for all i ∈ [n− 1], that is if there is a sequence of moves that pushes the pebbles from X to Y .

A graph G is k-pebble-win if Y is an achievable game state in the X-pebble-pushing game
on G for every two game states X and Y of order k.

Lemma 11.6.3 ([25, Lemma 4.2]). Let Γ be a graph, ω ∈ Ω(Γ), m > k be positive integers
and let (Sj : j ∈ [m]) be a family of disjoint rays in ω. For every achievable game state Z =
(z1, z2, . . . , zk) in the (1, 2, . . . , k)-pebble-pushing game on RG(Sj : j ∈ [m]), the map σ defined
via σ(i) := zi for every i ∈ [k] is a transition function4 from (Si : i ∈ [k]) to (Sj : j ∈ [m]).

Definition 11.6.4 (Pebbly ends). Let Γ be a graph and ω an end of Γ. We say ω is pebbly
if for every k there is an n > k and a family R = {R1, . . . , Rn} of disjoint rays in ω such
that RG(Ri : i ∈ [n]) is k-pebble-win. If for some k there is no such family R we say ω is not
k-pebble-win.

Lemma 11.6.5 ([25, Lemma 6.3]). Let Γ be a graph and let ω ∈ Ω(Γ) be a pebbly end. Then
Kℵ0 4 Γ.

Recall that a path P = v0v1 . . . vn in a graph G is called a bare if all its inner vertices have
degree 2 in G.

Corollary 11.6.6 ([25, Corollary 5.2]). Let ω be an end of Γ which is not k-pebble-win and
let R = (Ri : i ∈ [m]) be a family of m > k + 2 disjoint rays in ω. Then there is a bare path
P = p1 . . . pn in RG(Ri : i ∈ [m]) such that n > m− k. Furthermore, either each edge in P is a
bridge, or RG(Ri : i ∈ [m]) is a cycle.

11.6.2 Polypods

Definition 11.6.7. Given an end ω of a graph Γ, a polypod (for ω in Γ) is a pair (X,Y ) of
disjoint finite sets of vertices of Γ such that there is at least one family (Ry : y ∈ Y ) of disjoint
rays to ω, where Ry begins at y and all the Ry are disjoint from X. Such a family (Ry) is called
a family of tendrils for (X,Y ). The order of the polypod is |Y |. The connection graph KX,Y of
a polypod (X,Y ) is a graph with vertex set Y . It has an edge between vertices v and w if and
only if there is a family (Ry : y ∈ Y ) of tendrils for (X,Y ) such that there is an Rv–Rw-path in
Γ disjoint from X and from every other Ry.

Note that the ray graph of any family of tendrils for a polypod must be a subgraph of the
connection graph of that polypod.

Definition 11.6.8. We say that a polypod (X,Y ) for ω in Γ is tight if its connection graph is
minimal amongst connection graphs of polypods for ω in Γ with respect to the spanning isomor-
phic subgraph relation, i.e. for no other polypod (X ′, Y ′) for ω in Γ of order |Y ′| = |Y | is the
graph KX′,Y ′ isomorphic to a proper subgraph of KX,Y . (Let us write H ⊂∼ G if H is isomorphic
to a subgraph of G.) We say that a polypod attains its connection graph if there is some family
of tendrils for that polypod whose ray graph is equal to the connection graph.

4See Definition 11.2.3.

220



Lemma 11.6.9. Let (X,Y ) be a tight polypod, (Ry : y ∈ Y ) a family of tendrils and for every
y ∈ Y let vy be a vertex on Ry. Let X ′ be a finite vertex set disjoint from all vyRy and including
X as well as each of the initial segments Ryv̊y. Let Y ′ = {vy : y ∈ Y }. Then (X ′, Y ′) is a tight
polypod with the same connection graph as (X,Y ).

Proof. The family (vyRy : y ∈ Y ) witnesses that (X ′, Y ′) is a polypod. Moreover every family of
tendrils for (X ′, Y ′) can be extended by the paths Ryvy to obtain a family of tendrils for (X,Y ).
Hence if there is an edge vyvz in KX′Y ′ then there must also be the edge yz in KX,Y . Thus
KX′,Y ′ ⊂∼ KX,Y . But since (X,Y ) is tight we must have equality. Therefore (X ′, Y ′) is tight as
well.

Lemma 11.6.10. Any tight polypod (X,Y ) attains its connection graph.

Proof. We must construct a family of tendrils for (X,Y ) whose ray graph is KX,Y . We will
recursively build larger and larger initial segments of the rays, together with disjoint paths
between them.

Precisely this means that, after partitioning N into infinite sets Ae, one for each edge e of
KX,Y , we will construct, for each n ∈ N, a family (Pny : y ∈ Y ) of paths and a path Qn such
that:

• Each Pny starts at y.

• Each Pny has length at least n.

• For m 6 n, the path Pny extends Pmy .

• If n ∈ Avw then Qn is a path from Pnv to Pnw .

• If n ∈ Avw then Qn meets no Pmy with y 6∈ {v, w}.

• All the Qn are disjoint.

• All the Pny and all the Qn are disjoint from X.

• For any n there is a family (Rny : y ∈ Y ) of tendrils for (X,Y ) such that each Pny is an
initial segment of the corresponding Rny , and the Rny only meet the Qm with m 6 n in
inner vertices of the Pny .

It is clear that if we can do this then we will obtain a family of tendrils by letting Ry be
the union of all the Pny . Furthermore, for any edge e of KX,Y the family (Qn : n ∈ Ae) will
witness that e is in the ray graph of this family. So that ray graph will be the whole of KX,Y ,
as required.

So it remains to explain how to carry out this recursive construction. Let vw be the edge of
KX,Y with 1 ∈ Avw. By the definition of the connection graph there is a family (R1

y : y ∈ Y ) of
tendrils for (X,Y ) such that there is a path Q1 from R1

v to R1
w, disjoint from all other R1

y and
from X. For each y ∈ Y let P 1

y be an initial segment of R1
y of length at least 1 and containing

all vertices of Q1 ∩R1
y. This choice of the P 1

y and of Q1 clearly satisfies the conditions above.

Now suppose that we have constructed suitable Pmy and Qm for all m 6 n. For each y ∈ Y ,
let yn be the endvertex of Pny . Let Yn be {yn : y ∈ Y } and

Zn = X ∪
⋃
m6n

⋃
y∈Y

(
V (Pmy ) ∪ V (Qm)

)
.
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Let Xn be Zn \ Yn, and note that every V (Qm) ⊂ Xn for every m. Then by Lemma 11.6.9
(Xn, Yn) is a tight polypod with the same connection graph as (X,Y ).

In particular, letting vw be the edge of KX,Y with n + 1 ∈ Avw, we have that vnwn is an
edge of KXn,Yn . So there is a family (Sn+1

yn : yn ∈ Yn) of tendrils for (Xn, Yn) together with a
path Qn+1 from Sn+1

vn to Sn+1
wn disjoint from all other Sn+1

yn and from Xn. Now for any y ∈ Y
we let Rn+1

y be the ray yPny ynS
n+1
yn and let Pn+1

y be an initial segement of Rn+1
y long enough to

include Pny , of length at least n+ 1, and containing all vertices of Qn+1∩Rn+1
y as inner vertices.

This completes the recursion step, and so the construction is complete.

Lemma 11.6.11. If (X,Y ) is a polypod of order n for ω in Γ with connection graph KX,Y then
for any set of n disjoint ω-rays (Ri : i ∈ [n]) in Γ, RG(Ri : i ∈ [n]) ⊂∼ KX,Y .

Proof. If we apply the Weak Linking Lemma 11.2.2 to the rays (Ri : i ∈ [n]) and a family of
tendrils for (X,Y ), together with the finite set X, we obtain a family of tendrils for (X,Y ) whose
tails coincide with that of (Ri : i ∈ [n]). Hence, the ray graph of these tendrils is RG(Ri : i ∈ [n])
and so RG(Ri : i ∈ [n]) ⊂∼ KX,Y .

Corollary and Definition 11.6.12. Any two polypods for ω in Γ of the same order which
attain their connection graphs have isomorphic connection graphs.

We will refer to the graph arising in this way for polypods of order n for ω in Γ as the nth

shape graph of the end ω.

11.6.3 Frames

Akin to the transition boxes defined in Lemma 11.3.17 we want to consider frames, finite sub-
graphs which are just large enough to include a linkage which, say, induces a transition function
of the family of tendrils of some polypod. This will allow us to reason about transition functions
in terms of graph automorphisms.

Definition 11.6.13. Let Y be a finite set. A Y -frame (L,α, β) consists of a finite graph L
together with two injections α and β from Y to V (L). The set A = α(Y ) is called the source
set and the set B = β(Y ) is called the target set. A weave of the Y -frame is a family Q =
(Qy : y ∈ Y ) of disjoint paths in L from A to B, where the initial vertex of Qy is α(y) for each
y ∈ Y . The weave pattern πQ of Q is the bijection from Y to itself sending y to the inverse
image under β of the endvertex of Qy. In order words, πQ is the function so that every Qy is an
α(y)− β(πQ(y)) path. The weave graph KQ of Q has vertex set Y and an edge joining distinct
vertices u and v of Y precisely when there is a path from Qu to Qv in L disjoint from all other
Qy. We call the Y -frame strait if it has at most one weave graph and at most one weave pattern.
For a graph K with vertex set Y , we say that the Y -frame is K-spartan if all its weave graphs
are subgraphs of K and all its weave patterns are automorphisms of K.

Connection graphs of polypods and weave graphs of frames are closely connected:

Lemma 11.6.14. Let (X,Y ) be a polypod for ω in Γ attaining its connection graph KX,Y and
let R = (Ry : y ∈ Y ) be a family of tendrils for (X,Y ). Let L be any finite subgraph of Γ disjoint
from X but meeting all the Ry. For each y ∈ Y let α(y) be the first vertex of Ry in L and β(y)
the last vertex of Ry in L. Then the Y -frame (L,α, β) is KX,Y -spartan.

Proof. Since there is some family of tendrils (Sy : y ∈ Y ) attaining KX,Y and there is by
Lemma 11.2.2 a linkage from (Ry : y ∈ Y ) to (Sy : y ∈ Y ) after X and V (L), we may assume
without loss of generality that RG(Ry : y ∈ Y ) is isomorphic to KX,Y .

For a given weave Q = (Qy : y ∈ Y ), applying the definition of the connection graph to the
rays Ryα(y)Qyβ(πQ(y))RπQ(y) shows that KQ is a subgraph of KX,Y and that the inverse image
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of any edge of KX,Y under πQ is again an edge of KX,Y , from which it follows that πQ is an
automorphism of KX,Y .

Corollary 11.6.15. Let (X,Y ) be a polypod for ω in Γ attaining its connection graph KX,Y

and let R = (Ry : y ∈ Y ) be a family of tendrils for (X,Y ). Then for any transition function σ
from R to itself there is a KX,Y -spartan Y -frame for which both σ and the identity are weave
patterns.

Proof. Pick a linkage (Py : y ∈ Y ) from R to itself after X inducing σ. Let L be a finite subgraph
graph of Γ containing all Py as well as a finite segment of each Ry, such that each Py is a path
between two such segments. Then the frame on L which exists by Lemma 11.6.14 has the desired
properties.

Lemma 11.6.16. Let (X,Y ) be a polypod for ω in Γ attaining its connection graph KX,Y and
let R = (Ry : y ∈ Y ) be a family of tendrils for (X,Y ). Then there is a KX,Y -spartan Y -frame
for which both KX,Y and RG(Ry : y ∈ Y ) are weave graphs.

Proof. By adding finitely many vertices and edges to X if necessary, we may obtain a superset
X ′ of X such that for any two of the Ry if there is any path between them disjoint from all the
other rays and X ′, then there are infinitely many such paths. Let (Sy : y ∈ Y ) be any family of
tendrils for (X,Y ) with connection graph KX,Y .

For each edge e = uv of RG(Ry : y ∈ Y ) let Pe be a path from Ru to Rv disjoint from all
the other Ry and from X ′. Similarly for each edge f = uv of KX,Y let Qf be a path from Su to
Sv disjoint from all the other Sy and from X ′. Let (P ′y : y ∈ Y ) be a linkage from the Sy to the
Ry after

X ′ ∪
⋃

e∈E(RG(Ry : y∈Y ))

Pe ∪
⋃

f∈E(KX,Y )

Qf .

Let the initial vertex of P ′y be γ(y) and the end vertex be β(y). Let π(y) be the element
of Y with β(y) on Rπ(y). Let L be the subgraph of Γ containing all paths of the forms
Syγ(y), Rπ(Y )β(y), P ′y, Pe and Qf .

Letting α be the identity function on Y , it follows from Lemma 11.6.14 that (L,α, β) is a
KX,Y -spartan Y -frame. The paths Qf witness that the weave graph for the paths Syγ(y)P ′y
includes KX,Y and so, by KX,Y -spartanness, must be equal to KX,Y . The paths Pe witness that
the weave graph for the paths Ryβ(y) includes the ray graph of the Ry. The two must be equal
since whenever for two of the Ry there is any path between them, disjoint from all the other Ry
and from X ′, then there are infinitely many disjoint such paths.

Hence to understand ray graphs and the transition functions between them it is useful to
understand the possible weave graphs and weave patterns of spartan frames. Their structure
can be captured in terms of automorphisms and cycles:

Definition 11.6.17. Let K be a finite graph. An automorphism σ of K is called local if it is a
cycle (z1 . . . zt) where, for any i 6 t, there is an edge from zi to σ(zi) in K. If t > 3 this means
that z1 . . . ztz1 is a cycle of K, and we call such cycles turnable. If t = 2 then we call the edge
z1z2 of K flippable. We say that an automorphism of K is locally generated if it is a product
of local automorphisms.

Remark. A cycle C in K is turnable if and only if all its vertices have the same neighbourhood
in K − C, and whenever a chord of length ` ∈ N is present in K[C], then all chords of length
` are present. Similarly an edge e of K is flippable if and only if its two endvertices have the
same neighbourhood in K − e. Thus, if K contains at least 3 vertices, no vertex of degree one
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or cutvertex of K can lie on a turnable cycle or a flippable edge. So vertices of degree one and
cutvertices are preserved by locally generated automorphisms.

Lemma 11.6.18. Let (L,α, β) be a Y -frame which is K-spartan but not strait. Then each of
its weave graphs includes a turnable cycle or a flippable edge of K and for any two of its weave
patterns π and π′ the automorphism π−1 · π′ of K is locally generated.

Proof. Suppose not for a contradiction, and let (L,α, β) be a counterexample in which |E(L)|
is minimal. Note that, as L is not strait, there are either at least two weave patterns for L
or there are at least two weave graphs for L. Thus, we can find weaves P = (Py : y ∈ Y ) and
Q = (Qy : y ∈ Y ) such that either KP 6= KQ or πP 6= πQ and such that either KQ includes no
turnable cycle or flippable edge or π−1

P ·πQ is not locally generated. Furthermore, by exchanging
P and Q if necessary, we may assume that KP is not a proper subgraph of KQ.

Each edge of L is in one of P or Q since otherwise we could simply delete it. Similarly no
edge appears in both P and Q since otherwise we could simply contract it. No vertex appears
on just one of Py or Qy since otherwise we could contract one of the two incident edges. Vertices
appearing in neither P nor Q are isolated and so may be ignored. Thus we may suppose that
each edge appears in precisely one of P or Q, and that each vertex appears in both.

Let Z be the set of those y ∈ Y such that α(y) 6= β(y). For any z ∈ Z let γ(z) be the second
vertex of Pz and let f(z) ∈ Y be chosen such that γ(z) lies on Qf(z). Then since γ(z) 6= α(f(z))
we have f(z) ∈ Z for all z ∈ Z. Furthermore, Z is nonempty as P and Q are distinct. Let z be
any element of Z. Then since Z is finite there must be i < j with f i(z) = f j(z), which means
that f i(z) = f j−i(f i(z)). Let t > 0 be minimal such that there is some z1 ∈ Z with z1 = f t(z1).

If t = 1 then we may delete the edge α(z1)γ(z1) and replace the path Pz1 with α(z1)Qz1γ(z1)Pz1 .
This preserves all of πP , πQ and KQ and can only make KP bigger, contradicting the minimality
of our counterexample. So we must have t > 2.

For each i 6 t let zi be f i−1(z1) and let σ be the bijection (z1z2 . . . zt) on Y . Let L′ be
the graph obtained from L by deleting all vertices of the form α(zi). Let α′ be the injection
from Y to V (L′) sending zi to γ(zi) for i 6 n and sending any other y ∈ Y to α(y). Then
(L′, α′, β) is a Y -frame. For any weave (P̂y : y ∈ Y ) in this Y -frame, (α(y)γ(y)P̂y)y∈Y is a weave
in (L,α, β) with the same weave pattern and whose weave graph includes that of (P̂y : y ∈ Y ).
Thus (L′, α′, β) is K-spartan.

Let P ′y be α′(y)Py and Q′yi be α′(yi)Qσ(yi) for any y ∈ Y . Then we have πQ′ = πQ · σ and
so σ = π−1

Q · πQ′ is an automorphism of K. For any i 6 t the edge α(zi)γ(zi) witnesses that
ziσ(zi) is an edge of KQ and so σ is local. Hence KQ includes a turnable cycle or a flippable
edge. By the minimality of |E(L)| we know that π−1

P ′ · πQ′ is locally generated and hence so is
π−1
P · πQ = π−1

P ′ · πQ′ · σ−1. This is the desired contradiction.

Finally, the following two lemmas are the main outcomes of this section:

Lemma 11.6.19. Let (X,Y ) be a polypod attaining its connection graph KX,Y such that KX,Y

is a cycle of length at least 4. Then for any family of tendrils R for this polypod the ray graph
is KX,Y . Furthermore, any transition function from R to itself preserves each of the cyclic
orientations of KX,Y .

Proof. By Lemma 11.6.16 there is some KX,Y -spartan Y -frame for which both KX,Y and the
ray graph are weave graphs. Since KX,Y is a cycle of length at least 4 and hence has no flippable
edges, the ray graph must include a cycle by Lemma 11.6.18 and so since it is a subgraph of KX,Y

it must be the whole of KX,Y . Similarly Lemma 11.6.18 together with Corollary 11.6.15 shows
that all transition functions must be locally generated and so must preserve the orientation.
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Lemma 11.6.20. Let (X,Y ) be a polypod attaining its connection graph KX,Y such that KX,Y

includes a bare path P whose edges are bridges. Let R be a family of tendrils for (X,Y ) whose
ray graph is KX,Y . Then for any transition function σ from R to itself, the restriction of σ to
P is the identity.

