Introduction O	Compacted trees	Weighted Dyck paths 0000	Heuristics 0000	Bounds	Summing up OO

Compacted binary trees, stretched exponential and asymptotic behavior of recurrences

Wenjie Fang, Université Gustave Eiffel Joint work with Andrew Elvey Price and Michael Wallner

14 March 2024, Journées ALEA, CIRM

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
•		0000	0000	0000000000	00
What is	s this talk a	bout?			

- A "new method" to get asymptotic behavior of certain recurrences
- ... without generating function (gasp!)
- ... illustrated with compacted trees as example
- ... and some progress for generalization.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	●00000	0000	0000	0000000000	00
_					

We try to compress a binary tree ...

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	●00000	0000	0000	0000000000	OO

... by finding identical sub-trees ...

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	●00000	0000	0000	0000000000	OO

... and storing them only once ...

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	●00000	0000	0000	0000000000	00
_					

... by finding identical sub-trees ...

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	●00000	0000	0000	0000000000	00
~					

... and storing them only once ...

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	●00000	0000	0000	0000000000	00
~					

... by finding identical sub-trees ...

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	●00000	0000	0000	0000000000	OO
~					

... and storing them only once ...

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	●00000	0000	0000	0000000000	OO
_					

... and storing them only once ...

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	•00000	0000	0000	0000000000	OO

The compacted trees are trees with pointers obtained in this way.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	O●OOOO	0000	0000	0000000000	OO
~					

Compacted trees

A compacted tree is a binary tree such that

- every leaf (except the first one) is a pointer ...
- ... towards a node preceding it in postfix order,
- and each node has a distinct "decompressed" sub-tree.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	00●000	0000	0000	0000000000	OO
Relaxed	trees				

A relaxed tree is a binary tree such that

- every leaf (except the first one) is a pointer ...
- ... towards a node preceding it in postfix order,
- and each node has a distinct "decompressed" sub-tree.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000000000	OO
What we	know, and	l what we wa	ant to kn	ow	

- (Flajolet, Sipala, Steyaert 1990)
 - $\bullet\,$ Linear algorithm to "compactify" a binary tree of size n
 - Average size of the compacted tree : $O(n/\log n)$
- (Genitrini, Gittenberger, Kauers, Wallner 2019)
 n nodes, with right height < k
 - Relaxed trees :

$$\gamma_k n! \left(4\cos\left(\frac{\pi}{k+3}\right)\right)^n n^{-k/2}$$

• compacted trees :

$$\gamma_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right) \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \frac{1}{\cos^2\left(\frac{\pi}{k+3}\right)}}$$

And without any restrictions?

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000000000	OO
Our resu	lt				

- c_n : the number of compacted trees with n nodes
- r_n : the number of relaxed trees with n nodes

Theorem (Elvey Price, F., Wallner 2021)

When $n \to \infty$, we have

$$c_n = \Theta\left(n!4^n e^{3a_1n^{1/3}}n^{3/4}\right), \qquad r_n = \Theta\left(n!4^n e^{3a_1n^{1/3}}n\right)$$

Here, a_1 is the largest root of the Airy function $\operatorname{Ai}(x)$, solution of $\operatorname{Ai}''(x) = x\operatorname{Ai}(x)$ with $\operatorname{Ai}(x) \to 0$ when $x \to +\infty$.

We don't have the multiplicative constant !

Stretched exponential: $e^{3a_1n^{1/3}}$

Probability for a relaxed tree of size n to be compacted : $\Theta(n^{-1/4})$.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	00000●	0000	0000	0000000000	OO
How do	we do that	t ?			

From Geek3 at Wikimedia Commons, CC-BY 3.0

- Bijection with decorated Dyck paths
- Recurrence with two parameters
- Heuristics for typical behaviors
- Truncation of the heuristics \Rightarrow proof of the bounds

Solely based on the recurrence, the method is relatively simple.

Encoding by decorated Dyck paths (relaxed version)

First we deal with relaxed trees:

From relaxed tree to decorated Dyck paths:

- Label the nodes in postfix order, detach the pointers
- Draw the Dyck path : \rightarrow for pointer, \uparrow for finishing a node
- Put pointer labels on horizontal steps

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		O●OO	0000	0000000000	OO
A	wan aa faw wa	lowed twee			

A recurrence for relaxed trees

Weight m+1 for step \rightarrow on height m.

