Compacted binary trees, stretched exponential and asymptotic behavior of recurrences

Wenjie Fang, Université Gustave Eiffel Joint work with Andrew Elvey Price and Michael Wallner

14 March 2024, Journées ALEA, CIRM

What is this talk about?

- A "new method" to get asymptotic behavior of certain recurrences
- ... without generating function (gasp!)
- ... illustrated with compacted trees as example
- ... and some progress for generalization.

Compacting binary trees

We try to compress a binary tree ...

Compacting binary trees

... by finding identical sub-trees ...

Compacting binary trees

... and storing them only once ...

Compacting binary trees

... by finding identical sub-trees ...

Compacting binary trees

... and storing them only once ...

Compacting binary trees

... by finding identical sub-trees ...

Compacting binary trees

... and storing them only once ...

Compacting binary trees

... and storing them only once ...

Compacting binary trees

The compacted trees are trees with pointers obtained in this way.

Compacted trees

A compacted tree is a binary tree such that

- every leaf (except the first one) is a pointer ...
- ... towards a node preceding it in postfix order,
- and each node has a distinct "decompressed" sub-tree.

Relaxed trees

A relaxed tree is a binary tree such that

- every leaf (except the first one) is a pointer ...
- ... towards a node preceding it in postfix order,
- and each node has a distinct "decompressed" sub-tree.

What we know, and what we want to know

- (Flajolet, Sipala, Steyaert 1990)
- Linear algorithm to "compactify" a binary tree of size n
- Average size of the compacted tree : $O(n / \log n)$
- (Genitrini, Gittenberger, Kauers, Wallner 2019)
n nodes, with right height $\leq k$
- Relaxed trees :

$$
\gamma_{k} n!\left(4 \cos \left(\frac{\pi}{k+3}\right)\right)^{n} n^{-k / 2}
$$

- compacted trees :

$$
\gamma_{k} n!\left(4 \cos \left(\frac{\pi}{k+3}\right)\right)^{n} n^{-\frac{k}{2}-\frac{1}{k+3}-\left(\frac{1}{4}-\frac{1}{k+3}\right) \frac{1}{\cos ^{2}\left(\frac{\pi}{k+3}\right)}}
$$

And without any restrictions?

Our result

- c_{n} : the number of compacted trees with n nodes
- r_{n} : the number of relaxed trees with n nodes

Theorem (Elvey Price, F., Wallner 2021)

When $n \rightarrow \infty$, we have

$$
c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right), \quad r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right)
$$

Here, a_{1} is the largest root of the Airy function $\operatorname{Ai}(x)$, solution of $\mathrm{Ai}^{\prime \prime}(x)=x \mathrm{Ai}(x)$ with $\mathrm{Ai}(x) \rightarrow 0$ when $x \rightarrow+\infty$.

We don't have the multiplicative constant !
Stretched exponential: $e^{3 a_{1} n^{1 / 3}}$
Probability for a relaxed tree of size n to be compacted : $\Theta\left(n^{-1 / 4}\right)$.

How do we do that?

From Geek3 at Wikimedia Commons, CC-BY 3.0

- Bijection with decorated Dyck paths
- Recurrence with two parameters
- Heuristics for typical behaviors
- Truncation of the heuristics \Rightarrow proof of the bounds

Solely based on the recurrence, the method is relatively simple.

Encoding by decorated Dyck paths (relaxed version)

First we deal with relaxed trees:

From relaxed tree to decorated Dyck paths:

- Label the nodes in postfix order, detach the pointers
- Draw the Dyck path : \rightarrow for pointer, \uparrow for finishing a node
- Put pointer labels on horizontal steps

A recurrence for relaxed trees

Weight $m+1$ for step \rightarrow on height m.

Proposition

Let $r_{n, m}$ be the weighted sum of paths ending at (n, m). Then

$$
\begin{aligned}
r_{n, m} & =(m+1) r_{n-1, m}+r_{n, m-1}, & & \text { for } n \geq m \\
r_{n, m} & =0, & & \text { for } n<m \\
r_{n, 0} & =1, & & \text { for } n \geq 0 .
\end{aligned}
$$

The number of relaxed trees with n nodes is $r_{n, n}$.

A transformation

Change of coordinates: $(n, m) \rightarrow(n+m, n-m)$
We take $d_{n+m, n-m}=r_{n, m} / n!$, as labeled structure.

Recurrence :

$$
d_{n, m}=\frac{n-m+2}{n+m} d_{n-1, m-1}+d_{n-1, m+1}
$$

The number of size n relaxed trees: $r_{n}=n!d_{2 n, 0}$.

