Komplexe Zahlen

Da für jede reelle Zahl $x \in \mathbb{R}$ gilt dass $x^2 \ge 0$, besitzt die Gleichung $x^2+1=0$ keine Lösung in \mathbb{R} bzw. das Polynom $P(x)=x^2+1$ besitzt in \mathbb{R} (!) keine Nullstelle.

Dies führt zur Frage, ob es möglich ist, den Körper \mathbb{R} in geeigneter Weise zu einem Körper \mathbb{C} zu erweitern, sodaß die Gleichung $x^2 + 1 = 0$ in \mathbb{C} lösbar ist.

Wir betrachten nun $\mathbb{R}^2 = \{(a,b) : a,b \in \mathbb{R}\}$, die Menge der geordneten Paare reeller Zahlen, die man sich anschaulich als Ebene vorstellen kann. Klarerweise gilt $(a,b) = (c,d) \Leftrightarrow a = c \text{ und } b = d$.

Als nächstes definieren wir 2 Operationen auf \mathbb{R}^2 und bezeichnen \mathbb{R}^2 mit diesen beiden Operationen als \mathbb{C} .

$$(a,b) + (c,d) = (a+c,b+d)$$
 (Addition)
 $(a,b) \cdot (c,d) = (ac-bd,ad+bc)$ (Multiplikation)

Bemerkungen. (i) Man zeigt leicht, dass \mathbb{C} mit diesen beiden Operationen ein Körper ist.

- (ii) Insbesondere ist das Nullelement bzgl. der Addition das Paar (0,0). Das inverse Element von (a,b) bzgl. der Addition ist (-a,-b).
- (iii) Das Einselement bzgl. der Multiplikation ist (1,0). Das inverse Element von $(a,b) \neq (0,0)$ bzgl. der Multiplikation ist $(\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2})$.
- (iv) Man beachte weiters, dass $(0,1) \cdot (0,1) = (-1,0)$ ist.
- (v) Auf \mathbb{C} kann **keine** Ordnungsrelation " \leq " erklärt werden, die in "erwünschter Weise" mit der Addition und der Multiplikation verträglich ist (wie es etwa bei \mathbb{R} der Fall ist).

Wir betrachten nun die Teilmenge $\{(a,0):a\in\mathbb{R}\}\subseteq\mathbb{C}$. Wegen (a,0)+(c,0)=(a+c,0) und $(a,0)\cdot(c,0)=(ac,0)$ kann diese Teilmenge mit \mathbb{R} "identifiziert" werden.

Im besonderen können durch $a \leftrightarrow (a,0)$ reelle und komplexe Zahlen addiert und multipliziert werden: $a + (c,d) \leftrightarrow (a,0) + (c,d) = (a+c,d)$ und $a \cdot (c,d) \leftrightarrow (a,0) \cdot (c,d) = (ac,ad)$.

Eine komplexe Zahl (a, b) wird oft mit z bezeichnet. Führt man für die komplexe Zahl (0, 1) das Symbol i ein, dann kann man schreiben

$$z = (a, b) = (a, 0) + (0, b) = a \cdot (1, 0) + b \cdot (0, 1) = a \cdot 1 + b \cdot i = a + ib$$
.

Für z=a+ib heißt a der **Realteil** von z, und b der **Imaginärteil** von z, a=Re z und b=Im z. Man beachte dass Re z, $\text{Im }z\in\mathbb{R}$.

Wie zuvor hingewiesen, gilt dann $i^2 = -1$ bzw. $i = \sqrt{-1}$.

Addition und Multiplikation schreiben sich mit dieser Darstellung

- $(a+ib) \pm (c+id) = (a \pm c) + i(b \pm d)$
- $(a+ib) \cdot (c+id) = (ac-bd) + i(ad-bc)$
- $\frac{a+ib}{c+di} = (a+ib) \cdot (c+id)^{-1} = (a+ib) \cdot (\frac{c}{c^2+d^2} + i\frac{-d}{c^2+d^2}) = \frac{ac+bd}{c^2+d^2} + i\frac{-ad+bc}{c^2+d^2}$ (für $(c,d) \neq (0,0)$)

Definition. Zu z = a + ib heißt $\overline{z} = a - ib$ die zu z konjugiert komplexe Zahl. Geometrisch entspricht dies einer Spiegelung an der x-Achse.