Proof. By Lemmas 11.6.15 and 11.6.18 any transition function must be a locally generated
automorphism of KX,Y , and so by Remark it cannot move the vertices of the bare path, which
are vertices of degree one or cutvertices.

11.7 Grid-like and half-grid-like ends

We are now in a position to analyse the different kinds of thick ends which can arise in a graph
in terms of the possible ray graphs and the transition functions between them. We fix a graph
Γ together with a thick end ω of Γ. If ω is pebbly then Kℵ0 4 Γ by Lemma 11.6.5, and every
locally finite graph G satisfies ℵ0G 4 Kℵ0 4 Γ.

So in the following we further restrict ourselves to the case that ω is not pebbly; for this sec-
tion we fix a number N such that there is no family (Ri : i ∈ [n]) of disjoint rays with n > N such
that RG(Ri : i ∈ [n]) is N -pebble win. Under these circumstances we get nontrivial restrictions
on the ray graphs and the transition functions between them. There are two essentially different
cases, corresponding to the two cases in Corollary 11.6.6: The grid-like and the half-grid-like
case.

11.7.1 Grid-like ends

The first case is ends which behave like that of the infinite grid. In this case, all large enough
ray graphs are cycles and all transition functions between them preserve the cyclic order.

Formally, we say that the end ω is grid-like if the (N + 2)nd shape graph for ω is a cycle. For
the rest of this subsection we will assume that ω is grid-like. Let us fix some polypod (X,Y ) of
order N + 2 attaining its connection graph. Let (Sy : y ∈ Y ) be a family of tendrils for (X,Y )
whose ray graph is the cycle CN+2 = KX,Y .

Lemma 11.7.1. Any ray graph K for a set (Ri : i ∈ I) of ω-rays in Γ with |I| > N + 2 is a
cycle.

Proof. Let (Ty : y ∈ Y ) be a family of tendrils for (X,Y ) obtained by transitioning from the Sy
to the Ri after X along a linkage, and let σ : Y → I be the function induced by this linkage.
Then by Lemma 11.6.19 the ray graph of the Ty is the cycle KX,Y . We know by Corollary 11.6.6
that K includes a bare path P such that |V (P )| > |V (K)| −N . Thus there are distinct vertices
y1, y2 ∈ Y with σ(y1), σ(y2) ∈ P and no other vertex in the image of σ between them on P . Then
for any other vertex y of Y there are paths from y to y1 avoiding y2 and from y to y2 avoiding
y1 in KX,Y . Hence there are paths from σ(y) to each of σ(y1) and σ(y2) avoiding σ(y1)Pσ(y2).
Thus none of the edges of σ(y1)Pσ(y2) is a bridge, so by Corollary 11.6.6 again K is a cycle.

We will now choose cyclic orientations of all these cycles such that the transition functions
preserve the cyclic orders corresponding to those orientations. To that end, we fix a cyclic
orientation of KX,Y . We say that a cyclic orientation of the ray graph for a family (Ri : i ∈ I)
of at least N + 3 disjoint ω-rays is correct if there is a transition function σ from the Sy to the
Ri which preserves the cyclic orientation of KX,Y .

Lemma 11.7.2. For any such family (Ri : i ∈ I) of at least N + 3 disjoint ω-rays there is
precisely one correct cyclic orientation of its ray graph.
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Proof. That there is at least one is clear by Lemma 11.2.2. Suppose for a contradiction that
there are two, and let σ and σ′ be transition functions witnessing that both orientations of the
ray graph are correct. By Lemma 11.6.3 we may assume without loss of generality that the
images of σ and σ′ are the same. Call this common image I ′. Since the ray graphs of (Ri : i ∈ I)
and (Ri : i ∈ I ′) are both cycles, the former is obtained from the latter by subdivision of edges.
Since this doesn’t affect the cyclic order, we may assume without loss of generality that I ′ = I.
By Lemma 11.2.2 again, there is some transition function τ from the Ri to the Sy. By Lemma
11.6.19 both τ ·σ and τ ·σ′ must preserve the cyclic order, which is the desired contradiction.

It therefore makes sense to refer to the correct orientation of a ray graph.

Corollary 11.7.3. Any transition function between ray graphs on at least N + 3 rays preserves
the correct orientations of the cycles. �

11.7.2 Half-grid-like ends

In this subsection we suppose that ω is thick but neither pebbly nor grid-like. We shall call such
ends half-grid-like, since as we shall shortly see in this case the ray graphs and the transition
functions between them behave similarly to those for the unique end of the half grid.

We will need to carefully consider how the ray graphs are divided up by their cutvertices.
In particular, for a graph K and vertices x and y of K we will denote by Cxy(K) the union
of all components of K − x which do not contain y, and we will denote by Kxy the graph
K − Cxy(K)− Cyx(K). We will refer to Kxy as the part of K between x and y.

As in the last subsection, let (X,Y ) be a polypod of order N + 2 attaining its connection
graph and let (Sy : y ∈ Y ) be a family of tendrils for (X,Y ) with ray graph KX,Y , which by
assumption is not a cycle. By Corollary 11.6.6 there is a bare path of length at least 2 in KX,Y

of which all edges are bridges. Let y1y2 be any edge of that path. Without loss of generality we
have Cy1y2(KX,Y ) 6= ∅.

Let (Ri : i ∈ I) be a family of disjoint rays with |I| > N + 3 and let K be its ray graph.

Remark. For any transition function σ from the Sy to the Ri we have σ[Cy1y2(KX,Y )] ⊆
Cσ(y1)σ(y2)(K) and σ[Cy2y1(KX,Y )] ⊆ Cσ(y2)σ(y1)(K). Thus σ[KX,Y ] and Kσ(y1)σ(y2) meet pre-
cisely in σ(y1) and σ(y2).

Lemma 11.7.4. For any transition function σ from the Sy to the Ri the graph Kσ(y1)σ(y2) is a
path from σ(y1) to σ(y2). This path is a bare path in K and all of its edges are bridges.

Proof. Since K is connected, Kσ(y1)σ(y2) must include a path P from σ(y1) to σ(y2). If it is not
equal to that path then it follows from Lemma 11.6.3 that the function σ′, which we define to
be just like σ except for σ′(y1) = σ(y2) and σ′(y2) = σ(y1), is a transition function from the Sy
to the Ri. But then by Remark we have σ[Cy1y2(KX,Y )] ⊆ Cσ(y1)σ(y2)(K) ∩ Cσ′(y1)σ′(y2)(K) =
Cσ(y1)σ(y2)(K)∩Cσ(y2)σ(y1)(K) = ∅. So this is impossible, and Kσ(y1)σ(y2) = P . The last sentence
of the lemma now follows from the definition of Kσ(y1)σ(y2).

Now we fix a transition function σmax so that the path P := Kσmax(y1)σmax(y2) is as long
as possible. If σmax[Cy1y2(KX,Y )] were a proper subset of Cσmax(y1)σmax(y2)(K) then we would
be able to use Lemma 11.6.3 to produce a transition function in which this path is longer.
So we must have σmax[Cy1y2(KX,Y )] = Cσmax(y1)σmax(y2)(K) and similarly σmax[Cy2y1(KX,Y )] =
Cσmax(y2)σmax(y1)(K).

We call P the central path of K and the orientation from σmax(y1) to σmax(y2) the correct
orientation. In the following lemma we use this orientation to determine which vertices appear
before which along P .
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Lemma 11.7.5. For any two vertices v1 and v2 of K, there is a transition function σ : KX,Y →
K with σ(y1) = v1 and σ(y2) = v2 if and only if v1 and v2 both lie on P , with v1 before v2.

Proof. The ‘if’ direction is clear by applying Lemma 11.6.3 to σmax. For the ‘only if’ direction,
we begin by setting c1 = |Cy1y2(KX,Y )| and c2 = |Cy2y1(KX,Y )|. We enumerate Cy1y2(KX,Y )
as y3 . . . yc1+2 and Cy2y1(KX,Y ) as yc1+3 . . . yc1+c2+2. Then for any N + 2-tuple (x1 . . . xN+2) of
distinct vertices achievable in the (σmax(y1), . . . , σmax(yN+2)) pebble pushing game must have
the following 3 properties, since they are preserved by any single move:

• x1 and x2 lie on P , with x1 before x2.

• {x3, . . . , xc1+2} ⊆ Cx1x2(K).

• {xc1+3, . . . , xc1+c2+2} ⊆ Cx2x1(K).

Now let σ be any transition function from the Sy to the Ri. Let (x1, . . . , xN+2) be an N + 2-
tuple achievable in the (σmax(y1), . . . , σmax(yN+2)) pebble pushing game such that {x1, . . . , xN+1} =
σ[Y ]. By Lemma 11.6.3 the function σ′ sending yi to xi for each i 6 N + 2 is also a transition
function and σ′[Y ] = σ[Y ]. Let τ be a transition function from (Ri : i ∈ σ[Y ]) to the Sy. Then
by Lemma 11.6.20 both τ ·σ and τ ·σ′ keep both y1 and y2 fixed. Thus σ(y1) = σ′(y1) = x1 and
σ(y2) = σ′(y2) = x2. As noted above, this means that σ(y1) and σ(y2) both lie on P with σ(y1)
before σ(y2), as desired.

Thus the central path and the correct orientation depend only on our choice of y1 and y2.
Hence we get

Corollary 11.7.6. Each ray graph contains a unique central path with a correct orientation
and all transition functions between ray graphs send vertices of the central path to vertices of the
central path and preserve the correct orientation.

We note that, in principle, this trichotomy that an end of a graph is either pebbly, grid-like
or half-grid-like, and the information that this implies about its finite rays graphs, could be
derived from earlier work of Diestel and Thomas [53], who gave a structural characterisation
of graphs without a Kℵ0-minor. However, to introduce their result and derive what we needed
from it would have been at least as hard, if not more complicated, and so we have opted for a
straightforward and self-contained presentation.

11.7.3 Core rays in the half-grid-like case

Definition 11.7.7. Given a graph G, an end ω and three rays R,S, T in ω such that R,S, T
have disjoint tails, we say that S separates R from T if the tails of R and T disjoint from S
belong to different ends of G− S.

For the following, recall the definition of ray graph in Definition 11.2.4.

Lemma 11.7.8. Let G be a graph, ω an end of G and (Ri)i∈I a finite family of disjoint ω-rays.
If, for some i1, i2, j ∈ I, the vertices i1 and i2 belong to different components of RG((Ri)i∈I)−j,
then Rj separates Ri1 from Ri2.

Proof. If Ri1 and Ri2 belong to the same end of G − V (Rj), there are infinitely many disjoint
paths between Ri1 and Ri2 in G− V (Rj). Hence, by the pigeonhole principle there are indices
j1 and j2 belonging to different components of RG((Ri)i∈I) − j, such that these disjoint paths
induce infinitely many disjoint paths from Rj1 to Rj2 all disjoint from all other Ri. Thus there
is an edge from j1 to j2 in RG((Ri)i∈I) contradicting the assumption that i disconnects j1 from
j2.
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Lemma 11.7.9. Consider three rays R,S, T belonging to the same end ω of some graph G. If
S separates R from T , then T does not separate R from S and R does not separate S from T .

Proof. As R and T both belong to ω, there are infinitely many disjoint paths between them. As
S separates R from T , S must meet infinitely many of these paths. Hence, there are infinitely
many disjoint paths from S to R, all disjoint from T . Similarly, there are infinitely many disjoint
paths from S to T , all disjoint from R. Hence T does not separate R from S and R does not
separate S from T .

Definition 11.7.10. Given a graph G and two (possibly infinite) vertex-sets X and Y , we say
that an end ω of G−X is a sub-end of an end ω′ of G− Y if every ray in ω has a tail in ω′.

Definition 11.7.11. Let ω be a half-grid-like end, let R be an ω-ray. We say R is a core ray
(of ω) if there is a finite family R = (Ri : i ∈ I) of disjoint ω-rays with R = Rc for some c ∈ I
such that c lies on, but is not an endpoint, of the central path of R.

Lemma 11.7.12. Let R be a core ray of ω. Then in G − R the end ω splits into precisely
two different ends. (That is, there are two ends ω′ and ω′′ of G − R such that every ω-ray in
G \ V (R) is in ω′ or ω′′.)

Proof. LetR = (Ri : i ∈ I) be a family witnessing that R = Rc for some c ∈ I is a core ray. Then
there are exactly two ends in G \ V (R) which contain rays in R, since connected components of
RG(R) when we delete the vertex corresponding to R are equivalent sets of rays in G \ V (R)
and more over, no two of these connected components can belong to the same end of G \ V (R)
by Lemma 11.7.8.

Suppose there is a third end in G \V (R) that contains an ω-ray S. We first claim that there
is a tail of S which is disjoint from R. Indeed, clearly S is disjoint from R, and if S met

⋃R
infinitely often then it would meet some Ri ∈ R infinitely often, and hence lie in the same end
of G \ V (R) as Ri. Let us assume then that S is disjoint from R.

Let us consider the ray graph RG(R∪ {S}). Again, if S is adjacent to any ray except R in
the ray graph, it would lie in the same end as some ray in RJ in G \ V (R).

Since S is an ω-ray the ray graph is connected, and hence S is adjacent to R, and R is still
connected to its neighbours in RG(R). However, R ∪ {S} is also a family that witnesses that
R = Rc is a core ray and hence c has degree two in RG(R∪ {S}), a contradiction.

Given a family of rays (Ri)i∈I witnessing thatR = Rc is a core ray, we denote by>(R, (Ri)i∈I)
the end of G−V (R) containing rays Ri satisfying i < c and with ⊥(R, (Ri)i∈I) the end containing
rays Ri satisfying i > c.

Lemma 11.7.13. Let R and S be disjoint core rays of ω. Let us suppose that ω splits in G−S
in ω′S and ω′′S and in G−R in ω′R and ω′′R. If R belongs to ω′S and S belongs to ω′R, then ω′′S is
a sub-end of ω′R and ω′′R is a sub-end of ω′S.

Proof. Let T be a ray in ω′′S . As R belongs to a different end of G− S than T , there is a tail of
T which is disjoint from R. Thus, we may assume that T and R are disjoint. As S separates R
from T , by Lemma 11.7.9, R does not separate S from T , hence T belongs to ω′R.

Lemma and Definition 11.7.14. Let R1 = (Ri : i ∈ I1), R2 = (Ri : i ∈ I2) be two finite
families of disjoint ω-rays both witnessing that for some c ∈ I1 ∩ I2 the ray Rc is a core ray in
ω. Then >(R, (Ri)i∈I1) = >(R, (Ri)i∈I2) and ⊥(R, (Ri)i∈I1) = ⊥(R, (Ri)i∈I2).

We therefore write >(ω,R) for the end >(R, (Ri)i∈I1) and ⊥(ω,R) respectively, i.e >(ω,R)
is the end of G−R containing rays that appear on the central path of some ray graph before R
according to the correct orientation and ⊥(ω,R) is the end of G−R containing rays that appear
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on the central path of some ray graph after R according to the correct orientation. Note that
>(ω,R) ∩ ⊥(ω,R) = ∅.

Proof. Suppose, this is not the case, hence ω1 := >(Rc, (Ri)i∈I1) = ⊥(Rc, (Ri)i∈I2) and ω2 :=
⊥(Rc, (Ri)i∈I1) = >(Rc, (Ri)i∈I2). Let RI1ω1 be the set of rays in R1 belonging to ω1. Let
RI1ω2 ,RI2ω1 and RI2ω2 be defined accordingly. If |RI1ω1 | > |RI2ω1 | we define Rω1 to be RI1ω1 ,
otherwise Rω1 = RI2ω1 . Let Rω2 be defined similarly.

Let us consider R := Rω1 ∪Rω2 ∪{Rc}. After replacing some of the rays with tails, this is a
collection of disjoint rays, so let us assume that R itself is a family of disjoint rays. There is a
transition function from RI1 to R mapping Rc to itself, every ray in RI1ω1 to a ray in Rω1 and
every ray in RI1ω2 to a ray in Rω2 :

Consider a finite separator X separating ω1 from ω2 in G− V (Rc). Consider linkages after
X in G−V (Rc) from Rω1 to Rω1 and from Rω2 to Rω2 . Pairs of such linkages can be combined
to suitable linkages on G, inducing a transition function which is as desired.

Similarly there is a transition function from RI2 to R mapping Rc to itself, every ray in
RI2ω1 to a ray in Rω1 and every ray in RI2ω2 to a ray in Rω2 .

These transition functions preserve the central path, thus c lies on the central path of RG(R).
Moreover, R also witness that Rc is a core ray. However, the first transition function shows that
ω1 = >(Rc,R) whereas the second one shows that ω2 = >(Rc,R), contradicting the assumption
that ω1 6= ω2.

Lemma and Definition 11.7.15. Let core(ω) denote the set of core rays in ω. We define a
partial order 6ω on core(ω) by

R 6ω S if and only if either R = S,

or R and S have disjoint tails xR and yS and xR ∈ >(ω, yS)

for R,S ∈ core(ω).

Proof. For the anti-symmetry let us suppose that R and S are disjoint rays such that R 6ω S
and S 6ω R. Hence, R ∈ >(ω, S) as well as S ∈ >(ω,R). Let RS be a family of rays witnessing
that S is a core ray and RR a family witnessing that R is a core ray. By Lemma 11.7.13, ⊥(ω, S)
is a sub-end of >(ω,R) and ⊥(ω,R) is a sub-end of >(ω, S). Let R⊥(S) be the subset of RS
of rays, which belong to ⊥(ω, S). Let R⊥(R) be defined accordingly. After replacing rays with
tails all rays in R := R⊥(S) ∪R⊥(R) ∪{R}∪{S} are pairwise disjoint. More over, R and S both
lie on the central path of RG(R) and are both not endpoints of this central path. Thus either
S ∈ ⊥(ω,R) or R ∈ ⊥(ω, S) contradicting Lemma 11.7.14.

For the transitivity, let us suppose that R,S, T are rays, such that R 6ω S and S 6ω T . We
may assume that R and S, and S and T are disjoint. As 6ω is anti-symmetric, it is T 66ω S,
hence T ∈ ⊥(ω, S). Thus, R and T belong to different ends of G − S, thus we may assume
that they are also disjoint. As S therefore separates R from T , by Lemma 11.7.9, T does not
separate S from R. Thus, R and S belong to the same end of G− T . Hence R ∈ >(ω, T ).