Some observations

$$
d_{n, m}=\frac{n-m+2}{n+m} d_{n-1, m-1}+d_{n-1, m+1}
$$

Recurrence \Rightarrow diff. eq. in two variables, hard to solve.
Numerical observations:

$$
d_{2 n, 0}=\Theta\left(4^{n} \rho^{n^{1 / 3}} n\right)
$$

- 4^{n} from Dyck paths.
- Why a stretched exponential?

A higher up step has a lower weight!

A first heuristics

Consider Dyck paths of length $2 n$ and maximal height $\leq n^{\alpha}, \alpha<1 / 2$.

Proposition (Kousha 2012)

A uniformly random path has height $n^{\alpha}(\alpha<1 / 2)$ with probability

$$
\log \left(\mathbb{P}\left[\text { height } \leq n^{\alpha}\right]\right) \sim-\pi^{2} n^{1-2 \alpha}
$$

Weight of a typical up step:

$$
\frac{\Theta(n)-\Theta\left(n^{\alpha}\right)}{\Theta(n)+\Theta\left(n^{\alpha}\right)}=1-\Theta\left(n^{\alpha-1}\right)
$$

Typically $\Theta(n)$ such steps, thus a total weight

$$
\left(1-\Theta\left(n^{\alpha-1}\right)\right)^{\Theta(n)}=\exp \left(-\Theta\left(n^{\alpha}\right)\right)
$$

Total contribution

$$
\exp \left(-\Theta\left(n^{\alpha}\right)-\Theta\left(n^{1-2 \alpha}\right)\right)
$$

maximized at $\alpha=1 / 3$, giving a stretched exponential $\exp \left(-\Theta\left(n^{1 / 3}\right)\right)$.

The correct scaling

Too heuristic... But this shows that the correct height is $n^{1 / 3}$!
Ansatz:

$$
\begin{aligned}
d_{n, m} & \sim h(n) f\left(n^{-1 / 3}(m+1)\right), \\
s(n) & =\frac{h(n)}{h(n-1)}=2+c n^{-2 / 3}+O\left(n^{-1}\right) .
\end{aligned}
$$

- $h(n)$: general growth in n, around $2^{n} \rho^{n^{1 / 3}}$ for some ρ
- $f(x)$: scaling with typical height $n^{1 / 3}$

Suppose that $m=\kappa n^{1 / 3}-1$.
Ansatz + recurrence :

$$
f(\kappa) s(n)=\frac{n-\kappa n^{1 / 3}+1}{n+\kappa n^{1 / 3}-1} f\left(\frac{\kappa n^{1 / 3}-2}{(n-1)^{1 / 3}}\right)+f\left(\frac{\kappa n^{1 / 3}}{(n-1)^{1 / 3}}\right)
$$

Approximately,

$$
0=(c+2 \kappa) f(\kappa)-f^{\prime \prime}(\kappa)+O\left(n^{-1 / 3}\right) .
$$

The first estimation

$$
0=(c+2 \kappa) f(\kappa)-f^{\prime \prime}(\kappa)+O\left(n^{-1 / 3}\right)
$$

Roughly the equation of the Airy function !
As $f(\kappa) \rightarrow 0$ for $\kappa \rightarrow \infty$, we have

$$
f(\kappa) \approx b \mathrm{Ai}\left(\frac{c+2 \kappa}{2^{2 / 3}}\right)
$$

$f(\kappa) \rightarrow 0$ for $\kappa \rightarrow 0 \Rightarrow c=2^{2 / 3} a_{1}$.
Asymptotic behavior of $\operatorname{Ai}(x)$ near $x \rightarrow a_{1}$ implies

$$
r_{n}=n!d_{2 n, 0}=n!4^{n} \exp \left(3 a_{1} n^{1 / 3}+\ldots\right)
$$

Refined heuristics

Ansatz of order 2 :

$$
\begin{aligned}
d_{n, m} & \sim h(n)\left(f\left(n^{-1 / 3}(m+1)\right)+n^{-1 / 3} g\left(n^{-1 / 3}(m+1)\right)\right), \\
s(n) & =2+c n^{-2 / 3}+d n^{-1}+O\left(n^{-4 / 3}\right) .
\end{aligned}
$$

We get the polynomial term:

$$
r_{n}=n!d_{2 n, 0} \approx n!4^{n} \exp \left(3 a_{1} n^{1 / 3}\right) n
$$

Ansatz in general :

$$
\begin{aligned}
d_{n, m} & \approx h(n) \sum_{j=0}^{k} f_{j}\left(n^{-1 / 3}(m+1)\right) n^{-j / 3} \\
s(n) & =2+\gamma_{2} n^{-2 / 3}+\gamma_{3} n^{-1}+\ldots+\gamma_{k} n^{-k / 3}+o\left(n^{-k / 3}\right)
\end{aligned}
$$

A truncation suffices, but still heuristics.