Bemerkungen.

(i) Für
$$z = a + ib$$
 ist $a = \text{Re } z = \frac{z + \overline{z}}{2}$ und $b = \text{Im } z = \frac{z - \overline{z}}{2i}$.

(ii)
$$\overline{(\overline{z})} = z$$
 , $\overline{(z_1 + z_2)} = \overline{z_1} + \overline{z_2}$

(iii)
$$\overline{(z_1 \cdot z_2)} = \overline{z_1} \cdot \overline{z_2}$$
 , $\overline{(\frac{1}{z})} = \frac{1}{\overline{z}}$ $(z \neq 0)$

Definition. $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$ heißt der **Betrag** von z = a + ib.

Bemerkungen.

(i) Geometrisch betrachtet ist die (reelle) Zahl |z| der Abstand von z

zum Ursprung.

(ii)
$$|z| \ge 0$$
 , $|z| = 0 \Leftrightarrow z = 0$, $z \in \mathbb{R} \Rightarrow |z|_{\mathbb{C}} = |z|_{\mathbb{R}}$

(iii)
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
, $|\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|}$ $(z_2 \neq 0)$

(iv)
$$|\text{Re } z| \le |z|$$
, $|\text{Im } z| \le |z|$, $|z| = |\overline{z}|$

(v)
$$|z_1 + z_2| \le |z_1| + |z_2|$$
 (Dreiecksungleichung)

Beweis. zu (v): Man überlege sich zuerst, dass

$$\operatorname{Re} (z_1 \cdot \overline{z_2}) \leq |\operatorname{Re} (z_1 \cdot \overline{z_2})| \leq |z_1 \cdot \overline{z_2}| = |z_1| \cdot |z_2|$$
.

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2}) \cdot (\overline{z_{1}} + \overline{z_{2}}) = z_{1} \cdot \overline{z_{1}} + z_{1} \cdot \overline{z_{2}} + z_{2} \cdot \overline{z_{1}} + z_{2} \cdot \overline{z_{2}} = z_{1} \cdot \overline{z_{1}} + z_{1} \cdot \overline{z_{2}} + \overline{z_{1}} \cdot \overline{z_{2}} + \overline{z_{1}} \cdot \overline{z_{2}} + z_{2} \cdot \overline{z_{2}} = |z_{1}|^{2} + 2\operatorname{Re}(z_{1} \cdot \overline{z_{2}}) + |z_{2}|^{2} \le |z_{1}|^{2} + 2|z_{1}| \cdot |z_{2}| + |z_{2}|^{2} = (|z_{1}| + |z_{2}|)^{2}$$

Daraus folgt dann $|z_1 + z_2| \le |z_1| + |z_2|$. \square

Der Betrag einer komplexen Zahl erfüllt die Eigenschaften einer Norm, und daraus kann durch d(z, w) = |z - w| ein Abstandsbegriff (Metrik) gewonnen werden.

 $\mathbb C$ ist dadurch ein metrischer Raum, und dies wiederum ermöglicht die Definition von konvergenten Folgen und Reihen in $\mathbb C$. Man beachte dabei, dass eine ε -Kugel um einen Punkt z_0 , $K(z_0,\varepsilon)=\{z\in\mathbb C:|z_0-z|<\varepsilon\}$, eine Kreisscheibe um z_0 mit Radius ε ist.

Eine Folge (z_n) komplexer Zahlen heißt **konvergent** gegen $z \in \mathbb{C}$, wenn $|z_n - z| < \varepsilon$ für fast alle $n \in \mathbb{N}$ gilt.

Geometrisch bedeutet dies, dass fast alle Folgenglieder in einer Kreisscheibe mit Radius ε um den Mittelpunkt z liegen.