Proposition

Let $r_{n,m}$ be the weighted sum of paths ending at (n,m). Then

$$\begin{split} r_{n,m} &= (m+1)r_{n-1,m} + r_{n,m-1}, & \text{for } n \geq m \geq 1, \\ r_{n,m} &= 0, & \text{for } n < m, \\ r_{n,0} &= 1, & \text{for } n \geq 0. \end{split}$$

The number of relaxed trees with n nodes is $r_{n,n}$.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		00●0	0000	0000000000	00
A trans	formation				

Change of coordinates: $(n,m) \rightarrow (n+m,n-m)$

We take $d_{n+m,n-m} = r_{n,m}/n!$, as labeled structure.

Recurrence :

$$d_{n,m} = \frac{n-m+2}{n+m}d_{n-1,m-1} + d_{n-1,m+1}$$

The number of size n relaxed trees: $r_n = n! d_{2n,0}$.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		000●	0000	0000000000	OO
Some o	bservations				

$$d_{n,m} = \frac{n-m+2}{n+m}d_{n-1,m-1} + d_{n-1,m+1}$$

Recurrence \Rightarrow diff. eq. in two variables, hard to solve.

Numerical observations :

$$d_{2n,0} = \Theta\left(4^n \rho^{n^{1/3}} n\right)$$

- 4^n from Dyck paths.
- Why a stretched exponential?

A higher up step has a lower weight!

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	●000	0000000000	OO
A first	heuristics				

Consider Dyck paths of length 2n and maximal height $\leq n^{\alpha}$, $\alpha < 1/2$.

Proposition (Kousha 2012)

A uniformly random path has height n^{α} ($\alpha < 1/2$) with probability

$$\log(\mathbb{P}[\text{height} \le n^{\alpha}]) \sim -\pi^2 n^{1-2\alpha}$$

Weight of a typical up step:

$$\frac{\Theta(n) - \Theta(n^{\alpha})}{\Theta(n) + \Theta(n^{\alpha})} = 1 - \Theta(n^{\alpha - 1}).$$

Typically $\Theta(n)$ such steps, thus a total weight

$$(1 - \Theta(n^{\alpha-1}))^{\Theta(n)} = \exp(-\Theta(n^{\alpha})).$$

Total contribution

$$\exp\left(-\Theta(n^{\alpha}) - \Theta(n^{1-2\alpha})\right),$$

maximized at $\alpha = 1/3$, giving a stretched exponential $\exp(-\Theta(n^{1/3}))$.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	000000	0000	0€00	0000000000	OO
The co	rrect scaling	5			

Too heuristic... But this shows that the correct height is $n^{1/3}$! Ansatz:

$$d_{n,m} \sim h(n) f(n^{-1/3}(m+1)),$$

$$s(n) = \frac{h(n)}{h(n-1)} = 2 + cn^{-2/3} + O(n^{-1}).$$

• h(n) : general growth in n, around $2^n \rho^{n^{1/3}}$ for some ρ

• f(x) : scaling with typical height $n^{1/3}$

Suppose that $m = \kappa n^{1/3} - 1$.

Ansatz + recurrence :

$$f(\kappa)s(n) = \frac{n - \kappa n^{1/3} + 1}{n + \kappa n^{1/3} - 1} f\left(\frac{\kappa n^{1/3} - 2}{(n-1)^{1/3}}\right) + f\left(\frac{\kappa n^{1/3}}{(n-1)^{1/3}}\right).$$

Approximately,

$$0 = (c + 2\kappa)f(\kappa) - f''(\kappa) + O(n^{-1/3}).$$

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O	000000	0000	00●0	0000000000	00
The first	estimation				

$$0 = (c + 2\kappa)f(\kappa) - f''(\kappa) + O(n^{-1/3}).$$

Roughly the equation of the Airy function !

As $f(\kappa) \to 0$ for $\kappa \to \infty,$ we have

$$f(\kappa) \approx b \operatorname{Ai}\left(\frac{c+2\kappa}{2^{2/3}}\right).$$

 $f(\kappa) \to 0 \text{ for } \kappa \to 0 \Rightarrow c = 2^{2/3}a_1.$

Asymptotic behavior of $\operatorname{Ai}(x)$ near $x \to a_1$ implies

$$r_n = n! d_{2n,0} = n! 4^n \exp\left(3a_1 n^{1/3} + \ldots\right).$$

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	000●	0000000000	OO
Refined	heuristics				

Ansatz of order 2 :

$$d_{n,m} \sim h(n) \left(f(n^{-1/3}(m+1)) + n^{-1/3}g(n^{-1/3}(m+1)) \right),$$

$$s(n) = 2 + cn^{-2/3} + dn^{-1} + O(n^{-4/3}).$$

We get the polynomial term:

$$r_n = n! d_{2n,0} \approx n! 4^n \exp\left(3a_1 n^{1/3}\right) n.$$

Ansatz in general :

$$d_{n,m} \approx h(n) \sum_{j=0}^{k} f_j (n^{-1/3}(m+1)) n^{-j/3},$$

$$s(n) = 2 + \gamma_2 n^{-2/3} + \gamma_3 n^{-1} + \ldots + \gamma_k n^{-k/3} + o(n^{-k/3}).$$