Remark. Let R,S ∈ core(ω) and let R be a finite family of disjoint ω-rays.

1. Any ray which shares a tail with R is also a core ray of ω.

2. If R and S are disjoint, then R and S are comparable under 6ω.

3. If R and S are on the central path of R, then R 6ω S if and only if R appears before S in
the correct orientation of RG(R).
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4. The maximum number of disjoint rays in ω \ core(ω) is bounded by 2 · (pω + 1).

Lemma 11.7.16. Let R,S ∈ core(ω). Let Z ⊆ V (G) be a finite set such that >(ω, S) and
⊥(ω, S) are separated by Z in G − V (S). Let H ⊆ G − Z be a connected subgraph which is
disjoint to S and contains R, and let T ⊆ H be some core ω-ray. Then S is in the same relative
6ω-order to T as to R.

Proof. Assume S 6ω R and hence R ∈ >(ω, S). Since H is connected, we obtain that T ∈
>(ω, S) as well and hence S 6ω T . The other case is analogous.

Lemma and Definition 11.7.17. Let R be a finite family of disjoint core ω-rays. Then there
exists a family R′ of disjoint ω-rays such that RG(R) is precisely the inner vertices of the central
path of RG(R). Even though such a family is not unique, we denote by R an arbitrary such
family.

Definition 11.7.18. If P is a linkage from R to S then a sub-linkage of P is just a subset of
P, considered as a linkage from the corresponding subset of R to S.

Remark. A sub-linkage of a transitional linkage is transitional.

Proof. By Remark 2 the rays in R are linearly ordered by 6ω. Let R denote the 6ω-smallest
and S denote the 6ω-greatest element of R. As in the proof of Lemma 11.7.15, consider the sets
R⊥(R) and R>(S), which are without loss of generality minimal with respect to their defining
property. Now R⊥(R) ⊆ ⊥(ω,R) and R′ ∈ >(ω,R) for every R′ ∈ R \ {R} and hence tails
of R⊥(R) are disjoint to

⋃R. Analogously, R>(S) ⊆ >(ω, S) and R′ ∈ ⊥(ω, S) for every
R′ ∈ R \ {S} and hence tails of R⊥(R) are disjoint to

⋃R. Finally, R>(S) ⊆ >(ω,R) and
R⊥(R) ⊆ ⊥(ω, S) by Lemma 11.7.13, yielding that tails of R>(S) are necessarily disjoint from
tails in R⊥(R). Their the union of those tails with R yields a set R as desired.

Definition 11.7.19. Let R, S be finite families of disjoint ω-rays and let R′ be a subfamily of
R consisting of core rays. A linkage P between R and S is preserving on R′ if P links R′ to
core rays and preserves the order 6ε.

The following remarks are a direct consequence of the definitions and Corollary 11.7.6.

Remark. Let R, S, T be finite families of disjoint ω-rays, let R′ ⊆ R be a subfamily of core
rays, and let P1, P2 be a linkages from R to S and from (R ◦P1 S) to T respectively.

1. If P1 is transitional and R′ is on the central path of R, then it is preserving on R′.

2. If P1 is preserving on R′, then the sub-linkage of P1 from R′ to the respective subfamily
of S is transitional.

3. If P1 is preserving on R′, then any P ′1 ⊆ P1 as a linkage between the respective subfamilies
is preserving on the respective subfamily of R′.

4. If P1 is preserving on R′ and P2 is preserving on R′ ◦P1 S, then the concatenation P1 +P2

is preserving on R′.

Lemma 11.7.20. Let R and S be finite families of disjoint core rays of ω, and let S ′ ⊆ S
be a subfamily of S with |R| = |S ′|. Then there is a transitional linkage from R to S which is
preserving on R and links the rays in R to rays in S ′.

Proof. Consider T := (S \ S) ∪ S ′ ⊆ S. Take a transitional linkage from R to T . This linkage
can be viewed as a linkage from R to S, is preserving on R by Remark 1, and hence the sub-
linkage from R to S ′ is also preserving on R by Remark 3 as well as transitional by Remark .
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11.8 G-tribes and concentration of G-tribes towards an end

To show that a given graph G is 4-ubiquitous, we shall assume that nG 4 Γ for every n ∈ N
and need to show that this implies ℵ0G 4 Γ. To this end we use the following notation for such
collections of nG in Γ which is established in [24] and [25] .

Definition 11.8.1 (G-tribes). Let G and Γ be graphs.

• A G-tribe in Γ (with respect to the minor relation) is a family F of finite collections F of
disjoint subgraphs H of Γ such that each member H of F is an IG.

• A G-tribe F in Γ is called thick, if for each n ∈ N there is a layer F ∈ F with |F | > n;
otherwise, it is called thin.

• A G-tribe F is connected if every member H of F is connected. Note that this is the case
precisely if G is connected.

• A G-tribe F ′ in Γ is a G-subtribe 5 of a G-tribe F in Γ, denoted by F ′ 4 F , if there is
an injection Ψ: F ′ → F such that for each F ′ ∈ F ′ there is an injection ϕF ′ : F

′ → Ψ(F ′)
with V (H ′) ⊆ V (ϕF ′(H

′)) for every H ′ ∈ F ′. The G-subtribe F ′ is called flat, denoted by
F ′ ⊆ F , if there is such an injection Ψ satisfying F ′ ⊆ Ψ(F ′).

• A thick G-tribe F in Γ is concentrated at an end ε of Γ, if for every finite vertex set X of Γ,
the G-tribe FX = {FX : F ∈ F} consisting of the layers FX = {H ∈ F : H 6⊆ C(X, ε)} ⊆ F
is a thin subtribe of F .

We note that, if G is connected, every thick G-tribe F contains a thick subtribe F ′ such that
every H ∈ ⋃F is a tidy IG. We will use the following lemmas from [24].

Lemma 11.8.2 (Removing a thin subtribe, [24, 5.2]). Let F be a thick G-tribe in Γ and let F ′
be a thin subtribe of F , witnessed by Ψ: F ′ → F and (ϕF ′ : F

′ ∈ F ′). For F ∈ F , if F ∈ Ψ(F ′),
let Ψ−1(F ) = {F ′F } and set F̂ = ϕF ′F (F ′F ). If F /∈ Ψ(F ′), set F̂ = ∅. Then

F ′′ := {F \ F̂ : F ∈ F}

is a thick flat G-subtribe of F .

Lemma 11.8.3 (Pigeon hole principle for thick G-tribes, [24, 5.3]). Suppose for some k ∈ N,
we have a k-colouring c :

⋃F → [k] of the members of some thick G-tribe F in Γ. Then there
is a monochromatic, thick, flat G-subtribe F ′ of F .

Lemma 11.8.4 ([24, 5.4]). Let G be a connected graph and Γ a graph containing a thick con-
nected G-tribe F . Then either ℵ0G 4 Γ, or there is a thick flat subtribe F ′ of F and an end ε
of Γ such that F ′ is concentrated at ε.

Lemma 11.8.5 ([24, 5.5]). Let G be a connected graph and Γ a graph containing a thick con-
nected G-tribe F concentrated at an end ε of Γ. Then the following assertions hold:

1. For every finite set X, the component C(X, ε) contains a thick flat G-subtribe of F .

2. Every thick subtribe F ′ of F is concentrated at ε, too.

The following lemma from [25] shows that we can restrict ourself to thick G-tribes which are
concentrated at thick ends.

5When G is clear from the context we will often refer to a G-subtribe as simply a subtribe.
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Lemma 11.8.6 ([25, 6.7]). Let G be a connected graph and Γ a graph containing a thick G-tribe
F concentrated at an end ε ∈ Ω(Γ) which is thin. Then ℵ0G 4 Γ.

Given an extensive tree decomposition (T,V) of G, broadly, our strategy will be to obtain
a family of disjoint IGs by choosing a sequence of trees T0 ⊆ T1 ⊆ . . . such that

⋃
Ti = T

and to construct inductively a family of finitely many IG[Tk+1]s which extend the IG[Tk]s built
previously (cf. Definition 11.4.6). The extensiveness of the tree-decomposition ensures that, at
each stage, there will be some edges in ∂(Ti) = E(Ti, T \ Ti), each of which has in G a family of
rays Re along which the graph displays self-similarity.

In order to extend our IG[Tk] at each step, we will want to assume that the IGs in F lie in
a ‘uniform’ manner in the graph Γ in terms of these rays Re.

More specifically, for each edge e ∈ ∂(Ti) the rays Re tend to a common end ωe in G,
and for each H ∈ ⋃F , the corresponding rays in H converge to an end H(ωe) ∈ Ω(Γ) (cf.
Definition 11.3.13) which might either be ε, or another end of Γ. We would like that our G-tribe
F makes a consistent choice of whether H(ωe) is ε, for each e ∈ ∂(Ti).

Furthermore, if H(ωe) = ε for every H ∈ ⋃F then this imposes some structure on the end
ωe of G. More precisely with [25, Lemma 9.1] we may assume that RGH(H↓(Re)) is a path for
each H in the G-tribe F .

By moving to a thick subtribe, we may assume that every ray in every H ∈ ⋃F is core, in
which case 6ε imposes a linear order on every family of rays H↓(Re), which induces one of the
two distinct orientations of the path RGH(H↓(Re)) (reference to make this clear/precise). We
will also want that our tribe F induces this orientation in a consistent manner.

Let us make the preceding discussion precise with the following definitions:

Definition 11.8.7. Let G be a connected locally finite graph with a extensive tree-decomposition
(T,V), S be an initial subtree of T . Let H ⊆ Γ be an IG, H be a set of tidy IGs in Γ and ε an
end of Γ.

• Given an end ω of G, we say that ω converges to ε according to H if for every ray R ∈ ω
we have H↓(R) ∈ ε. The end ω converges to ε according to H if it converges to ε according
to every element of H.

We say that ω is cut from ε according to H if for every ray R ∈ ω we have H↓(R) /∈ ε.
The end ω is cut from ε according to H if it is cut from ε according to every element of
H.

Finally we say that H determines whether ω converges to ε if either ω converges to ε
according to H or ω is cut from ε according to H.

• Given E ⊆ E(T ), we say H weakly agrees about E if for each e ∈ E, H determines
whether ωe converges to ε. If H weakly agrees about ∂(S) we let

∂ε(S) := {e ∈ ∂(S) : ωe converges to ε according to H} ,
∂¬ε(S) := {e ∈ ∂(S) : ωe is cut from ε according to H} ,

and write

S¬ε for the component of the forest T − ∂ε(S) containing the root of T ,

Sε for the component of the forest T − ∂¬ε(S) containing the root of T .

Note that S = S¬ε ∩ Sε.
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• We say that H is well-separated from ε at S, if H weakly agrees about ∂(S) and H(S¬ε)
can be separated from ε in Γ for all elements H ∈ H, i.e. for every H there is a finite
X ⊆ V (Γ) such that H(S¬ε) ∩ CΓ(X, ε) = ∅.

In the case that ε is half-grid-like, we say that H strongly agrees about ∂(S) if

• it weakly agrees about ∂(S);

• for each H ∈ H every ε-ray R ⊆ H is in core(ε); and

• for every e ∈ ∂ε(S) there is a linear order 6F ,e on S(e) such that the order induced on
H↓(Re) by 6F ,e) agrees with 6ε on H↓(Re) for all H ∈ H.

If F is a thick G-tribe concentrated at an end ε, we use these terms in the following way:

• Given E ⊆ E(T ), we say that F weakly agrees about E if
⋃F weakly agrees about E

w.r.t. ε.

• We say that F is well-separated from ε at S if
⋃F is.

• We say that F strongly agrees about ∂(S) if
⋃F does.

Remark. We note that the properties of weakly agreeing about E, being well separated from ε
and strongly agreeing about ∂(S) are all preserved under taking subsets, and hence under taking
flat subtribes.

Note that by the pigeon hole principle for G-tribes, given a finite edge set E ⊂ E(T ), any
thick G-tribe F concentrated at ε has a thick (flat) subtribe which weakly agrees about E.

The next few lemmas show that, with some slight modification, we may restrict to a further
subtribe which strongly agrees about E and is also well-separated from ε.

Definition 11.8.8 ([25]). Let ω be an end of a graph G. We say ω is linear if RG(R) is a path
for every finite family R of disjoint ω-rays.

Lemma 11.8.9 ([25, 8.1]). Let ε be a non-pebbly end of Γ and let F be a G-tribe such that for
every H ∈ ⋃F there is an end ωH ∈ Ω(G) such that H(ωH) = ε. Then there is a thick flat
subtribe F ′ such that ωH is linear for every H ∈ ⋃F ′.
Corollary 11.8.10. Let G be a connected locally finite graph with an extensive tree-decomposition
(T,V), S be an initial subtree of T , and let F be a thick G-tribe which is concentrated at a non-
pebbbly end ε of a graph Γ and weakly agrees about S. Then ωe is linear for every e ∈ ∂ε(S).

Proof. For any e ∈ ∂ε(S) apply Lemma 11.8.9 to F with ωH = ωe for each H ∈ ⋃F .

Lemma 11.8.11. Let G be a connected locally-finite graph with a tree-decomposition (T,V). Let
F be a thick G-tribe in Γ concentrated at ε which weakly agrees about some finite ∂(S) ⊂ E(T ).
Then F has a flat thick subtribe F ′ so that F ′ strongly agrees about ∂(S).

Proof.

Lemma 11.8.12. Let G be a connected locally-finite graph with an extensive tree-decomposition
(T,V). Let H ⊆ Γ be an IG and ε an end of Γ. Let e be an edge of T , such that H(ωe) 6= ε.
There is a finite set X ⊆ V (G) such that for every finite X ′ ⊇ X there exists a push-out He of
H along e so that CΓ(X ′, G(ωe)) 6= CΓ(X ′, ε) and

1. He(G[B(e)]) ⊆ CΓ(X ′, G(ωe)),
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2. He(G[B(e)]) \X ⊆ H(G[B(e′)]) for an edge e′ on Re, and

3. He(G[A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).

Proof. Let X1 ⊆ V (Γ) be a finite vertex set such that CΓ(X,G(ωe)) 6= CΓ(X, ε), then given
any finite X ′ ⊇ X1, surely CΓ(X ′, G(ωe)) 6= CΓ(X ′, ε). Since X1 is finite, there are only finitely
many v ∈ G whose branch sets H(v) meet X1. By extensiveness, every vertex of G is contained
in only finitely many parts of the tree-decomposition, and so there exists an edge e1 on Re with

H(G[B(e1)]) ∩X1 = ∅.

For each s ∈ S(e) let Ps be the initial segment of Re,s up to the first time it meets S(e1). Let

X = X1 ∪
⋃

v∈V (Ps),s∈S(e)

H(v).

Then, given any X ′ ⊇ X, as before there is an edge e′ on Re such that

H(G[B(e′)]) ∩X ′ = ∅.

Since (T,V) is an extensive tree-decomposition there is a witness W of the self-similarity of
B(e) at distance at least max{dist(e−, e−1 ),dist(e−, e′−)} := n. Then by Definition 11.4.11 and
Lemma 11.4.12 there is a push-out He of H along e to depth n.

By Definition 11.4.11 V (He(G[B(e)]) ⊆ V (He(W ))∪X and hence (1) and (2) hold, and also
He([A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).

Lemma 11.8.13. Let G be a connected locally finite graph with an extensive tree-decomposition
(T,V) with root r. Let Γ be a graph and F a thick G-tribe concentrated at a half-grid-like end ε
of Γ. Then there is a thick sub-tribe F ′ of F such that

(1) F ′ is concentrated at a half-grid-like end ε.

(2) F ′ strongly agrees about ∂({r}).

(3) F ′ is well-separated from ε at {r}.

Proof. Since d(r) is finite, by choosing a thick flat subtribe of F , we may assume that F weakly
agrees about ∂({r}). Moreover, by Lemma 11.8.11, we may even assume that F strongly agrees
about ∂({r}).

For every member H of F , and for every e ∈ ∂¬ε({r}) there exists by Lemma 11.8.12 a
finite set Xe such that for every finite X ′ ⊇ Xe there is a push-out He of H along e so that
CΓ(X ′, G(ωe)) 6= CΓ(X ′, ε) and

1. He(G[B(e)]) ⊆ CΓ(X ′, G(ωe)),

2. He(G[B(e)]) \Xe ⊆ H(G[B(e′)]) for an edge e′ on Re, and

3. He(G[A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).

Let X be the union of all these Xe together with H({r}). For each e ∈ ∂¬ε({r}) let He be the
push-out whose existence is guaranteed by the above with respect to this set X.

Let us define an IG

H ′ :=
⋃

e∈∂¬ε({r})

He ({r}ε ∪ Te+) .
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It is straightforward, although not quick, to check that this is indeed an IG and so we will not
do this in detail. Briefly, this can be deduced from multiple applications of Defintion 11.4.10 and
by (3) all that we need to check is that the extra vertices added to the branch sets of vertices
in S(e) are distinct for each edge e. However, this follows from Definition 11.4.11, since these
vertices come from H(Re) and the rays Re,s and Re′,s′ are disjoint except in their initial vertex
when s = s′. Let F ′ be the tribe given by {F ′ : F ∈ F} where F ′ = {H ′ : H ∈ F} for each
F ∈ F . We claim that F ′ satisfies the conclusion of the lemma.

Firstly, we claim that H strongly agrees with H ′ about ∂({r}) for every member H of F .
Indeed, by construction for each e ∈ ∂¬ε({r}), H ′(G[B(e)]) ⊆ CΓ(X ′, G(ωe)), and hence ωe is
cut from ε according to H ′. Furthermore, by construction H({r}ε) \X = H ′({r}ε) \X and so
ωe is converges to ε according to H ′ for every e ∈ ∂¬ε({r}). In fact, H↓(Re) = H ′↓(Re) for every
e ∈ ∂¬ε({r}). Finally, since H ′ ⊂ H, and F strongly agrees about ∂({r}) it follows that every
ε-ray in H ′ is in core(ε).

Then, since F is strongly concentrated at ε and strongly agrees about ∂({r}) it follows that
(1) and (2) hold for F ′. It remains to show that F ′ is well-separateed from ε at {r}.

However, we claim that for each member H of F the set X defined above separates H ′({r}¬ε)
from ε in Γ. Indeed,

H ′({r}¬ε) = H ′({r}) ∪
⋃

e∈∂¬ε({r})

H ′(G[B(e)]),

and so H ′({r}¬ε) ∩ CΓ(X, ε) = ∅. It follows that F ′ satisfies the conclusion of the lemma.