Sandwiching the asymptotics

If there are positive $\left(s_{n}\right)_{n \geq 1}$ and $\left(X_{n, m}\right)_{n \geq m \geq 0}$ such that

$$
X_{n, m} s_{n} \leq \frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}
$$

for all m for large enough n.
Let $h_{n}=\prod_{i=1}^{n} s_{n}$, then $X_{n, m} h_{n} \leq b_{0} d_{n, m}$ for some constant b_{0}.
Lower bound!
Reversing the inequality give an upper bound!

Lower bound - ansatz and expansion

We take

$$
\begin{aligned}
X_{n, m} & =\left(1-\frac{2 m^{2}}{3 n}+\frac{m}{2 n}\right) \operatorname{Ai}\left(a_{1}+\frac{2^{1 / 3}(m+1)}{n^{1 / 3}}\right) \\
s_{n} & =2+\frac{2^{2 / 3} a_{1}}{n^{2 / 3}}+\frac{8}{3 n}-\frac{1}{n^{7 / 6}}
\end{aligned}
$$

The difference is

$$
P_{n, m}=-X_{n, m} s_{n}+\frac{n-m+2}{n+m} X_{n-1, m-1}+X_{n-1, m+1}
$$

Only need to prove $P_{n, m} \geq 0$ for $m<n^{2 / 3-\varepsilon}$. The other zone negligible. By substitution and asymptotic expansion near n, we have

$$
P_{n, m}=p_{0}(n, m) \operatorname{Ai}(\alpha)+p_{1}(n, m) \operatorname{Ai}^{\prime}(\alpha), \text { with } \alpha=a_{1}+\frac{2^{1 / 3} m}{n^{1 / 3}} .
$$

$p_{0}(n, m), p_{1}(n, m)$: series in $n^{-1 / 6}$ with polynomial coeffs in m.

Lower bound - Newton polygon

$$
\begin{aligned}
P_{n, m}= & \operatorname{Ai}(\alpha)\left(\frac{1}{n^{7 / 6}}-\frac{2^{5 / 3} a_{1} m}{3 n^{5 / 3}}-\frac{41 m^{2}}{9 n^{2}}-\frac{2^{8 / 3} a_{1} m^{3}}{3 n^{8 / 3}}-\frac{34 m^{4}}{9 n^{3}}+\ldots\right)+ \\
& \operatorname{Ai}^{\prime}(\alpha)\left(\frac{2^{1 / 3}}{n^{3 / 2}}-\frac{8 a_{1} m}{9 n^{2}}-19 \frac{2^{1 / 3} m^{2}}{9 n^{7 / 3}}-\frac{2^{13 / 3} m^{3}}{9 n^{7 / 3}}+\ldots\right)
\end{aligned}
$$

Lower bound - case analysis

$$
\begin{aligned}
P_{n, m}= & \operatorname{Ai}(\alpha)\left(\frac{1}{n^{7 / 6}}-\frac{2^{5 / 3} a_{1} m}{3 n^{5 / 3}}-\frac{41 m^{2}}{9 n^{2}}-\frac{2^{8 / 3} a_{1} m^{3}}{3 n^{8 / 3}}-\frac{34 m^{4}}{9 n^{3}}+\ldots\right)+ \\
& \operatorname{Ai}^{\prime}(\alpha)\left(\frac{2^{1 / 3}}{n^{3 / 2}}-\frac{8 a_{1} m}{9 n^{2}}-19 \frac{2^{1 / 3} m^{2}}{9 n^{7 / 3}}-\frac{2^{13 / 3} m^{3}}{9 n^{7 / 3}}+\ldots\right)
\end{aligned}
$$

- $m \leq x_{0}(n / 2)^{1 / 3}$, where $\mathrm{Ai}^{\prime}\left(a_{1}+x\right)$ changes sign,
- $x_{0}(n / 2)^{1 / 3}<m \leq n^{7 / 18}$,
- $n^{7 / 18}<m<n^{2 / 3-\varepsilon}$.

All cases are positive using properties of the Airy function.

Upper bound

It is the same, with a different ansatz:

$$
\begin{aligned}
\hat{X}_{n, m} & =\left(1-\frac{2 m^{2}}{3 n}+\frac{m}{2 n}+\frac{3 m^{4}}{10 n^{2}}\right) \mathrm{Ai}\left(a_{1}+\frac{2^{1 / 3}(m+1)}{n^{1 / 3}}\right), \\
\hat{s}_{n} & =2+\frac{2^{2 / 3} a_{1}}{n^{2 / 3}}+\frac{8}{3 n}+\frac{1}{n^{7 / 6}} .
\end{aligned}
$$

Yet another case analysis ...

$$
r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) .
$$

Cherry lemma

On compacted trees:

Lemma

For a relaxed tree T, if no cherry reproduces a node that has appeared, then T is compacted.
T not compacted \Rightarrow two nodes with the same decompressed trees
The same holds for their children.
Descend until reaching a cherry

Encoding by decorated Dyck paths (compacted version)

Cherry lemma \wedge avoid certain \rightarrow.