A truncation suffices, but still heuristics.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	•000000000	OO
Sandwi	ching the a	symptotics			

If there are positive $(s_n)_{n\geq 1}$ and $(X_{n,m})_{n\geq m\geq 0}$ such that

$$X_{n,m}s_n \le \frac{n-m+2}{n+m}X_{n-1,m-1} + X_{n-1,m+1},$$

for all m for large enough n.

Let $h_n = \prod_{i=1}^n s_n$, then $X_{n,m}h_n \leq b_0 d_{n,m}$ for some constant b_0 . Lower bound!

Reversing the inequality give an upper bound!

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	OOOOOOOOO	OO
Lowerk	aound and	atz and ovna	ncion		

Lower bound - ansatz and expansion

We take

$$X_{n,m} = \left(1 - \frac{2m^2}{3n} + \frac{m}{2n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right),$$
$$s_n = 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}.$$

The difference is

$$P_{n,m} = -X_{n,m}s_n + \frac{n-m+2}{n+m}X_{n-1,m-1} + X_{n-1,m+1}.$$

Only need to prove $P_{n,m} \ge 0$ for $m < n^{2/3-\varepsilon}$. The other zone negligible. By substitution and asymptotic expansion near n, we have

$$P_{n,m} = p_0(n,m)\operatorname{Ai}(\alpha) + p_1(n,m)\operatorname{Ai}'(\alpha), \text{ with } \alpha = a_1 + \frac{2^{1/3}m}{n^{1/3}}.$$

 $p_0(n,m), p_1(n,m)$: series in $n^{-1/6}$ with polynomial coeffs in m.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000000000	OO

Lower bound - Newton polygon

$$P_{n,m} = \operatorname{Ai}(\alpha) \left(\frac{1}{n^{7/6}} - \frac{2^{5/3}a_1m}{3n^{5/3}} - \frac{41m^2}{9n^2} - \frac{2^{8/3}a_1m^3}{3n^{8/3}} - \frac{34m^4}{9n^3} + \dots \right) + \operatorname{Ai}'(\alpha) \left(\frac{2^{1/3}}{n^{3/2}} - \frac{8a_1m}{9n^2} - 19\frac{2^{1/3}m^2}{9n^{7/3}} - \frac{2^{13/3}m^3}{9n^{7/3}} + \dots \right).$$

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000000000	OO
Lower	acurd case				

Lower bound - case analysis

$$P_{n,m} = \operatorname{Ai}(\alpha) \left(\frac{1}{n^{7/6}} - \frac{2^{5/3}a_1m}{3n^{5/3}} - \frac{41m^2}{9n^2} - \frac{2^{8/3}a_1m^3}{3n^{8/3}} - \frac{34m^4}{9n^3} + \dots \right) + \operatorname{Ai}'(\alpha) \left(\frac{2^{1/3}}{n^{3/2}} - \frac{8a_1m}{9n^2} - 19\frac{2^{1/3}m^2}{9n^{7/3}} - \frac{2^{13/3}m^3}{9n^{7/3}} + \dots \right).$$

•
$$m \leq x_0 (n/2)^{1/3}$$
, where $\operatorname{Ai}'(a_1 + x)$ changes sign,

•
$$x_0(n/2)^{1/3} < m \le n^{7/18}$$
,
• $n^{7/18} < m < n^{2/3-\varepsilon}$.

All cases are positive using properties of the Airy function.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000€00000	OO
Upper b	ound				

It is the same, with a different ansatz:

$$\begin{split} \hat{X}_{n,m} &= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n} + \frac{3m^4}{10n^2}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right),\\ \hat{s}_n &= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} + \frac{1}{n^{7/6}}. \end{split}$$

Yet another case analysis ...

$$r_n = \Theta\left(n!4^n e^{3a_1n^{1/3}}n\right).$$

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	000000000	OO
Cherry	lemma				

On compacted trees:

Lemma

For a relaxed tree T, if no cherry reproduces a node that has appeared, then T is compacted.

T not compacted \Rightarrow two nodes with the same decompressed trees

The same holds for their children.