Lemma 11.8.14 (Well-separated push-out). Let G be a connected locally-finite graph with an
extensive tree-decomposition (T,V). Let H ⊆ Γ be an IG and ε an end of Γ. Let S be a
finite subtree of T such that {H} is well-separated from ε at S and let f ∈ ∂ε(S). Then there
exists exists a push-out H ′ of H along f to depth 0 (see Definition 11.4.11) such that {H ′} is
well-separated from ε at S̃ = S ∪ {f}.

Proof. Let X ′ ⊆ V (Γ) be a finite set with H(S¬ε) ∩ CΓ(X ′, ε) = ∅. If ∂¬ε(S̃) \ ∂(S) = ∅ then
H ′ = H satisfies the conclusion of the lemma, hence we may assume that ∂¬ε(S̃) \ ∂(S) is
non-empty.

By applying Lemma 11.8.12 to every e ∈ ∂¬ε(S̃) \ ∂(S), we obtain a finite set X ⊇ X ′ and a
family (He : e ∈ ∂¬ε(S̃) \ ∂(S)) where each He is a push out of H along e such that

1. He(G[B(e)]) ⊆ CΓ(X,H(ωe)),

2. He(G[B(e)]) ⊆ H(G[B(e′)]) for some edge e′ on Re, and

3. He(G[A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).

Let
H ′ :=

⋃
e∈∂¬ε(S̃)\∂(S)

He (Sε ∪ Te+) .

As before it is straightforward to check that H ′ is an IG, and that H ′ is a push out of H along
f to depth 0. We claim that H ′ is well-separated from ε at S̃. Since H is well-separated from ε
at S there is a finite set X such that H(S¬ε) ∩ CΓ(X, ε) = ∅. Let

X = X ∪
⋃

e∈∂¬ε(S̃)\∂(S)

V (He(S(e))) ,

note that X is finite.
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It is sufficient to show that X separates H ′(G[B(e)]) from ε in Γ for each e ∈ ∂¬ε(S̃), since
then X together with H ′(S) separates H ′(S¬ε) from ε in Γ. Given an edge e ∈ ∂¬ε(S̃) either
e ∈ ∂¬ε(S) or e ∈ ∂¬ε(S̃) \ ∂(S). In the first case, since

H ′(G[B(e)]) ⊆
⋃

e′∈∂¬ε(S̃)\∂(S)

He′(G[B(e)]) ⊆ H(G[B(e)]) ∪
⋃

e′∈∂¬ε(S̃)\∂(S)

He′(S(e′)),

by (3), it follows that H ′(G[B(e)]) ∩ CΓ(X, ε) = ∅.
In the second case e ∈ ∂¬ε(S̃) \ ∂(S), and so again it follows from (3) that

H ′(G[B(e)]) ⊆ He(G[B(e)]) ∪
⋃

e6=e′∈∂¬ε(S̃)\∂(S)

He′(S(e)).

Hence, H ′(G[B(e)]) ∩ CΓ(X, ε) = ∅.

The following lemma contains a large part of the work needed for our inductive construction.
The idea behind the statement is the following: At step n in our construction we will have a
G-tribe Fn which agrees about ∂(Tn), which will allows us to extend our IG[Tn]s to IG[Tn+1]s.
In order to perform the next stage of our construction we will need to ‘refine’ Fn to a G-tribe
Fn+1 which agrees about the boundary of Tn+1.

This would be a relatively simple application of the pigeon hole principle for G-tribes,
Lemma 11.8.3, except that in our construction we cannot extend by a member of Fn+1 naively.
Indeed, suppose we wish to use an IG, say H, to extend an IG[Tn] to an IG[Tn+1]. There is
some subgraph, H(Tn+1 \ Tn), of H which is an IG[Tn+1 \ Tn], however in order to use this to
extend the IG[Tn] we first have to link the branch sets of the boundary vertices to this subgraph,
and there may be no way to do so without using other vertices of H(Tn+1 \ Tn).

For this reason we ensure the existence of an ‘intermediate G-tribe’ F∗, which has the
property that for each member H of F∗, there are push-outs at arbitrary depth of H which are
members of Fn+1. This allows us to first link our IG[Tn] to some H ∈ F∗ and then choose a
push-out H ′ ∈ Fn+1 of H such that H ′(Tn+1 \ Tn) avoids the vertices we used to link.

Lemma 11.8.15 (G-tribe refinement lemma). Let G be a connected locally finite graph with an
extensive tree-decomposition (T,V), let S be a subtree of T with ∂(S) finite, and let F be a thick
G-tribe of a graph Γ such that

(1) F is concentrated at a half-grid-like end ε.

(2) F strongly agrees about ∂(S).

(3) F is well-separated from ε at S.

Suppose f ∈ ∂ε(S) and let S̃ = S ∪ {f}. Then there is a thick flat subtribe F∗ of F and a thick
G-tribe F ′ in Γ with the following properties:

(i) F ′ is concentrated at ε.

(ii) F ′ strongly agrees about ∂(S̃).

(iii) F ′ is well-separated from ε at S̃.

(iv) F ′ ∪ F strongly agrees about ∂(S) \ {f}.

(v) S¬ε w.r.t. F is a subtree of S̃¬ε w.r.t. F ′.
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(vi) For every F ∈ F∗ and every m ∈ N, there is F ′ ∈ F ′ such that for all H ∈ F there is an
H ′ ∈ F ′ which is a push-out of H to depth m along f .

Proof. For every member H of F consider a sequence (H(i) : i ∈ N) where H(i) is a push-out
of H along f to depth at least i. After choosing a subsequence of (H(i) : i ∈ N) and relabelling
(monotonically), we may assume that for each H, the set {H(i) : i ∈ N} weakly agrees on ∂(S̃),
i.e. for every e ∈ ∂(S̃) either H(i)(R) ∈ ε for every R ∈ ωe and all i or H(i)(R) /∈ ε for every
R ∈ ωe and all i. Note that a monotone relabelling preserves the property of H(i) being a
push-out of H along f to depth at least i.

This uniform behaviour of (H(i) : i ∈ N) on ∂(S̃) for each member H of F gives rise to a
finite colouring c :

⋃F → 2∂(S̃). By Lemma 11.8.3 we may choose a thick flat subtribe F1 ⊆ F
such that c is constant on

⋃F1.
Recall that by Corollary 11.8.10 for every e ∈ ∂ε(S̃) (w.r.t. F1) the ray graph RGG(Re) is a

path. We pick an arbitrary orientation of this path and denote by ≤e the corresponding linear
order on Re.

Again for every member H ∈ ⋃F1 define

dH : {H(i) : i ∈ N} → {−1, 0, 1}∂ε(S̃)

where

dH(H(i))e =


0 if H(i)(Re) are not all core rays,

+1 if H(i)(Re) are all core rays and 6ε agrees with 6e,

−1 if H(i)(Re) are all core rays and 6ε agrees with >e.

Since dH has finite range we may assume as above, after choosing a subsequence and relabelling,
that dH is constant on {H(i) : i ∈ N} and that H(i) is still a push-out of H along f to depth at
least i.

Now consider d :
⋃F1 → {−1, 0, 1}∂ε(S̃) with d(H) = dH(H(1)) (= dH(H(i)) for all i). Again,

we may choose a thick flat subtribe F2 ⊆ F1 such that d is constant on F2.
Note that no coordinate of d takes the value 0. Indeed, for e ∈ ∂ε(S̃) and every layer F ∈ F2

the rays in (H(1)(Re) : H ∈ F ) are disjoint, and for large enough F it cannot be the case that
there is a non-core ray in every H(1)(Re).

We can now apply Lemma 11.8.14 to each H(i) to obtain H ′(i), the collection of which is
well-separated from ε at S̃. Note that H ′(i) is still a push-out of H along f to depth i.

Now let F∗ = F2 and F ′ = {{H ′(i) : H ∈ F} : i ∈ N, F ∈ F∗}. Let us verify that these
satisfy (i)–(vi). F∗ is concentrated at ε because it is a thick flat subtribe of F by Lemma 11.8.5.
By a comparison, layer by layer, since all members of F ′ are push-outs of members of F∗ along
f , the tribe F ′ is also concentrated at ε, satisfying (i).

(ii) is satisfied: Since c and d are constant on
⋃F2 the collection of the H(i) (for H ∈ ⋃F2)

strongly agrees on ∂(S̃), since we have chosen an appropriate subsequence in which dH(H(i))
is constant. The H ′(i) are constructed such that this property is preserved. Property (iii) is
immediate from the choice of H ′(i). Properties (iv) & (v) follow from (2) and the fact that every
member of F ′ is a push-out of a member of F along f . Property (vi) is immediate from the
construction of F ′.

11.9 The inductive argument

In this section we prove Theorem 11.4.9. Given a connected, locally finite graph G which admits
an extensive tree-decomposition (T,V) and a graph Γ which contains a thick G-tribe F , our aim
is to construct an infinite family (Qi : i ∈ N) of disjoint G-minors in Γ inductively.
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Our work so far will allow us to make certain assumptions about F . For example, by Lemma
11.8.4 we may assume that F is concentrated at some end ε of Γ, which by Lemma 11.8.6 we
may assume is a thick end, and by Lemma 11.6.5 we may assume is not pebbly. Hence, by the
work of Section 11.7 we may assume that ε is either half-grid-like or grid-like.

At this point our proof will split into two different cases, depending on the nature of ε. How-
ever, the two cases are very similar, with the grid-like case being significantly simple. Therefore
we will first prove Theorem 11.4.9 in the case where ε is half-grid-like, and then in Section 11.9.2
we will briefly sketch the differences for the grid-like case.

So, to briefly recap, in the following section we will be working under the standing assump-
tions that there is a thick G-tribe F in Γ and an end ε of Γ such that

– F is concentrated at ε;

– ε is thick;

– ε is not pebbly;

– ε is half-grid-like.

11.9.1 The half-grid-like case

As explained in Section 11.2, our strategy will be to take some sequence of subtrees S1 ⊆ S2 ⊆
S3 . . . of T , such that

⋃
i Si = T , and to inductively build a collection of n inflated copies of

G(Sn), at each stage extending the previous copies. However, in order to ensure that we can
continue the construction at each stage, we will require the existence of additional structure.

Let us pick an enumeration {ti : i > 0} of V (T ) such that t0 is the root of T and Tn :=
T [{ti : 0 6 i 6 n}] is connected for every n ∈ N. We will not take the Sn above to be the
subtrees Tn, but instead the subtrees T¬εn with respect to some tribe Fn which weakly agrees
about ∂(Tn). This will ensure that every edge in the boundary ∂(Sn) will be in ∂ε(Tn). For
every edge e ∈ E(T ) let us fix a family Re = (Re,s : s ∈ S(e)) of disjoint rays witnessing the self-
similarity of the bough B(e) towards an end ωe of G where init(Re,s) = s. By taking Sn = T¬εn
we guarantee that for each edge in e ∈ ∂(Sn), s ∈ S(e) and every H ∈ ⋃Fn the ray H↓(Re,s) is
an ε-ray.

Furthermore, since ∂(Tn) is finite, we may assume by Lemma 11.8.11 that Fn strongly agrees
about ∂(Tn). We can now describe the additional structure that we require for the induction
hypothesis.

At each stage of our construction we will have built some inflated copies of G(Sn), which we
wish to extend in the next stage. However, Sn will not in general be a finite subtree, and so we
will need some control over where these copies lie in Γ to ensure we have not ‘used up’ all of Γ.
The control we will want is that there is a finite set of vertices X, which we call a bounder which
separates all we have built so far from the end ε. This will guarantee, since F is concentrated at
ε, that we can find arbitrarily large layers of F which are disjoint from what we’ve built so far.

Furthermore, in order to extend these copies in the next set we will need to be able to link
the boundary of our inflated copies of G(Sn) to this large layer of F . To this end we will also
want to keep track of some structure which allows us to do this, which we call an extender. Let
us make the preceding discussion precise.

Definition 11.9.1 (Bounder, extender). Let F be a thick G-tribe which is concentrated at ε and
strongly agrees about ∂(S) for some subtree S of T , and let k ∈ N. Let Q = (Qi : i ∈ [k]) be a
family of disjoint inflated copies of G(S¬ε) in Γ (note, S¬ε depends on F).
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• A bounder for Q is a finite set X of vertices in Γ separating each Qi in Q from ε, i.e.
such that

C(X, ε) ∩
k⋃
i=1

Qi = ∅.

• For A ⊆ E(T ),let I(A, k) denote the set {(e, s, i) : e ∈ A, s ∈ S(e), i ∈ [k]}.

• An extender for Q is a family E = (Ee,s,i : (e, s, i) ∈ I(∂ε(S), k)) of ε-rays in Γ such that
the graphs in E− ∪Q are pairwise disjoint and such that init(Ee,s,i) ∈ Qi(s).

• Given an extender E, an edge e ∈ ∂ε(S) and i ∈ [k] we let

Ee,i := (Ee,s,i : s ∈ S(e)).

Recall that, since ε is half-grid like, there is a partial order 6ε defined on the core rays of ε,
see Lemma 11.7.15. Furthermore, if F strongly agrees about ∂(S) then, as in Definition 11.8.7,
for each e ∈ ∂ε(S) there is a linear order 6F ,e on S(e).

Definition 11.9.2 (Extension scheme). Under the conditions above, we call a tuple (X, E) an
extension scheme for Q if the following holds:

(ES1) X is a bounder for Q and E is an extender for Q;

(ES2) E is a family of core rays;

(ES3) the order 6ε on Ee,i (and thus on E−e,i) agrees with the order induced by 6F ,e on E−e,i for
all e ∈ ∂ε(S) and i ∈ [k];

(ES4) the sets E−e,i are intervals with respect to 6ε on E− for all e ∈ ∂ε(S) and i ∈ [k].

We will in fact split our inductive construction into two types of extensions, which we will
do on odd and even steps respectively.

In an even step n = 2k, starting with a G-tribe Fk, k disjoint inflated copies of G(T¬εk )
and an appropriate extension scheme, we will construct Qnk+1, a further disjoint inflated copy of
G(T¬εk ), and an appropriate extension scheme for everything we built so far.

In an odd step n = 2k−1 (for k > 1), starting with the same G-tribe Fk−1 from the previous
step, k disjoint inflated copies of G(T¬εk−1) and an appropriate extension scheme, we will refine
to a new G-tribe Fk which strongly agrees on ∂(Tk), extend each copy Qni of G(T¬εk−1) to a copy
Qn+1
i of G(T¬εk ) for i ∈ [k], and construct an appropriate extension scheme for everything we

built so far.

So, we will assume inductively that for some n ∈ N, with r := bn/2c and s := dn/2e we have:

(I1) a thick G-tribe Fr in Γ which

• is concentrated at ε;

• strongly agrees about ∂(Tr);

• is well-separated from ε at Tr; and

• whenever l < k ≤ r, T¬εk with respect to Fk is a sub-tree of T¬εl with respect to Fl.

(I2) a family Qn = (Qni : i ∈ [s]) of s pairwise disjoint inflated copies of G(T¬εr ) (where T¬εr is
considered with respect to Fr) in Γ;
if n > 1, we additionally require that Qni extends Qn−1

i for all i 6 s− 1;
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(I3) an extension scheme (Xn, En) for Qn;

(I4) if n is even and ∂ε(Tr) 6= ∅, we require that there is a set Jr of disjoint core ε-rays disjoint
to En with |Jr| > (|∂ε(Tr)|+ 1) · |En|.

Suppose we have inductively constructed Qn for all n ∈ N. Let us define Hi :=
⋃
n>2i−1Q

n
i .

Since T¬εk with respect to Fk is a sub-tree of T¬εl with respect to Fl for all k < l, we have⋃
n∈N T

¬ε
n = T (where we considered T¬εn w.r.t. Fn), and due to the extension property (I2), the

collection (Hi : i ∈ N) is an infinite family of disjoint G-minors, as required.

So let us start the construction. To see that our assumptions for the case n = 0 we first note
that since T0 = t0, by Lemma 11.8.13 there is a thick subtribe F0 of F which satisfies (I1). Let
us further take

• Q0 = E0 = X0 = ∅;

• J0 be any suitably large set of disjoint core rays of ε.

The following notation will be useful throughout the construction. Given e ∈ E(T ) and
some inflated copy H of G, recall that H↓(Re) denotes the family (H↓(Re,s) : s ∈ S(e)). Given
a G-tribe F , a layer F ∈ F and a family of rays R in G we will write F ↓(R) = (H↓(R) : H ∈
F,R ∈ R).

Construction part 1: n = 2k is even

Case 1: ∂ε(Tk) = ∅.
In this case T¬εk = T and so picking any member H ∈ Fk with H ⊆ C(Xn, ε) and setting

Qn+1
k+1 = H(T¬εk ) gives us a further inflated copy of G(T¬εk ) disjoint from all the previous ones.

We set Qn+1
i = Qni for all i ∈ [k] and Qn+1 = (Qn+1

i : i ∈ [k+1]). Using that Fk is well-separated
from ε at Tk, there is a suitable bounder Xn+1 ⊇ Xn for Qn+1. Then (Xn+1, ∅) is an extension
scheme for Qn+1 while Fk remains unchanged.

Case 2: ∂ε(Tk) 6= ∅. (See Figure 11.9.1)

Consider the family R− :=
⋃{R−e : e ∈ ∂ε(Tk)}. Moreover, set C := E−n ∪ Jk and consider C

as in Definition 11.7.17. Let Y ⊆ C(Xn, ε) be a finite set which is a transition box between E−n
and C as in Lemma 11.3.17. Let F ′ be a flat thick G-subtribe of Fk such that each member of
F ′ is contained in C(Xn ∪ Y, ε), which exists by Lemma 11.8.5 since both Xn and Y are finite.

Let R be an arbitrary element of R. Let F ∈ F ′ be large enough such that we may apply
Lemma 11.3.16 to find a transitional linkage P ⊆ C(Xn ∪ Y, ε) from C to F ↓(R−) after Xn ∪ Y
avoiding some member H ∈ F . Note that, since Xn is a bounder and P ⊆ C(Xn ∪ Y, ε), P is
disjoint from all Qn and Y .

Let

Qn+1
k+1 := H(T¬εk ).