Proposition

Let $e_{n, m}$ be the number of "strict" decorated paths to (n, m). Then

$$
e_{n, m}=(m+1) e_{n-1, m}+e_{n, m-1}-(m-1) e_{n-2, m-1}, \text { for } n \geq m \geq 1
$$

The number of compacted trees with n nodes is $c_{n}=e_{n, n}$.

Compacted trees

Recurrence for compacted trees:
$e_{n, m}=\frac{n-m+2}{n+m} e_{n-1, m-1}+e_{n-1, m+1}-\frac{2(n-m-2)}{(n+m)(n+m-2)} e_{n-3, m-1}$.
Negative terms
Sandwich it by two positive recurrences.
With two appropriate Ansätze, we have

$$
c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right)
$$

A change in the polynomial factor

Ansatz for lower bound :

$$
\begin{aligned}
\hat{X}_{n, m} & =\left(1-\frac{2 m^{2}}{3 n}+\frac{m}{4 n}\right) \mathrm{Ai}\left(a_{1}+\frac{2^{1 / 3}(m+1)}{n^{1 / 3}}\right) \\
\hat{s}_{n} & =2+\frac{2^{2 / 3} a_{1}}{n^{2 / 3}}+\frac{13}{6 n}-\frac{1}{n^{7 / 6}}
\end{aligned}
$$

The only difference in $\hat{s}_{n} \Rightarrow$ change the polynomial factor

An application on automata

Theorem (Elvey Price, F., Wallner 2020)

The number $m_{2, n}$ of minimal automata for finite languages in $A=\{a, b\}$ with n states is

$$
m_{2, n}=\Theta\left(n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}\right) .
$$

- Similar "compression": minimal automata as compressed trie
- Encoding by decorated Dyck paths, similar recurrence
- A "cherry lemma"
- Exactly the same method, can do any fixed alphabet size

Summing up

What is good:

- Using only a (quite simple) recurrence;
- Without looking at the generating function;
- Relatively simple, so possible to generalize.
- Sometimes negative terms are not a problem.

Still need work :

- Which type of recurrence? Which type of diff. eq.?
- We still need to start from some heuristics...
- And we miss the multiplicative constant.

Already some other applications!
Michael Fuchs, Guan-Ru Yu, Louxin Zhang, On the Asymptotic Growth of the Number of Tree-Child Networks, European J. Combin., 2021.

Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, Guan-Ru Yu, Enumerative and Distributional Results for d-combining Tree-Child Networks, arXiv:2209.03850, 2022.

Ongoing work

- With Baptiste Louf, we are trying to apply the method to maps.
- Classification of "linearly rational up-step" recurrences:
- degenerated or trivial,
- stretched exponential $\rho^{n^{1 / 3}}$,
- macroscopic limit,
- ... maybe more?
- General theorem for stretched exponential other than the Airy type
- Whittaker type: $\rho^{n^{1 / 2}}$,
- ... and further types like $\rho^{\frac{p}{p+2}}$.

Any recurrences in two parameters for asymptotics?

Ongoing work

- With Baptiste Louf, we are trying to apply the method to maps.
- Classification of "linearly rational up-step" recurrences:
- degenerated or trivial,
- stretched exponential $\rho^{n^{1 / 3}}$,
- macroscopic limit,
- ... maybe more?
- General theorem for stretched exponential other than the Airy type
- Whittaker type: $\rho^{n^{1 / 2}}$,
- ... and further types like $\rho^{\frac{p}{p+2}}$.

Any recurrences in two parameters for asymptotics?

Thank you for your attention!

Automata

Deterministic automaton Q on alphabet A :

- States and transitions,
- Initial state q_{0} and some final states,
- Recognizing $w \Leftrightarrow$ the walk from q_{0} reading w arrives at a final state.

Example: aab recognized, but aaba not.

Minimal automata of a finite language

A language $=$ a set of words \Rightarrow a unique minimal automaton
An automaton is

- accessible: all states reachable from the initial one,
- acyclic: no oriented cycle,
- reduced: no redundant state for language recognition.

These three conditions \Leftrightarrow minimal automaton of some finite language
Question: How many such automata with n states?
Quite "compacted trees" !

Minimize a trie

Take a trie and compactify it ...

Minimize a trie

... with sub-trees with identical coloring ...

Minimize a trie

... with sub-trees with identical coloring ...

Minimize a trie

... while exhausting all possibilities ...

Minimize a trie

... while exhausting all possibilities ...

Minimize a trie

... and we get a minimal automaton. \geq Back $<$