Descend until reaching a cherry

Encoding by decorated Dyck paths (compacted version)

Bounds

Weighted Dyck paths

Proposition

Let $e_{n,m}$ be the number of "strict" decorated paths to (n,m). Then

$$e_{n,m} = (m+1)e_{n-1,m} + e_{n,m-1} - (m-1)e_{n-2,m-1}, \text{ for } n \ge m \ge 1.$$

The number of compacted trees with n nodes is $c_n = e_{n,n}$.

Summing up

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	00000000000	00
Compac	cted trees				

Recurrence for compacted trees:

$$e_{n,m} = \frac{n-m+2}{n+m}e_{n-1,m-1} + e_{n-1,m+1} - \frac{2(n-m-2)}{(n+m)(n+m-2)}e_{n-3,m-1}.$$

Negative terms ...

Sandwich it by two positive recurrences.

With two appropriate Ansätze, we have

$$c_n = \Theta\left(n!4^n e^{3a_1n^{1/3}}n^{3/4}\right).$$

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000000000	00
A 1	·				

A change in the polynomial factor

Ansatz for lower bound :

$$\hat{X}_{n,m} = \left(1 - \frac{2m^2}{3n} + \frac{m}{4n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right),$$
$$\hat{s}_n = 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{13}{6n} - \frac{1}{n^{7/6}}.$$

The only difference in $\hat{s}_n \Rightarrow$ change the polynomial factor

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	000000000	OO
•					

An application on automata

Theorem (Elvey Price, F., Wallner 2020)

The number $m_{2,n}$ of minimal automata for finite languages in $A = \{a, b\}$ with n states is

$$m_{2,n} = \Theta\left(n!8^n e^{3a_1 n^{1/3}} n^{7/8}\right).$$

- Similar "compression": minimal automata as compressed trie
- Encoding by decorated Dyck paths, similar recurrence
- A "cherry lemma"
- Exactly the same method, can do any fixed alphabet size

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000000000	●O
Summing	g up				

What is good:

- Using only a (quite simple) recurrence;
- Without looking at the generating function;
- Relatively simple, so possible to generalize.
- Sometimes negative terms are not a problem.

Still need work :

- Which type of recurrence? Which type of diff. eq.?
- We still need to start from some heuristics...
- And we miss the multiplicative constant.

Already some other applications!

Michael Fuchs, Guan-Ru Yu, Louxin Zhang, On the Asymptotic Growth of the Number of Tree-Child Networks, European J. Combin., 2021.

Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, Guan-Ru Yu, *Enumerative and Distributional Results for d-combining Tree-Child Networks*, arXiv:2209.03850, 2022.

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000000000	O●
Ongoing	; work				

- With Baptiste Louf, we are trying to apply the method to maps.
- Classification of "linearly rational up-step" recurrences:
 - degenerated or trivial,
 - \bullet stretched exponential $\rho^{n^{1/3}}$
 - macroscopic limit,
 - … maybe more?
- General theorem for stretched exponential other than the Airy type
 - Whittaker type: $\rho^{n^{1/2}}$,
 - ... and further types like $\rho^{n^{\frac{p}{p+2}}}$

Any recurrences in two parameters for asymptotics?

Introduction	Compacted trees	Weighted Dyck paths	Heuristics	Bounds	Summing up
O		0000	0000	0000000000	O●
Ongoing	; work				

- With Baptiste Louf, we are trying to apply the method to maps.
- Classification of "linearly rational up-step" recurrences:
 - degenerated or trivial,
 - stretched exponential $\rho^{n^{1/3}}$,
 - macroscopic limit,
 - … maybe more?
- General theorem for stretched exponential other than the Airy type
 - Whittaker type: $\rho^{n^{1/2}}$,

• ... and further types like $\rho^{n^{\frac{p}{p+2}}}$.

Any recurrences in two parameters for asymptotics?

Thank you for your attention!

Deterministic automaton Q on alphabet A:

- States and transitions,
- Initial state q_0 and some final states,

• Recognizing $w \Leftrightarrow$ the walk from q_0 reading w arrives at a final state. Example: aab recognized, but aaba not.

Minimal automata of a finite language

A language = a set of words \Rightarrow a unique minimal automaton

An automaton is

- accessible: all states reachable from the initial one,
- acyclic: no oriented cycle,
- reduced: no redundant state for language recognition.

These three conditions \Leftrightarrow minimal automaton of some finite language

Question : How many such automata with n states?

Quite "compacted trees"!

Minimize a trie

Take a trie and compactify it ...

Minimize a trie

... with sub-trees with identical coloring ...

Minimize a trie

 \ldots with sub-trees with identical coloring \ldots

Minimize a trie

... while exhausting all possibilities ...

Minimize a trie

... while exhausting all possibilities ...

Minimize a trie

 \ldots and we get a minimal automaton. \geq Back <