Note that Qn+1
k+1 is an inflated copy of G(T¬εk ). Moreover let Qn+1

i := Qni for all i ∈ [k] and
Qn+1 := (Qn+1

i : i ∈ [k + 1]), yielding property (I2).

Since Fk is well-separated from ε at Tk, and H ∈ ⋃Fk, there is a finite set Xn+1 ⊆ Γ
containing Xn ∪ Y such that C(Xn+1, ε) ∩Qn+1

k+1 = ∅. This set Xn+1 is a bounder for Qn+1.

Since P is transitional, Remark 1 implies that the linkage is preserving on C. Since all rays
in F ↓(R−) are core rays, ≤ is a linear order on F ↓(R−). Moreover, for each e ∈ ∂ε(Tk), the rays
in H↓(Re) correspond to an interval in this order. Thus, deleting these intervals from F ↓(R−)
leaves behind at most |∂ε(Tk)|+ 1 intervals in F ↓(R−) (with respect to ≤) which do not contain
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any rays in H↓(R). Since |Jk| > (|∂ε(Tk)|+ 1) · |En|, by the pigeonhole principle there is such
an interval on F ↓(R−) that

– does not contain rays in H↓(R); and

– where a subset P ′ ⊆ P of size |E−n | links a corresponding subset A′ ⊆ A of C to rays B in
that interval.

By Lemma 11.7.20 and Remark (1 and 3), and Lemma 11.3.17 there is a linkage P ′′ from E−n to
A contained in Γ[Y ] which is preserving on E−n .

For e ∈ ∂ε(Tk) and s ∈ S(e) define

En+1
e,s,k+1 = H↓(Re,s) for the corresponding ray Re,s ∈ Re.

and moreover for each i ∈ [k], we define

En+1
e,s,i = init(Ene,s,i)(E

−
e,s,i ◦P ′′ A) ◦P ′ B

By construction, all these rays are, except for their first vertex, disjoint from Qn+1. Moreover,
En+1 := (En+1

e,s,i : (e, s, i) ∈ I(∂ε(Tk), k + 1)) is an extender for Qn+1. Note that each ray in En+1

shares a tail with a ray in F ↓(R−).
We claim that (Xn+1, En+1) is an extension scheme for Qn+1 and hence property (I3) is

satisfied. Since every ray in En+1 has a tail which is also a tail of a ray in F ↓(R−), property (ES2)
is satisfied by Remark 1. Since P ′ is preserving on A′ and P ′′ is preserving on E−n , Remark 4
implies that the linkage P ′′ + P ′ is preserving on E−n . Hence property (ES3) holds for each
i ∈ [k]. Furthermore, since En+1

e,s,k+1 = H↓(Re,s) for each e ∈ ∂ε(Tk) and s ∈ S(e), it is clear
that property (ES3) holds for i = k + 1. Finally, property (ES4) holds for i = k + 1 since for
each e ∈ ∂ε(Tk), the rays in H↓(Re) are an interval with respect to 6ε on F ↓(R−), and it holds
for i ∈ [k] by the fact that P ′′ + P ′ is preserving on E−n together with the fact that P ′′ + P ′ is
preserving on E−n links E−n to an interval of F ↓(R−) containing no ray in H↓(R).

Finally note that (I1) is still satisfied by Fk and Tk, and (I4) is vacuously satisfied.
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Construction part 2: n = 2k − 1 is odd (for k > 1).

Let f denote the unique edge of T between Tk−1 and Tk \ Tk−1.

Case 1: f /∈ ∂ε(Tk−1).

Let Fk := Fk−1. Since Fk−1 is well separated from ε at Tk it follows that e ∈ ∂¬ε(Tk) for
every e ∈ ∂(Tk) \ ∂(Tk−1). Hence T¬εk = T¬εk−1 and ∂ε(Tk−1) = ∂ε(Tk), and so we can simply take
Qn+1 := Qn, En+1 := En, Jk := Jk−1 and Xn+1 := Xn to satisfy (I1), (I2), (I3) and (I4).

Case 2: f ∈ ∂ε(Tk−1). (See Figure 11.9.1)

By (I1) we can apply Lemma 11.8.15 to Fk−1 in order to find a thick G-tribe Fk and a thick
flat sub-tribe F∗ of Fk−1, both concentrated at ε, satisfying properties (i)–(vi) from that lemma.
It follows that Fk satisfies (I1) for the next step.

Let F ∈ F∗ be a layer of F∗ such that

|F | > (∂ε(Tk) + 2) · |I(∂ε(Tk), k)|

and consider the rays F ↓(Rf ). Consider the rays in the extender corresponding to the edge
f , that is Ef := (Enf,s,i : i ∈ [k], s ∈ S(f)). By Lemma 11.7.20, there is, for every subset S of
F ↓(Rf ) of size |E−f | a transitional linkage P ⊆ C(Xn, ε) from E−n to F ↓(Rf ) after Xn ∪ init(En)
such that P links Ef to S, if we view it as a linkage from En to F ↓(Rf ). Since all rays in Ef and
in F ↓(Rf ) are core rays, any such linkage is preserving on Ef .

Let us choose H1, H2, . . . ,Hk ∈ F and let S =
(
H↓i (Rf,s) : i ∈ [k], s ∈ S(f)

)
. Let P be the

linkage given by the previous paragraph, which we recall is preserving on Ef . Since for every
i ≤ k the family

(
Enf,s,i : s ∈ S(f)

)
forms an interval in En and the set H↓(Rf ) forms an interval

in F ↓(Rf ) it follows that, after perhaps relabelling the Hi, for every i ∈ [k] and s ∈ S(f), P
links Enf,s,i to H↓i (Rf,s).

Let Z ⊆ V (Γ) be a finite set such that >(ω,R) and ⊥(ω,R) are separated by Z in Γ− V (R)
for all R ∈ F ↓(Rf ) (cf. Lemma 11.7.16).

Since |F | is finite and (T,V) is an extensive tree-decomposition there exists an m ∈ N such
that if e ∈ Rf with dist(f−, e−) = m then H(B(e)) ∩ (Xn ∪ Z ∪ V (

⋃P)) = ∅. Let ~F ∈ Fk be
as in Lemma 11.8.15(vi) for F with such an m.

Hence, by definition, for each Hi ∈ F there is some subgraph Wi ⊆ H(B(e)) which is an
IG[B(f)] such that for each s ∈ S(f), Wi(s) contains the first point of Wi on H↓i (Rf,s).

For each i ∈ [k] we construct Qn+1
i from Qni as follows. Consider the part of G that we want

to add G(T¬εk−1) to obtain G(T¬εk ), namely

D := G[B(f)]

Vf+ ∪ ⋃
e∈∂¬ε(Tk)\∂¬ε(Tk−1)

B(e)

.
Let Ki := Wi(D). Note that, this is an inflated copy of D and for each s ∈ S(f) and each i ∈ [k]
the branch set Ki(s) contains the first point of Ki on H↓i (Rf,s).

Note further that by the choice of m, all the Ki are disjoint to Qn. Let xf,s,i denote the first
vertex on the ray H↓i (Rf,s) in Ki, and let

Os,i := (Enf,s,i ◦P F (Rf ))xf,s,i.

Then, if we let Oi := (Os,i : s ∈ S(f)) and O = (Os,i : s ∈ S(f), i ∈ [k]), we see that

Qn+1
i := Qni ⊕Oi Ki
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(see Definition 11.4.10) is an inflated copy of G(T¬εk ) extending Qni . Hence,

Qn+1 := (Qn+1
i : i ∈ [k])

is a family satisfying (I2).
Since Fk is well-separated from ε at Tk, and each Ki is a subgraph of the restriction of ~Hi

to D, for each Ki there is a finite set X̂i separating Ki from ε, and hence the set

Xn+1 := Xn ∪
⋃
i∈[k]

X̂i ∪ V
(⋃
O
)

is a bounder for Qn+1.
For e ∈ ∂ε(Tk−1) \ {f}, s ∈ S(e) and i ∈ [k] we set

En+1
e,s,i = Ene,s,i ◦P F ↓(Rf ),

and set
E ′ :=

(
En+1
e,s,i : (e, s, i) ∈ I (∂ε(Tk−1) \ {f}, k)

)
Moreover, for e ∈ ∂ε(Tk) \ ∂ε(Tk−1), s ∈ S(e) and i ∈ [k] we set

En+1
e,s,i = ~H↓i (Re,s),

and set
E ′′ :=

(
En+1
e,s,i : (e, s, i) ∈ I (∂ε(Tk) \ ∂ε(Tk−1), k)

)
.

Note that, by construction, such a ray has its initial vertex in the branch set Qn+1
i (s) and is

otherwise disjoint to
⋃Qn+1. We set En+1 := E ′∪E ′′. It is easy to check that this is an extender

for Qn+1.
We claim that (Xn+1, En+1) is an extension scheme. Property (ES1) is apparent. Since the

G-tribes Fk and F∗ both strongly agree about ∂(Tk), and every ray in En+1 shares a tail with a
ray in a member of Fk or F∗ it follows that all rays in En+1 are core rays, and so (ES2) holds.

For any e ∈ ∂ε(Tk−1) \ {f} and i ∈ [k] the rays (En+1)e,i are a subfamily of E ′, obtained by
transitioning from the family (En)e,i to F ↓(Rf ) along linkage P. By the induction hypothesis
6ε agreed with the order induced by 6Fk−1,e on (En)e,i, and since Fk ∪ Fk−1 strongly agrees
about ∂ε(Tk−1) \ {f}, this is also the order induced by 6Fk,e. Hence, since P is preserving, by
Remark 1 it follows that the order induced by 6Fk,e on (En+1)e,i agrees with 6ε.

For for e ∈ ∂ε(Tk) \ ∂ε(Tk−1) and i ∈ [k] the rays (En+1)e,i are ( ~H↓i (Re,s) : s ∈ S(e)). Since
~Hi ∈ ~F ∈ Fk and Fk strongly agrees about ∂(Tk), it follows that the order induced by 6Fk,e on
(En+1)e,i agrees with 6ε. Hence Property (ES3) holds.

Finally, by Lemma 11.3.20 it is clear that for any e ∈ ∂ε(Tk−1) \ {f} and i ∈ [k] the rays
(E−n+1)e,i form an interval with respect to6ε on E−n+1, since they are each contained in a connected
subgraph ~Hi to which the tails of the rest of E−n+1 are disjoint. Furthermore, by choice of Z
and Lemma 11.7.16 it it clear that, since P is preserving on E−n , for each e ∈ ∂ε(Tk) \ ∂ε(Tk−1)
and i ∈ [k] the rays (E−n+1)e,i also form an interval with respect to 6ε on E−n+1. Hence property
(ES4) holds and therefore (I3) is satisfied for the next step.

For property (I4) we note that every ray in En+1 has a tail in some H ∈ F ∈ F∗. Since there
is at least one core ε-ray in each H ∈ F ∈ F∗, we can find family of at least |F | − |En+1| such
rays. However since

|F | > (∂ε(Tk) + 2) · |En+1|
it follows that we can find a suitable family |Jk|.

This concludes the induction step.
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11.9.2 The grid-like case

In this section we will give a brief sketch of how the argument differs in the case where the end
ε, towards which we may assume our G-tribe F is concentrated, is grid-like.

In the case where ε is half-grid-like we showed that the end ε had a roughly linear structure,
in the sense that there is a global partial order 6ε which is defined on almost all of the ε-
rays, namely the core ones, such that every pair of disjoint core rays are comparable, and that
this order determines the relative structure of any finite family of disjoint core rays, since it
determines the ray graph.

Since, by Corollary 11.8.10, RGG(Re) is a path whenever e ∈ ∂ε(Tk), there are only two ways
that 6ε can order H↓(Re), and, since ∂ε(Tk) is finite, by various pigeon-hole type arguments we
can assume that it does so consistently for each H ∈ ⋃Fk and each Ee,i.

We use this fact crucially in part 2 of the construction, where we wish to extend the graphs
(Qni : i ∈ [k]) from inflated copies of G(T¬εk−1) to inflated copies of G(T¬εk ) along an edge e ∈
∂(Tk−1). We wish to do so by constructing a linkage from the extender En to some layer F ∈ Fk,
using the self-similarity of G to find an inflated copy of G(e+) which is ‘rooted’ on the rays
H↓(Re) and extending each Qni by such a subgraph.

However, for this step to work it is necessary that the linkage from En to F is such that for
each i ∈ [k] there is some H ∈ F such that ray Ee,s,i is linked to H↓(Re,s) for each s ∈ S(e).
However, since any transitional linkage we construct between E and a layer F ∈ Fn will respect
6ε, we can use a transition box to ‘re-route’ our linkage such that the above property holds.

In the case where ε is grid-like we would like to say that the end has a roughly cyclic structure,
in the sense that there is a global ‘partial cyclic order’ Cε, defined again on almost all of the
ε-rays which will again determine the relative structure of any finite family of disjoint ‘core’ rays.

As before, since RGG(Re) is a path whenever e ∈ ∂ε(Tn), there are only two ways that
Cε can order H↓(Re) (‘clockwise’ or ‘anti-clockwise’) and so we can use similar arguments to
assume that it does so consistently for each H ∈ ⋃Fk and each Ee,i, which allows us as before
to control the linkages we build.

To this end, suppose ε is a grid-like end, and that N is a number such that no family of
disjoint ε-rays has a ray graph which is N -pebble win. We say that an ε-ray R is a core ray (of
ε) if there is some finite family (Ri : i ∈ [n]) of n > N + 3 disjoint ε-rays such that R = Ri for
some i ∈ [n]6.

Every large enough ray graph is a cycle, which has a correct orientation by Lemma 11.7.2
and we would like to say that this orientation is induced by a global ‘partial cyclic order’ defined
on the core rays of ε.

By a similar argument as in Section 11.7.3 one can show the following:

Lemma 11.9.3. Let R and R′ be disjoint core rays of ε. Then in G− (V (R) ∪ V (R′)) the end
ε splits into precisely two different ends.

Definition 11.9.4. Let R and R′ be a core ray of ε. We denote by >(ε, R,R′) the end of
G − (V (R) ∪ V (R′)) containing rays which appear between R and R′ according to the correct
orientation of some ray graph and by ⊥(ε, R,R′) the end of G− (V (R)∪V (R′)) containing rays
which appear between R′ and R in the correct orientation of some ray graph.

We will model our global ‘partial cyclic order’ as a ternary relation on the set of core rays
of ε. That is, a partial cyclic order on a set X is a relation C ⊂ X3 written [a, b, c] satisfying
the following axioms:

• If [a, b, c] then [b, c, a].

6We note that it is possible to show that, if ε is grid-like, then in fact N = 3.
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• If [a, b, c] then not [c, b, a].

• If [a, b, c] and [a, c, d] then [a, b, d].

Lemma and Definition 11.9.5. Let core(ε) denote the set of core rays of ε. We define a
partial cyclic order Cε on core(ε) as follows:

[R,S, T ] if and only if R,S, T have disjoint tails xR, yS, zT and yS ∈ >(ε, xR, zT ).

Then, for any disjoint family of at least N + 3 ε-rays (Ri : i ∈ [n]) the cyclic order induced
on (Ri : i ∈ [n]) by Cε agrees with the correct orientation.

Again by a similar argument as in Section 11.7.3 on can show that this relation is in fact a
partial cyclic order and that it always agrees with the correction orientation of large enough ray
graphs. Furthermore, by Lemma 11.7.3, given two families R and S of at least N + 3 disjoint
ε-rays, every transitional linkage between R and S preserves Cε, for the obvious definition of
preserving.

Given a disjoint family of ω-rays R = (Ri : i ∈ [n]) with a linear order 6 on R we say that
6 agrees with Cε if [Ri, Rj , Rk] whenever Ri < Rj < Rk.

Recall that, given a family F = (fi : i ∈ I) and a linear order 6 on I we denote by F (6) the
linear order on F induced by 6, i.e. the order defined by fiF (6)fj if and only if i 6 j.

We say F strongly agrees about ∂(Tn) if

• it weakly agrees about ∂(Tn);

• for each H ∈ ⋃F every ε-ray R ⊆ H is in core(ε); and

• for every e ∈ ∂ε(Tn) there is a linear order 6F ,e on S(e) such that H↓(Re)(6F ,e) agrees
with Cε on H↓(Re) for all H ∈ ⋃F .

Using this definition the G-tribe refinement lemma (Lemma 11.8.15) can also be shown to
hold in the case where ω is a grid-like-end.

Furthermore we modify the definition of an extension scheme for a family of disjoint inflated
copies of G(T¬εn ).

Definition 11.9.6 (Extension scheme). Let Q = (Qi : i ∈ [k]) be a family of disjoint inflated
copies of G(S¬ε) and F be a G-tribe which strongly agrees about ∂(S). We call a tuple (X, E)
an extension scheme for Q if the following holds:

(ES1) X is a bounder for Q and E is an extender for Q;

(ES2) E is a family of core rays;

(ES3) the order Cε agrees with E−e,i(6F ,e) for every e ∈ ∂ε(S);

(ES4) the sets E−s,i are intervals of Cε on E− for all e ∈ ∂ε(S) and i ∈ [k].

The we can then proceed by induction as before, with the same induction hypotheses. For
the most part the proof will follow verbatim, apart from one slight technical issue.

Recall that, in the case where n is even, we use the existence of the family of rays C to find a
linkage from C to F ↓(R−) which is preserving on C and similarly, in the case where n is odd, we
do the same for E−n . In the grid-like case we don’t have to be so careful, since every transitional
linkage from C to F ↓(R−) will preserve Cε, as long as |C| is large enough.

However, in order to ensure that |C| and |E−n | are large enough in each step, we should
start by building N + 3 inflated copies of G(T¬ε0 ) in the first step, which can be done relatively
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straightforwardly. Indeed, in the case n = 0 most of the argument in the construction is
unnecessary, since a large part of the construction is constructing a new copy whilst re-routing
the the rays En to avoid this new copy, but E0 is empty. Therefore it is enough to choose a layer
F ∈ F0 with |F | > N + 3, with say H1, . . . ,HN ∈ F and to take

Q1
i =: H(T¬εk )

for each i ∈ [N + 3] and to take E1
e,s,i = H↓i (Re,s) for each e ∈ ∂ε(T0), s ∈ S(e) and i ∈ [N + 3].

One can then proceed as before, extending the copies in odd steps and adding a new copy in
even steps.

11.10 Outlook: connections with well-quasi-ordering and better-
quasi-ordering

Our aim in this section is to sketch what we believe to be the limitations of the techniques of
this paper. We will often omit or ignore technical details in order to give a simpler account of
the relationship of the ideas involved.

Our strategy for proving ubiquity is heavily reliant on well-quasi-ordering results. The reason
is that they are the only known tool for finding extensive tree-decompositions for broad classes
of graphs.

To more fully understand this, let’s recall how well-quasi-ordering was used in the proofs of
Lemmas 11.5.5 and 11.5.10. Lemma 11.5.5 states that any locally finite connected graph with
only finitely many ends, all of them thin, has an extensive tree decomposition. The key idea
of the proof was as follows: for each end, there is a sequence of separators converging towards
that end. The graphs between these separators are finite, and so are well-quasi-ordered by the
Graph Minor Theorem. This well-quasi-ordering guarantees the necessary self-similarity.

Lemma 11.5.10, where infinitely many ends are allowed but the graph must have finite tree-
width, is similar: once more, for each end there is a sequence of separators converging towards
that end. The graphs between these separators are not necessarily finite, but they have bounded
tree-width and so they are again well-quasi-ordered.

Note that the Graph Minor Theorem is not needed for this latter result. Instead, the reason
it works can be expressed in the following slogan, which will motivate the considerations in the
rest of this section:

Trees of wombats are well-quasi-ordered precisely when wombats themselves are
better-quasi-ordered.

Here better-quasi-ordering is a strengthening of well-quasi-ordering introduced by Nash-
Williams in [101] essentially in order to make this slogan be true. Since graphs of bounded
tree-width can be encoded as trees of graphs of bounded size, what is used here is that graphs
of bounded size are better-quasi-ordered.

What if we wanted to go a little further, for example by allowing infinite tree-width but
requiring that all ends should be thin? In that case, all we would know about the graphs
between the separators would be that all their ends are thin. Such graphs are essentially trees of
finite graphs. So, by the slogan above, to show that such trees are well-quasi-ordered we would
need the statement that finite graphs are better-quasi-ordered.

Indeed, this problem arises even if we restrict our attention to the following natural common
strengthening of Theorems 11.1.1 and 11.1.2:

Conjecture 11.10.1. Any locally finite connected graph in which all blocks are finite is ubiqui-
tous.
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In order to attack this conjecture with our current techniques we would need better-quasi-
ordering of finite graphs.

Thomas has conjectured that countable graphs are well-quasi-ordered with respect to the
minor relation. If this were true, it could allow us to resolve problems like those discussed
above for countable graphs at least, since all the graphs appearing between the separators are
countable. But this approach does not allow us to avoid the issue of better-quasi-ordering of
finite graphs. Indeed, since countable trees of finite graphs can be coded as countable graphs,
well-quasi-ordering of countable graphs would imply better-quasi-ordering of finite graphs.

Thus until better-quasi-ordering of finite graphs has been established, the best that we can
hope for – using our current techniques – is to drop the condition of local finiteness from the
main results of this paper, something which we hope to do in the next paper in this series [27].
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Chapter 12

Hamilton decompositions of
one-ended Cayley graphs

12.1 Introduction

A Hamiltonian cycle of a finite graph is a cycle which includes every vertex of the graph. A finite
graph G = (V,E) is said to have a Hamilton decomposition if its edge set can be partitioned
into disjoint sets E = E1∪̇E2∪̇ · · · ∪̇Er such that each Ei is a Hamiltonian cycle in G.

The starting point for the theory of Hamilton decompositions is an old result by Walecki from
1890 according to which every finite complete graph of odd order has a Hamilton decomposition
(see [3] for a description of his construction). Since then, this result has been extended in various
different ways, and we refer the reader to the survey of Alspach, Bermond and Sotteau [4] for
more information.

Hamiltonicity problems have also been considered for infinite graphs, see for example the
survey by Gallian and Witte [129]. While it is sometimes not obvious which objects should be
considered the correct generalisations of a Hamiltonian cycle in the setting of infinite graphs,
for one-ended graphs the undisputed solution is to consider double-rays, i.e. infinite, connected,
2-regular subgraphs. Thus, for us a Hamiltonian double-ray is then a double-ray which in-
cludes every vertex of the graph, and we say that an infinite graph G = (V,E) has a Hamilton
decomposition if we can partition its edge set into edge-disjoint Hamiltonian double-rays.

In this paper we will consider infinite variants of two long-standing conjectures on the exis-
tence of Hamilton decompositions for finite graphs. The first conjecture concerns Cayley graphs:
Given a finitely generated abelian group (Γ,+) and a finite generating set S of Γ, the Cayley
graph G(Γ, S) is the multi-graph with vertex set Γ and edge multi-set

{(x, x+ g) : x ∈ Γ, g ∈ S}.

Conjecture 12.1.1 (Alspach [1, 2]). If Γ is an abelian group and S generates G, then the
simplification of G(Γ, S) has a Hamilton decomposition, provided that it is 2k-regular for some
k.

Note that if S∩−S = ∅, then G(Γ, S) is automatically a 2|S|-regular simple graph. If G(Γ, S)
is finite and 2-regular, then the conjecture is trivially true. Bermond, Favaron and Maheo [19]
showed that the conjecture holds in the case k = 2. Liu [95] proved certain cases of the conjecture
for finite 6-regular Cayley graphs, and his result was further extended by Westlund [128]. Liu
[96, 97] also gave some sufficient conditions on the generating set S for such a decomposition to
exist.
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Our main theorem in this paper is the following affirmative result towards the corresponding
infinite analogue of Conjecture 12.1.1:

Theorem 12.1.2. Let Γ be an infinite, finitely generated abelian group, and let S be a generating
set such that every element of S has infinite order. If the Cayley graph G = G(Γ, S) is one-ended,
then it has a Hamilton decomposition.

We remark that under the assumption that elements of S are non-torsion, the simplification
of G(Γ, S) is always isomorphic to a Cayley graph G(Γ, S′) with S′ ⊆ S and S′∩−S′ = ∅, and so
our theorem implies the corresponding version of Conjecture 12.1.1 for non-torsion generators,
in particular for Cayley graphs of Zn with arbitrary generators.

In the case when G = G(Γ, S) is two-ended, there are additional technical difficulties when
trying to construct a decomposition into Hamiltonian double-rays. In particular, since each
Hamiltonian double-ray must meet every finite edge cut an odd number of times, there can
be parity reasons why no decomposition exists. One particular two-ended case, namely where
Γ ∼= Z, has been considered by Bryant, Herke, Maenhaut and Webb [30], who showed that when
G(Z, S) is 4-regular, then G has a Hamilton decomposition unless there is an odd cut separating
the two ends.

The second conjecture about Hamiltonicity that we consider concerns Cartesian products of
graphs: Given two graphs G and H the Cartesian product (or product) G�H is the graph with
vertex set V (G)×V (H) in which two vertices (g, h) and (g′, h′) are adjacent if and only if either

• g = g′ and h is adjacent to h′ in H, or

• h = h′ and g is adjacent to g′ in G.

Kotzig [88] showed that the Cartesian product of two cycles has a Hamilton decomposition, and
conjectured that this should be true for the product of three cycles. Bermond extended this
conjecture to the following:

Conjecture 12.1.3 (Bermond [18]). If G1 and G2 are finite graphs which both have Hamilton
decompositions, then so does G1�G2.

Alspach and Godsil [5] showed that the product of any finite number of cycles has a Hamil-
ton decomposition, and Stong [120] proved certain cases of Conjecture 12.1.3 under additional
assumptions on the number of Hamilton cycles in the decomposition of G1 and G2 respectively.

Applying techniques we developed to prove Theorem 12.1.2, we show as our second main
result of this paper that Conjecture 12.1.3 holds for countably infinite multi-graphs.

Theorem 12.1.4. If G and H are countable multi-graphs which both have Hamilton decompo-
sitions, then so does their product G�H.

Note that the restriction to countable multi-graphs, i.e multi-graphs with countably many
vertices and edges, is necessary. Indeed the existence of a spanning double ray implies that G
and H have countable vertex sets. But then if G contains a countable edge cut, then so does
G�H. However, if H has uncountably many edges, then any Hamilton decomposition of G�H
must consist of uncountably many edge-disjoint double-rays, contradicting the existence of a
countable edge cut.

The paper is structured as follows: In Section 12.2 we mention some group theoretic results
and definitions we will need. In Section 12.3 we state our main lemma, the Covering Lemma,
and show that it implies Theorem 12.1.2. The proof of the Covering Lemma will be the content
of Section 12.4. In Section 12.5 we apply our techniques to prove Theorem 12.1.4. Finally, in
Section 12.6 we list open problems and possible directions for further work.
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12.2 Notation and preliminaries

If G = (V,E) is a graph, and A,B ⊆ V , we denote by E(A,B) the set of edges between A and
B, i.e. E(A,B) = {(x, y) ∈ E : x ∈ A, y ∈ B}. For A ⊆ V or F ⊆ E we write G[A] and G[F ] for
the subgraph of G induced by A and F respectively.

For A,B ⊆ Γ subsets of an abelian group Γ we write −A := {−a : a ∈ A} and A + B :=
{a+ b : a ∈ A, b ∈ B} ⊆ Γ. If ∆ is a subgroup of Γ, and A ⊂ Γ a subset, then A∆ =
{a+ ∆: a ∈ A} denotes the family of corresponding cosets. If g ∈ Γ we say that the order
of g is the smallest k ∈ N such that k · g = 0. If such a k exists, then g is a torsion element.
Otherwise, we say the order of g is infinite and g is a non-torsion element. For k ∈ N we write
[k] = {1, 2, . . . , k}.

The following terminology will be used throughout.

Definition 12.2.1. Given a graph G, an edge-colouring c : E(G)→ [s] and a colour i ∈ [s], the
i-subgraph is the subgraph of G induced by the edge set c−1(i), and the i-components are the
components of the i-subgraph.

Definition 12.2.2 (Standard and almost-standard colourings of Cayley graphs). Let Γ be an
infinite abelian group, S = {g1, g2, . . . , gs} a finite generating set for Γ such that every gi ∈ S
has infinite order, and let G be the Cayley graph G(Γ, S).

• The standard colouring of G is the edge colouring cstd : E(G)→ [s] such that cstd

(
(x, x+

gi)
)

= i for each x ∈ Γ, gi ∈ S.

• Given a subset X ⊆ V (G) we say that a colouring c is standard on X if c agrees with cstd

on G[X]. Similarly if F ⊂ E(G) we say that c is standard on F if c agrees with cstd on
F .

• A colouring c : E(G)→ [s] is almost-standard if the following are satisfied:

– there is a finite subset F ⊆ E(G) such that c is standard on E(G) \ F ;

– for each i ∈ [s] the i-subgraph is spanning, and each i-component is a double-ray.

Definition 12.2.3 (Standard squares and double-rays). Let Γ and S be as above. Given x ∈ Γ
and gi 6= gj ∈ S, we call

�(x, gi, gj) := {(x, x+ gi), (x, x+ gj), (x+ gi, x+ gi + gj), (x+ gj , x+ gi + gj)}

an (i, j)-square with base point x, and

!(x, gi) := {(x+ ngi, x+ (n+ 1)gi) : n ∈ Z}

an i-double-ray with base point x.
Moreover, given a colouring c : E(G(Γ, S))→ [s] we call �(x, gi, gj) and !(x, gi) an (i, j)-

standard square and i-standard double-ray if c is standard on �(x, gi, gj) and !(x, gi) respec-
tively.

Since Γ is an abelian group, every �(x, gi, gj) is a 4-cycle in G(Γ, S) (provided gi 6= −gj),
and since S contains no torsion elements of Γ, !(x, gk) really is a double-ray in the Cayley
graph G(Γ, S).

Let Γ be a finitely generated abelian group. By the Classification Theorem for finitely
generated abelian groups (see e.g. [64]), there are integers n, q1, . . . , qr such that Γ ∼= Zn ⊕⊕r

i=1 Zqi , where Zq is the additive group of the integers modulo q. In particular, for each Γ
there is an integer n and a finite abelian group Γfin such that Γ ∼= Zn ⊕ Γfin.
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The following structural theorem for the ends of finitely generated abelian groups is well-
known:

Theorem 12.2.4. For a finitely generated group Γ ∼= Zn ⊕ Γfin, the following are equivalent:

• n > 2,

• there exists a finite generating set S such that G(Γ, S) is one-ended, and

• for all finite generating sets S, the Cayley graph G(Γ, S) is one-ended.

Proof. See e.g. [117, Proposition 5.2] for the fact the number of ends of G(Γ, S) is independent
of the choice of the generating set S, and [117, Theorem 5.12] for the equivalence with the first
item.

A group Γ satisfying one of the conditions from Theorem 12.2.4 is called one-ended.

Corollary 12.2.5. Let Γ be an abelian group, S = {g1, . . . , gs} be a finite generating set such
that the Cayley graph G(Γ, S) is one-ended. Then, for every gi ∈ S of infinite order, there is
some gj ∈ S such that 〈gi, gj〉 ∼= (Z2,+).

Proof. Suppose not. It follows that in Γ/〈gi〉 every element has finite order, and since it is also
finitely generated, it is some finite group Γf such that Γ ∼= Z⊕Γf . Thus, by Theorem 12.2.4, G
is not one-ended, a contradiction.

12.3 The covering lemma and a high-level proof of Theorem 12.1.2

Every Cayley graph G(Γ, S) comes with a natural edge colouring cstd, where we colour an edge
(x, x + gi) with x ∈ Γ and gi ∈ S with the index i of the corresponding generating element
gi. If every element of S has infinite order, then every i-subgraph of G(Γ, S) consists of a
spanning collection of edge-disjoint double-rays, see Definitions 12.2.1 and 12.2.2. So, it is
perhaps a natural strategy to try to build a Hamiltonian decomposition by combining each of
these monochromatic collections of double-rays into a single monochromatic spanning double-
ray.

Rather than trying to do this directly, we shall do it in a series of steps: given any colour
i ∈ [s] where s = |S| and any finite set X ⊂ V (G), we will show that one can change the
standard colouring at finitely many edges, in particular only edges outside of X, so that there is
a single double-ray in the colour i which covers X. Moreover, we can ensure that the resulting
colouring maintains enough of the structure of the standard colouring that we can repeat this
process inductively: it should remain almost-standard, i.e. all monochromatic components are
still double-rays, see Definition 12.2.2. By taking an appropriate sequence of sets X1 ⊆ X2 ⊆ · · ·
exhausting the vertex set of G, and varying which colour i we consider, we can ensure that in the
limit, each colour class consists of a single spanning double-ray, giving us the desired Hamilton
decomposition.

In this section, we formulate our key lemma, namely the Covering Lemma 12.3.1, which
allows us to do each of these steps. We will then show how Theorem 12.1.2 follows from the
Covering Lemma. The proof of the Covering Lemma is given in Section 12.4.

Lemma 12.3.1 (Covering lemma). Let Γ be an infinite, one-ended abelian group, S = {g1, g2, . . . , gs}
a finite generating set such that every gi ∈ S has infinite order, and G = G(Γ, S) the corre-
sponding Cayley graph.

Then for every almost-standard colouring c of G, every colour i and every finite subset
X ⊆ V (G), there exists an almost-standard colouring ĉ of G such that
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• ĉ = c on E(G[X]), and

• some i-component in ĉ covers X.

Proof of Theorem 12.1.2 given Lemma 12.3.1. Fix an enumeration V (G) = {vn : n ∈ N}. Let
X0 = D′0 = D′−1 = . . . = D′−s+1 = {v0} and c0 = cstd. For each n > 1 we will recursively
construct almost-standard colourings cn : E(G) → [s], finite subsets Xn ⊂ V (G), (n mod s)-
components Dn of cn and finite paths D′n ⊆ Dn such that for every n ∈ N

1. Xn−1 ∪ {vn} ⊆ Xn,

2. V (D′n−1) ⊆ Xn,

3. Xn ⊆ V (D′n),

4. D′n properly extends the path D′n−s (the ‘previous’ path of colour n mod s) in both
endpoints of D′n−s, and

5. cn agrees with cn−1 on E(G[Xn]).

Suppose inductively for some n ∈ N that cn, Xn, Dn and D′n have already been defined.
Choose some Xn+1 ⊇ Xn ∪ {vn} large enough such that (1) and (2) are satisfied. Applying
Lemma 12.3.1 with input cn and Xn+1 provides us with a colouring cn+1 such that (5) is
satisfied and some (n+ 1 mod s)-component Dn+1 covers Xn+1. Since cn+1 is almost-standard,
Dn+1 is a double-ray. Furthermore, since cn+1 agrees with cn on E(G[Xn+1]), by the inductive
hypothesis it agrees with ck on E(G[Xk+1]) for each k 6 n.

Therefore, since D′n+1−s ⊂ Xn−s+2 is a path of colour (n+1 mod s) in cn+1−s, it follows that
D′n+1−s ⊂ Dn+1 and so we can extend D′n+1−s to a sufficiently long finite path D′n+1 ⊂ Dn+1

such that (3) and (4) are satisfied at stage n+ 1.

Once the construction is complete, we define T1, . . . , Ts ⊂ G by

Ti =
⋃

n≡i mod s

D′n

and claim that they form a decomposition of G into edge-disjoint Hamiltonian double-rays.
Indeed, by (4), each Ti is a double-ray. That they are edge-disjoint can be seen as follows:
Suppose for a contradiction that e ∈ E(Ti) ∩ E(Tj). Choose n(i) and n(j) minimal such that
e ∈ E(D′n(i)) ⊂ E(Ti) and e ∈ E(D′n(j)) ⊂ E(Tj). We may assume that n(i) < n(j), and
so e ∈ E(G[Xn(i)+1]) by (2). Furthermore, by (5) it follows that cn(j) agrees with cn(i) on
E(G[Xn(i)+1]). However by construction cn(j)(e) = j 6= i = cn(i)(e) contradicting the previous
line.

Finally, to see that each Ti is spanning, consider some vn ∈ V (G). By (1), vn ∈ Xn. Pick
n′ > n with n′ ≡ i mod s. Then by (3), D′n′ ⊂ Ti covers Xn′ which in turn contains vn, as
vn ∈ Xn ⊆ Xn′ by (1).

12.4 Proof of the Covering Lemma

12.4.1 Blanket assumption.

Throughout this section, let us now fix

• a one-ended infinite abelian group Γ with finite generating set S = {g1, . . . , gs} such that
every element of S has infinite order,
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• an almost-standard colouring c of the Cayley graph G = G(Γ, S),

• a finite subset X ⊆ Γ such that c is standard on V (G) \X,

• a colour i, say i = 1, and corresponding generator g1 ∈ S, for which we want to show
Lemma 12.3.1, and finally

• a second generator in S, say g2, such that ∆ := 〈g1, g2〉 ∼= (Z2,+), see Corollary 12.2.5.

12.4.2 Overview of proof

We want to show Lemma 12.3.1 for the Cayley graph G, colouring c, generator g1 and finite set
X. The cosets of 〈g1, g2〉 in Γ cover V (G), and in the standard colouring the edges of colour 1
and 2 form a grid on 〈g1, g2〉. So, since c is almost-standard, on each of these cosets the edges
of colour 1 and 2 will look like a grid, apart from some finite set.

Our aim is to use the structure in these grids to change the colouring c to one satisfying the
conclusions of Lemma 12.3.1. It will be more convenient to work with large finite grids, which
we require, for technical reasons, to have an even number of rows. This is the reason for the
slight asymmetry in the definition below.

Definition 12.4.1. Let gi, gj ∈ Γ. For N,M ∈ N we write

〈gi, gj〉N,M := {ngi +mgj : n,m ∈ Z, −N 6 n 6 N, −M < m 6M} ⊆ 〈gi, gj〉 ⊆ Γ.

The structure of our proof can be summarised as follows. First, in Section 12.4.3, we will
show that there is some N0 and some ‘nice’ finite set P of representatives of cosets of 〈g1, g2〉 such
that P + 〈g1, g2〉N0,N0 covers X. We will then, in Section 12.4.4 pick sufficiently large numbers
N0 < N1 < N2 < N3 and consider the grids P + 〈g1, g2〉N3,N1 . Using the structure of the grids
we will make local changes to the colouring inside P + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N0,N0) to construct
our new colouring ĉ. This new colouring ĉ will then agree with c on the subgraph induced by
P + 〈g1, g2〉N0,N0 ⊇ X, and be standard on V (G) \

(
P + 〈g1, g2〉N3,N1

)
, and hence, as long as we

ensure all the colour components are double-rays, almost-standard.
These local changes will happen in three steps. First, in Step 1, we will make local changes

inside x` + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) for each x` ∈ P , in order to make every i-component
meeting P + 〈g1, g2〉N2,N1 a finite cycle.

Next, in Step 2, we will make local changes inside x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N1,N1) for each
x` ∈ P , in order to combine the cycles meeting this translate of the grid into a single cycle.

Finally, in Step 3, we will make local changes inside P + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0), in
order to join the cycles for different x` into a single cycle covering P + 〈g1, g2〉N0,N0 . We then
make one final local change to turn this finite cycle into a double-ray.

12.4.3 Identifying the relevant cosets

Lemma 12.4.2. There exist N0 ∈ N and a finite set P = {x0, . . . , xt} ⊂ Γ such that

• P∆ = {x0 + ∆, . . . , xt + ∆} is a path in G(Γ/∆, (S \ {g1, g2})∆), and

• X ⊆ P + 〈g1, g2〉N0,N0.

Proof. Since X is finite, there is a finite set Y = {y1, . . . , yk} ⊂ Γ such that the cosets in
Y ∆ = {y1 + ∆, . . . , yk + ∆} are all distinct and cover X. Moreover, since every (y` + ∆) ∩X is
finite, there exists N0 ∈ N such that

(y` + 〈g1, g2〉) ∩X = (y` + 〈g1, g2〉N0,N0) ∩X
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for all 1 6 ` 6 k. Then X ⊆ Y + 〈g1, g2〉N0,N0 .
Next, by a result of Nash-Williams [100], every Cayley graph of a countably infinite abelian

group has a Hamilton double-ray, and it is a folklore result (see [129]) that every Cayley
graph of a finite abelian group has a Hamilton cycle. So in particular, the Cayley graph of
(Γ/∆, (S \ {g1, g2})∆), has a Hamilton cycle or double-ray, say H. Let P ⊇ Y be a finite set of
representatives of the cosets of ∆ such that P∆ is the set of vertices of a subpath of H. It is
clear that P is as required.

• For the rest of this section let us fix N0 ∈ N and P = {x0, . . . , xt} ⊂ Γ to be as given by
Lemma 12.4.2.

12.4.4 Picking sufficiently large grids

In order to choose our grids large enough to be able to make all the necessary changes to our
colouring, we will first need the following lemma, which guarantees that we can find, for each
k 6= 1, 2 and x ∈ Γ, many distinct standard k-double-rays which go between the cosets x + ∆
and (x+ gk) + ∆.

Lemma 12.4.3. For any gk ∈ S \{g1, g2} and any pair of distinct cosets x+∆ and (gk+x)+∆,
there are infinitely many distinct standard k-double-rays R for the colouring c with E(R)∩E(x+
∆, (gk + x) + ∆) 6= ∅.

Proof. It clearly suffices to prove the assertion for c = cstd. We claim that either

R1 = {!(x+mg1, gk) : m ∈ Z} or R2 = {!(x+mg2, gk) : m ∈ Z}

is such a collection of disjoint standard k-double-rays.
Suppose that R1 is not a collection of disjoint double-rays. Then there are m 6= m′ ∈ Z and

n, n′ ∈ Z such that
mg1 + ngk = m′g1 + n′gk.

Since g1 has infinite order, it follows that n 6= n′, too, and so we can conclude that there are
`, `′ ∈ Z \ {0} such that `g1 = `′gk. Similarly, if R2 is not a collection of disjoint double-rays,
then we can find q, q′ ∈ Z \ {0} such that qg2 = q′gk. However, it now follows that

q′`g1 = q′(`′gk) = `′(q′gk) = `′qg2,

contradicting the fact that 〈g1, g2〉 ∼= (Z2,+). This establishes the claim.
Finally, observe that if sayR1 is a disjoint collection, then for every Rm =!(x+mg1, gk) ∈

R1 we have (x+mg1, x+mg1 + gk) ∈ E(Rm) ∩ E(x+ ∆, (gk + x) + ∆) as desired.

We are now ready to define our numbers N0 < N1 < N2 < N3. Recall that N0 and
P = {x0, . . . , xt} are given by Lemma 12.4.2. For each ` ∈ [t], let gn(`) be some generator in
S \ {g1, g2} that induces the edge between x`−1 + ∆ and x` + ∆ on the path P∆. Note that
n(`) ∈ [s] \ {1, 2} for all `.

By Lemma 12.4.3, we may find t2 many disjoint standard double-rays

R =
{
Rk` : 1 6 k, ` 6 t

}
such that for every `, the double-rays in

{
Rk` =!

(
yk` , gn(`)

)
: k ∈ [t]

}
are standard n(`)-double-

rays containing an edge

ek` = (yk` , y
k
` + gn(`)) ∈ E(Rk` ) ∩ E(x`−1 + ∆, x` + ∆)
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so that all T k` = �
(
yk` , g1, gn(`)

)
are (1, n(`))-standard squares for c which have empty intersection

with {x`−1, x`}+ 〈g1, g2〉N0,N0 . Furthermore we may assume that these standard squares are all
edge-disjoint. Then

• let N1 > N0 be sufficiently large such that the subgraph induced by P + 〈g1, g2〉N1−3,N1−3

contains all standard squares T k` mentioned above.

• Let N2 be arbitrary with N2 > 5N1.

• Let N3 be arbitrary with N3 > N2 + 2N1.

12.4.5 The cap-off step

Our main tool for locally modifying our colouring is the following notion of ‘colour switchings’,
which is also used in [95]. Informally, given a four cycle on which the edge colouring alternates
between two colours, to perform a colour switching on this square we exchange the colours of
the edges.

Definition 12.4.4 (Colour switching of standard squares). Given an edge colouring c : E(G(Γ, S))→
[s] and an (i, j)-standard square �(x, gi, gj), a colour switching on �(x, gi, gj) changes the
colouring c to the colouring c′ such that

• c′ = c on E \�(x, gi, gj),

• c′
(
(x, x+ gi)

)
= c′

(
(x+ gj , x+ gi + gj)

)
= j,

• c′
(
(x, x+ gj)

)
= c′

(
(x+ gi, x+ gi + gj)

)
= i.

It would be convenient if colour switchings maintained the property that a colouring is
almost-standard. Indeed, if c is standard on E(G) \ F then c′ is standard on E(G) \ (F ∪
�(x, gi, gj)). Also, it is a simple check that if the i and j-subgraphs of G for c are 2-regular
and spanning, then the same is true for c′. However, some i or j-components may change from
double-rays to finite cycles, and vice versa.

Step 1 (Cap-off step). There is a colouring c′ obtained from c by colour switchings of finitely
many (1, 2)-standard squares such that

• c′ = c on E(G[X]);

• every 1-component in c′ meeting P + 〈g1, g2〉N2,N1 is a finite cycle intersecting both P +
(〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and P + 〈g1, g2〉N1,N1;

• every other 1-component, and all other components of all other colour classes of c′ are
double-rays;

• c′ is standard outside of P + 〈g1, g2〉N3,N1 and inside of P + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0);

• for each x` ∈ P , the set of vertices

{xl + ng1 +mg2 : N1 6 |n| 6 N2,m ∈ {N1, N1 − 1}}

is contained in a single 1-component of c′.

258



Proof. For ` ∈ [t] and q ∈ [N1] let R`q = �
(
v`q, g1, g2

)
and L`q = �

(
w`q, g1, g2

)
be the (1, 2)-squares

with base point v`q = x` + (N3 + 1− 2q) · g1 + (N1 + 1− 2q) · g2 and w`q = x` − (N3 + 2− 2q) ·
g1 + (N1 + 1− 2q) · g2 respectively. The square L`q is the mirror image of R`q with respect to the
y-axis of the grid x` + 〈g1, g2〉, however the base points are not mirror images, accounting for
the slight asymmetry in the definitions.

Since N3 > N2 + 2N1, it follows that

R`q ∪ L`q ⊆ E(x` + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1))

for all q ∈ [N1], and so by assumption on c, all R`q and L`q are indeed standard (1, 2)-squares. We
perform colour switchings on R`q and L`q for all ` ∈ [t] and q ∈ [N1], and call the resulting edge
colouring c′. It is clear that c′ = c on E(G[X]) and that c′ is standard outside of P+〈g1, g2〉N3,N1

and inside of P + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0). Let C ⊂ G denote the region consisting of all

〈g1, g2〉N1,N1

〈g1, g2〉N2,N1

〈g1, g2〉N3,N1

x` + 〈g1, g2〉N0,N0

x`

x

x

x

x

x

x

x

x

x

x

Figure 12.1: Performing colour switchings of standard squares at positions indicated by ‘x’ in a
copy x` + 〈g1, g2〉N3,N1 of a finite grid.

vertices that lie in x` + (〈g1, g2〉N3,N1 for some ` between a pair L`q and R`q for some q, i.e.

C =
t⋃

`=1

N1⋃
q=1

2⋃
m=1

{x` + ng1 + (N1 +m− 2q)g2 : |n| 6 N3 + 1− 2q}.

Then P + 〈g1, g2〉N2,N1 ⊆ C. By construction, there are no edges of colour 1 in c′ leaving C,
that is, E(C, V (G) \C)∩ c′−1(1) = ∅. In particular, since the 1-subgraph of G under c′ remains
2-regular and spanning, as remarked above, all 1-components under c′ inside C are finite cycles,
whose union covers C.

Also, since each 1-component of c is a double-ray, it must leave the finite set P +〈g1, g2〉N3,N1

and hence meets some R`q or L`q. Therefore, by construction each 1-component of c′ inside C
meets some R`q or L`q and so, since c′ is standard outside of P + 〈g1, g2〉N0,N0 except at the
squares R`q or L`q, each such 1-component meets both P + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and
P + 〈g1, g2〉N1,N1 .

Moreover, all other colour components remain double-rays. This is clear for all k-components
of G if k 6= 1, 2 (as the colours switchings of (1, 2)-standard squares did not affect these other
colours). However, it is also clear for the 1-coloured double-rays outside of C and also for all
2-coloured components, as we chose our standard squares R`q and L`q ‘staggered’, so as not to
create any finite monochromatic cycles, see Figure 12.1 (recall that every x` + ∆ is isomorphic
to the grid).
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Finally, since N1 > N0, the edge set

{(x` + ng1 +N1g2, x` + (n+ 1)g1 +N1g2) : −N3 6 |n| < N3 − 1}
∪
{

(v`1, v
`
1 + g2), ((w`1 + g1, w

`
1 + g1 + g2))

}
∪ {(x` + ng1 + (N1 − 1)g2, x` + (n+ 1)g1 + (N1 − 1)g2)} : −N3 6 n < −N1

∪ {(x` + ng1 + (N1 − 1)g2, x` + (n+ 1)g1 + (N1 − 1)g2)} : N1 6 n < N3

meets only R`1 and L`1 and therefore is easily seen to be part of the same 1-component of c′. In
Figure 12.1, these edges correspond to the red line at the top, and the two lines below it on
either side of x` + 〈g1, g2〉N1,N1 .

12.4.6 Combining cycles inside each coset of ∆

In the previous step we chose the (1, 2)-standard squares at which we performed colour switchings
in a staggered manner in the grids xl + 〈g1, g2〉N3,N1 , so that we could guarantee that all the
2-components were still double-rays afterwards. In later steps we will no longer be able to be as
explicit about which standard squares we perform colour switchings at, and so we will require
the following definitions to be able to say when it is ‘safe’ to perform a colour switching at a
standard square.

Definition 12.4.5 (Crossing edges). Suppose R = {(vi, vi+1) : i ∈ Z} is a double-ray and e1 =
(vj1 , vj2) and e2 = (vk1 , vk2) are edges with j1 < j2 and k1 < k2. We say that e1 and e2 cross on
R if either j1 < k1 < j2 < k2 or k1 < j1 < k2 < j2.

Lemma 12.4.6. For an edge-colouring c : E(G(Γ, S)) → [s], suppose that �(x, gi, gk) is an
(i, k)-standard square with gi 6= −gk, and further that the two k-coloured edges (x, x + gk) and
(x+ gi, x+ gi + gk) of �(x, gi, gk) lie on the same standard k-double-ray R =!(x, gk). Then
the two i-coloured edges of �(x, gi, gk) cross on R.

Proof. Write e1 = (x, x + gi) and e2 = (x + gk, x + gk + gi) for the two i-coloured edges of
�(x, gi, gk). The assumption that (x, x+gk) and (x+gi, x+gi+gk) both lie on!(x, gk) implies
that gi = rgk for some r ∈ Z \ {−1, 0, 1}. If r > 1, we have x < x + gk < x + gi < x + gk + gi
(where < denotes the natural linear order on the vertex set of the double-ray), and if r < −1,
we have x+ gi < x+ gk + gi < x < x+ gk, and so the edges e1 and e2 indeed cross on R.

Definition 12.4.7 (Safe standard square). Given an edge colouring c : E(G(Γ, S))→ [s] we say
an (i, k)-standard square T = �(x, gi, gk) is safe if gi 6= −gk and either

• the k-components for c meeting T are distinct double-rays, or

• there is a unique k-component for c meeting T , which is a double-ray on which (x, x+ gi)
and (x+ gk, x+ gi + gk) cross.

The following lemma tells us, amongst other things, that if we perform a colour switching
at a safe (1, k)-standard square then the k-components in the resulting colouring meeting that
square will still be double-rays.

Lemma 12.4.8. Let c : E(G(Γ, S)) → [s] be an edge colouring, T = �(x, gi, gk) be an (i, k)-
standard square with gi 6= −gk, and c′ be the colouring obtained by performing a colour switching
on T . Then the following statements are true:
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• If there are two distinct i-components C1 and C2 for c meeting T which are both 2-regular,
at least one of which is a finite cycle, then there is a single i-component for c′ meeting T
which is 2-regular and whose vertex set is V (C1) ∪ V (C2);

• If the k-components for c meeting T are distinct double-rays then the k-components for c′

meeting T are distinct double-rays;

• If there is a unique k-component for c meeting T , which is a double-ray on which (x, x+gi)
and (x+ gk, x+ gi + gk) cross, then there is unique k-component for c′ meeting T , which
is a double-ray.

ei

e′i
ek e′k 7→

e′k

ek

e′i

ei

. . .

. . .

. . .

. . .

7→

. . .

. . .

. . .

. . .

Figure 12.2: The two situations in Lemma 12.4.8 with i in red and k in blue.

Proof. Let us write ei = (x, x + gi), ek = (x, x + gk), e
′
i = (x + gk, x + gi + gk) and e′k =

(x+ gi, x+ gi + gk), so that �(x, gi, gj) = {ei, ek, e′i, e′k}.
For the first item, let the i-components for c be ei ∈ C1 and e′i ∈ C2, where without loss

of generality C2 is a finite cycle. Then C2 − e′i is a finite path, and C1 − ei has at most 2
components, one containing x and one containing x+ gi. Hence, the i-component for c′ meeting
T , (C1 ∪ C2)− {ei, e′i}+ {ek, e′k}, is connected and has vertex set V (C1) ∪ V (C2).

For the second item, let the k-components for c be ek ∈ D1 and e′k ∈ D2. Then D1 − ek has
two components, a ray starting at x and a ray starting at x + gk. Similarly, D2 − e′k has two
components, a ray starting at x+gi and a ray starting at x+gi+gk. Hence, the k-components for
c′ meeting T , which are the components of (D1∪D2)−{ek, e′k}+{ei, e′i}, are distinct double-rays.

Finally, if there is a single k-component D for c meeting T such that D is a double-ray, then
D − {ek, e′k} consist of three components. Since ei and e′i cross on D there are two cases as
to what these components are. Either the components consist of two rays, starting at x and
x+gi+gk and a finite path from x+gk to x+gi, or the components consist of two rays, starting
at x + gi and x + gk, and a finite path from x + gi + gk to x. In either case, the k-component
for c′ meeting T , namely D − {ek, e′k}+ {ei, e′i}, is a double-ray.

Lemma 12.4.8 is also useful as the first item allows us to use (1, k) colour switchings to
combine two 1-components into a single 1-component which covers the same vertex set.

Step 2 (Combining cycles step). We can change c′ from Step 1 via colour switchings of finitely
many (1, 2)-standard squares to a colouring c′′ satisfying

• c′′ = c′ = c on E(G[X]);

• every 1-component in c′′ meeting P + 〈g1, g2〉N2,N1 is a finite cycle intersecting both P +
(〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and P + 〈g1, g2〉N1,N1;
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• every other 1-component, and all other components of all other colour classes of c′′ are
double-rays;

• every 1-component in c′′ meeting some xk + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) covers xk +
(〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0);

• c′′ is standard outside of P + 〈g1, g2〉N3,N1 and inside of P + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0).

Proof. Our plan will be to go through the ‘grids’ xk + 〈g1, g2〉N2,N1 in order, from k = 0 to
t, and use colour switchings to combine all the 1-components which meet xk + (〈g1, g2〉N2,N1 \
〈g1, g2〉N0,N0) into a single 1-component. We note that, since c′ is not standard on X, it may be
the case that these 1-components also meet xk′ + 〈g1, g2〉N2,N1 for k′ 6= k.

We claim inductively that there exists a sequence of colourings c′ = c0, c1, . . . , ct = c′′ such
that for each 0 6 ` 6 t:

• c` = c′ = c on E(G[X]);

• every 1-component in c` meeting P + 〈g1, g2〉N2,N1 is a finite cycle intersecting both P +
(〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and P + 〈g1, g2〉N1,N1 ;

• for every k 6 `, every 1-component in c` meeting xk + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) covers
xk + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0);

• for every k > `, c` = c′ on xk + 〈g1, g2〉N2,N1

• every other 1-component, and all other components of all other colour classes of c` are
double-rays;

• c` is standard outside of P + 〈g1, g2〉N3,N1 and inside of P + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0).

In Step 1 we constructed c0 = c′ such that this holds. Suppose that 0 < ` 6 t, and that we
have already constructed ck for k < `.

For q ∈ [4N1 − 2] we define Tq = �(vq, g1, g2) to be the (1, 2)-square with base point

vq =

{
x` + (N2 + 2− 2q)g1 + (N1 − q)g2 if q 6 2N1 − 1, and

x` − (N2 + 3− 2q′)g1 + (N1 − q′)g2 if q′ = q − (2N1 − 1) > 1.

With these definitions, T2N1−1+q is the mirror image of Tq for all q ∈ [2N1− 1] along the y-axis.
Moreover, since N2 > 5N1, each Tq is contained within xk + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N1,N1), see
Figure 12.3.

We will combine the 1-components in c`−1 which meet x`+ (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) into
a single component by performing colour switchings at some of the (1, 2)-squares Tq. Let us
show first that most of the induction hypotheses are maintained regardless of the subset of the
Tq we make switchings at.

We note that, since c`−1 is standard inside of x`+(〈g1, g1〉N2,N1 \〈g1, g2〉N0,N0) and outside of
P + 〈g1, g2〉N3,N1 , and g1 6= −g2, each Tq is a safe (1, 2)-standard square for c`−1. Furthermore,
by construction, even if we perform colour switchings at any subset of the Tq, the remaining
squares remain standard and safe.

Hence, by Lemma 12.4.8 and the induction assumption, after performing colour switchings at
any subset of the standard squares Tq all 2-components of the resulting colouring will be double-
rays. Secondly, these colour switchings will not change the colouring outside of P + 〈g1, g2〉N2,N1

and inside of P + 〈g1, g2〉N1,N1 , or in any xk + 〈g1, g2〉N2,N1 with k 6= `. In particular, every
1-component not meeting P + 〈g1, g2〉N2,N1 will still be a double-ray. Finally, again by Lemma
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〈g1, g2〉N1,N1

〈g1, g2〉N2,N1

x` + 〈g1, g1〉N0,N0

x`

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 12.3: The standard squares Tq, with a colour switching performed at T2.

12.4.8, every 1-component of the resulting colouring meeting P + 〈g1, g2〉N2,N1 will be a finite
cycle which covers the vertex set of some union of 1-components in c`−1, and hence will intersect
both P + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and P + 〈g1, g2〉N1,N1 .

Let us write eq = (vq, vq + g1) for each q ∈ [4N1 − 2]. Since c`−1 = c′ on x` + 〈g1, g2〉N2,N1 ,
and by Step 1 c′ is standard on x`+ (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0), each 1-component of c`−1 that
meets x`+ (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) contains at least one eq. Also, e1 and e2N1 belong to the
same 1-component by the last claim in Step 1. Let us write C for the collection of such cycles,
and consider the map

α : C → {1, . . . , 4N1 − 1}, C 7→ min {q : eq ∈ E(C)},

which maps each cycle to the first eq that it contains. Since C is a disjoint collection of cycles,
the map α is injective. Now let c` be the colouring obtained from c`−1 by switching all standard
squares in

T = {Tq : q ∈ im(α)} \ {T1}.

We claim that c` satisfies our induction hypothesis for `. By the previous comments it will
be sufficient to show

Claim 12.4.9. Every 1-component in c` meeting x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) covers x` +
(〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0).

To see this, we index C = {C1, . . . , Cr} such that u < v implies α(Cu) < α(Cv), and consider
the sequence of colourings {cz : z ∈ [r]} where c1 = c`−1 and each cz is obtained from cz−1 by
switching the standard square Tα(Cz).

Let us show by induction that for every z ∈ [r] there is a 1-component of cz which covers⋃
y6z Cy. For z = 1 the claim is clearly true. So, suppose z > 1. Since α(Cz) is minimal in
{α(Cy) : y > z} it follows that eq ∈

⋃
y<z Cy for every q < α(Cz). Note that, since c`−1 = c′ on

x` + 〈g1, g2〉N2,N1 , it follows from the final claim in the Cap-off step that C1 contains both e1

and e2N1 , and so α(Cz) 6= 2N1.

Consider the standard square Tα(Cz). Since c`−1 = c′ on x` + 〈g1, g2〉N2,N1 , by construction
the edge ‘opposite’ to eα(Cz) in Tα(Cz), that is, eα(Cz) + gj , is in the same 1-component in c`−1

as eα(Cz)−1, and hence is contained in
⋃
y<z Cy.

Therefore, by Lemma 12.4.8, after performing an (1, 2)-colour switching at Tα(Cz), the 1-
component in cz contains

⋃
y6z Cy.

Hence, there is a 1-component of c` = cr which covers
⋃
y6r Cy, and so there is a unique

1-component of c` meeting x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) which covers it, establishing the
claim.
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12.4.7 Combining cycles across different cosets of ∆

In the third and final step we join the finite cycles covering each x`+(〈g1, g2〉N1,N1 \〈g1, g2〉N0,N0)
into a single finite cycle, and then make one final switch to absorb this cycle into a double-ray.
The resulting colouring will then satisfy the conditions of Lemma 12.3.1.

Step 3 (Combining cosets step). We can change c′′ from the previous lemma to an almost-
standard colouring ĉ such that

• ĉ = c′′ = c′ = c on E(G[X]);

• Some component in colour 1 covers P + 〈g1, g2〉N1,N1.

Proof. Recall that P = {x0, . . . , xt} is such that P∆ = {x0 + ∆, . . . , xt + ∆} is a finite, graph-
theoretic path in the Cayley graph of the quotient Γ/∆ with generating set (S \ {g1, g2})∆.
Moreover, recall from Section 12.4.4 that N1 > N0 was chosen so that for the initial colouring c
there were t2 many disjoint standard double-rays

R =
{
Rk` : 1 6 k, ` 6 t

}
such that for every `, the double-rays in

{
Rk` =!

(
yk` , gn(`)

)
: k ∈ [t]

}
are standard n(`)-double-

rays containing an edge

ek` = (yk` , y
k
` + gn(`)) ∈ E(Rk` ) ∩ E(x`−1 + ∆, x` + ∆)

so that all T k` = �
(
yk` , g1, gn(`)

)
are edge-disjoint (1, n(`))-standard squares for the colouring c

contained in the subgraph induced by P + 〈g1, g2〉N1−3,N1−3 which have empty intersection with
{x`−1, x`} + 〈g1, g2〉N0,N0 . However, since we only altered the (1, 2)-subgraphs of G in Step 1
and 2, it is clear that all these standard double-rays and standard squares for c remain standard
also for the colourings c′ and in particular c′′.

x0
+ 〈g1,

g2〉N1,N
1

x0
+ 〈g

1, g
2〉N0

,N0

x0

x1
+ 〈g1,

g2〉N1,N
1

x1
+ 〈g

1, g
2〉N0

,N0

x1

x2
+ 〈g1,

g2〉N1,N
1

x2
+ 〈g

1, g
2〉N0

,N0

x2

gn(1) gn(2)

. . .

Figure 12.4: Using (1, n(`))-standard squares to join up different cosets. For this picture, we
assume wlog that x`+1 = x` + gn(`+1).

We claim that there exists a function k : [t]→ [t]∪ {⊥} such that iteratively switching T
k(`)
`

(or not doing anything at all if k(`) = ⊥) results in a sequence of colourings c′′ = c0, c1, . . . , ct
such that for each 0 6 ` 6 t,
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1. a single finite 1-component in c` covers {x0, . . . , x`}+ (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0),

2. for every k, every 1-component in c` meeting xk + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0) is a finite
cycle covering xk + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0), and

3. every other 1-component, and all other components of all other colour classes in c` are
double-rays.

In Step 2 we constructed a colouring c0 = c′′ for which properties (1)–(3) are satisfied. Now
suppose that ` > 1, and that the colouring c`−1 obtained by switching the standard squares{
T
k(`′)
`′ : `′ ∈ [`− 1], k(`′) 6= ⊥

}
satisfies (1)–(3). By construction, each such standard square

T
k(`′)
`′ is has an edge in common with the ray R

k(`′)
`′ and potentially one further n(`′)-component.

But since we had reserved more that `−1 different rays R1
` , . . . , R

t
`, it follows that some ray RK`

remains a standard n(`)-coloured component for c`−1.
Both edges (yK` , y

K
` +gi) and (yK` +gn(`), y

K
` +gn(`) +gi) of TK` are contained in {x`−1, x`}+

(〈g1, g2〉N1,N1 \〈g1, g2〉N0,N0), and hence are, by assumption (2), covered by finite 1-cycles in c`−1.
If both edges lie in the same finite 1-cycle, there is nothing to do and we set k(`) := ⊥, so that
c` = c`−1. However, if they lie on different finite cycles, set k(`) := K. Then, in our procedure
we perform a colour switching on the standard square T

k(`)
` and claim that the resulting c` is as

required. By Lemma 12.4.8, the two finite 1-components merge into a single finite cycle, and so
(1) and (2) are certainly satisfied for c`.

To see (3), we need to verify that T
k(`)
` is, when we perform the switching, safe. However,

T
k(`)
` was chosen so that the edge (y

k(`)
` , y

k(`)
` + gn(`)) ∈ T

k(`)
` lies on a standard double-ray

R = R
k(`)
` of c`−1. Also, by the inductive assumption (3), the second n(`)-coloured edge (y

k(`)
` +

gi, y
k(`)
` +gi+gn(`)) ∈ T k(`)

` lies on an n(l)-coloured double-ray R′ in c`−1. If R and R′ are distinct,
then T

k(`)
` is safe, and ifR = R′ then, sinceR is a standard n(`)-double-ray, Lemma 12.4.6 implies

that T
k(`)
` is safe. Hence c` satisfies (3). This completes the induction step.

Thus, by (1) and (3), we obtain an edge-colouring ct for G such that a single finite 1-
component covers P + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0), and all other 1-components and all other
components of other colour classes in ct are double-rays. Furthermore, since every 1-component
which meets P + 〈g1, g2〉N0,N0 must meet P + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0), it follows that the
1-component in fact covers P + 〈g1, g2〉N0,N0 . Moreover, since T

k(`)
` ⊂ P + 〈g1, g2〉N1−3,N1−3 for

all ` ∈ [t], it follows that ct is standard on x0 + (〈g1, g2〉N1,∞ \ 〈g1, g2〉N1−3,N1−3), and that it
is standard outside of P + 〈g1, g2〉N3,N1 . Hence, the square �(x, g1, g2) with base point x =
x0 + (N1 − 2)g1 +N1g2 is a standard (1, 2)-square such that

• the edge (x, x+ g1) lies on the finite 1-cycle of ct,

• the edge (x+g2, x+g2+g1) lies on a standard 1-double-ray!(x+ g2, g1) (lying completely
outside of P + 〈g1, g2〉N3,N1) of ct, and

• the edges (x, x+g2) and (x+g1, x+g2+g1) lie on distinct standard 2-double-rays!(x, g2)
and !(x+ g1, g2) ⊆ x0 + (〈g1, g2〉N1,∞ \ 〈g1, g2〉N1−3,N1−3).

Therefore, we may perform a colour switching on �(x, g1, g2), which results, by Lemma 12.4.8,
in an almost-standard colouring of G such that a single 1-component covers P + 〈g1, g2〉N1,N1 ,
and hence X.

12.5 Hamiltonian decompositions of products

The techniques from the previous section can also be applied to give us the following general
result about Hamiltonian decompositions of products of graphs.
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Theorem 12.1.4. If G and H are countable multi-graphs which both have Hamilton decompo-
sitions, then so does their product G�H.

Proof. Suppose that {Ri : i ∈ I} and {Sj : j ∈ J} form decompositions of G and H into edge-
disjoint Hamiltonian double-rays, where I, J may be finite or countably infinite. Note that, for
each i ∈ I, j ∈ J , Ri�Sj is a spanning subgraph of G�H, and is isomorphic to the Cayley graph
of (Z2,+) with the standard generating set.

Let πG : G�H → G and πH : G�H → H the projection maps from G�H onto the respective
coordinates. As our standard colouring for G�H we take the map

c : E(G�H)→ I∪̇J, e 7→
{
i if e ∈ π−1

G (E(Ri)),

j if e ∈ π−1
H (E(Sj)).

Then each Ri�Sj is 2-coloured (with colours i and j), and this colouring agrees with the standard
colouring of CZ2 = G((Z2,+), {(1, 0), (0, 1)}) from Section 12.3. We also define an almost-
standard colouring of G�H as in Definition 12.2.2.

We may suppose that V (G) = N = V (H). Fix a surjection f : N → I ∪ J such that every
colour appears infinitely often.

By starting with c0 = c and applying Lemma 12.3.1 recursively inside the spanning subgraphs
Rf(k)�S1, if f(k) ∈ I, or inside R1�Sf(k), for f(k) ∈ J , we find a sequence of almost-standard
edge-colourings ck : G�H → I ∪ J and natural numbers Mk 6 Nk < Mk+1 such that

• ck+1 agrees with ck on the subgraph of G�H induced by [0,Mk+1]2,

• there is a finite path Dk of colour f(k) in ck covering [0, Nk]
2, and

• Mk+1 is large enough such that Dk ⊂ [0,Mk+1]2.

To be precise, suppose we already have a finite path Dk of colour f(k) in ck covering [0, Nk]
2,

and at stage k + 1 we have say f(k + 1) ∈ I, and so we are considering Rf(k+1)�S1
∼= CZ2 . We

choose

• Mk+1 > Nk large enough such that Dk ⊂ [0,Mk+1]2 ⊂ G�H, and

• Nk+1 > Mk+1 large enough such that Q1 = [0, Nk+1]2 ⊂ G�H contains all edges where ck
differs from the standard colouring c.

Next, consider an isomorphism h : Rf(k+1)�S1
∼= CZ2 . Pick a ‘square’ Q2 ⊂ Rf(k+1)�S1 with

Q1 ⊂ Q2, i.e. a set Q2 such that h restricted to Q2 is an isomorphism to the subgraph of
CZ2 induced by [−Ñk+1, Ñk+1]2 ⊆ Z2 for some Ñk+1 ∈ N, and then apply Lemma 12.3.1 to
Rf(k+1)�S1 and Q2 to obtain a finite path Dk+1 of colour f(k + 1) in ck+1 covering Q2.

It follows that the double-rays {Ti : i ∈ I} ∪ {Tj : j ∈ J} with T` =
⋃
k∈f−1(`)Dk give the

desired decomposition of G�H.

12.6 Open Problems

As mentioned in Section 12.2, the finitely generated abelian groups can be classified as the groups
Zn⊕⊕r

i=1 Zqi , where n, r, q1, . . . , qr ∈ Z. Theorem 12.1.2 shows that Alspach’s conjecture holds
for every such group with n > 2, as long as each generator has infinite order. The question
however remains as to what can be said about Cayley graphs G(Γ, S) when S contains elements
of finite order.
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Problem 9. Let Γ be an infinite, finitely-generated, one-ended abelian group and S be a gen-
erating set for Γ which contains elements of finite order. Show that G(Γ, S) has a Hamilton
decomposition.

Alspach’s conjecture has also been shown to hold when n = 1, r = 0, and the generating
set S has size 2, by Bryant, Herke, Maenhaut and Webb [30]. In a paper in preparation [60],
the first two authors consider the general case when n = 1 and the underlying Cayley graph is
4-regular. Since the Cayley graph is 2-ended, it can happen for parity reasons that no Hamilton
decomposition exists. However, this is the only obstruction, and in all other cases the Cayley
graphs have a Hamilton decomposition. Together with the result of Bermond, Favaron and
Maheo [19] for finite abelian groups, and the case Γ ∼= (Z2,+) of Theorem 12.1.2, this fully
characterises the 4-regular connected Cayley graphs of finite abelian groups which have Hamilton
decompositions. A natural next step would be to consider the case of 6-regular Cayley graphs.

Problem 10. Let Γ be a finitely generated abelian group and let S be a generating set of Γ such
that C(Γ, S) is 6-regular. Characterise the pairs (Γ, S) such that G(Γ, S) has a decomposition
into spanning double-rays.
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[99] W. Mader. Über n-fach zusammenhängende Eckenmengen in Graphen. Journal of Com-
binatorial Theory, Series B, 25(1):74–93, 1978.

[100] C. St. J. A. Nash-Williams. Abelian groups, graphs and generalized knights. In Math-
ematical Proceedings of the Cambridge Philosophical Society, volume 55, pages 232–238.
Cambridge Univ Press, 1959.

[101] C. St. J. A. Nash-Williams. On well-quasi-ordering infinite trees. Mathematical Proceedings
of the Cambridge Philosophical Society, 61(3):697–720, 1965.

[102] C. St. J. A. Nash-Williams. Reconstruction of locally finite connected graphs with at least
three infinite wings. Journal of Graph Theory, 11(4):497–505, 1987.

[103] C. St. J. A. Nash-Williams. Reconstruction of infinite graphs. Discrete Mathematics,
95(1):221–229, 1991.

[104] C. St. J. A. Nash-Williams. Reconstruction of locally finite connected graphs with two
infinite wings. Discrete Mathematics, 92(1):227–249, 1991.
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