Man beachte, dass sich zahlreiche Aussagen über reelle Reihen (wie etwa Wurzelkriterium und Quotientenkriterium) in geeigneter Weise auch auf komplexe Reihen übertragen lassen.

Im besonderen läßt sich für komplexe Potenzreihen $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ in

gleicher Weise ein Konvergenzradius definieren. Der Konvergenzbereich ist dann hier i.a. eine offene Kreisscheibe um den Entwicklungspunkt z_0 .

Bezüglich Folgen komplexer Zahlen sei erwähnt

Satz. Sei (z_n) eine Folge mit $z_n = x_n + iy_n$ und z = x + iy. Dann gilt $z_n \to z \Leftrightarrow x_n \to x$ und $y_n \to y$.

Beweis.

" \Rightarrow ": Sei $\varepsilon > 0$. Dann gilt $|z_n - z| < \varepsilon$ für fast alle n, und damit auch $|x_n - x| = |\text{Re }(z_n - z)| \le |z_n - z| < \varepsilon$ und $|y_n - y| = |\text{Im }(z_n - z)| \le |z_n - z| < \varepsilon$ für fast alle n.

"
$$\Leftarrow$$
 " : Sei $\varepsilon > 0$. Dann gilt $|x_n - x| < \frac{\varepsilon}{\sqrt{2}}$ und $|y_n - y| < \frac{\varepsilon}{\sqrt{2}}$ für fast alle n . Folglich ist $|z_n - z| = \sqrt{(x_n - x)^2 + (y_n - y)^2} = \sqrt{|x_n - x|^2 + |y_n - y|^2} < \sqrt{\frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{2}} = \varepsilon$ für fast alle n . \square

Wie schon gesagt, können wir uns die komplexen Zahlen als Elemente des \mathbb{R}^2 vorstellen, weshalb man auch von der **komplexen Zahlenebene** spricht.

Dies führt auch zu einer weiteren Darstellungsmöglichkeit, der trigonometrischen Darstellung .

Sei $z = x + iy \neq 0$. Mit r = |z| und $x = r \cos \varphi$ und $y = r \sin \varphi$ ergibt sich $z = r \cos \varphi + ir \sin \varphi = r(\cos \varphi + i \sin \varphi)$, wobei $0 \leq \varphi \leq 2\pi$ und $\tan \varphi = \frac{y}{x}$ für $x \neq 0$.

Aus Schulkenntnissen über die Eigenschaften der Winkelfunktionen kann dann leicht für $z = r(\cos \varphi + i \sin \varphi)$ sowie

$$z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1)$$
, $z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2)$

gezeigt werden:

- $z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$
- $z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$ (mittels vollständiger Induktion)

•
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$
 (für $z_2 \neq 0$)

•
$$\sqrt[n]{z} = \sqrt[n]{r}(\cos(\frac{\varphi+2k\pi}{n}) + i\sin(\frac{\varphi+2k\pi}{n}))$$
 $k = 0, 1, ..., n-1$

Bemerkungen. Man beachte, dass sich bei der Multiplikation (bzw. Division) von zwei komplexen Zahlen die Winkel addieren (bzw. subtrahieren).

Des weiteren besitzt eine komplexe Zahl $z \neq 0$ n verschiedene Wurzeln.

Beispiel. Man bestimme $\sqrt[3]{i}$.

Für
$$z=i$$
 gilt $r=1$ und $\varphi=\frac{\pi}{2}$. Zudem ist hier $n=3$.

Für
$$k = 0, 1, 2$$
 ist $\varphi_k = \frac{\frac{\pi}{2} + 2k\pi}{3}$, also $\varphi_1 = \frac{\pi}{6}$, $\varphi_2 = \frac{5\pi}{6}$, $\varphi_3 = \frac{3\pi}{2}$.

Damit ist (mit
$$\sqrt[n]{r} = \sqrt[3]{1} = 1$$
)

$$w_1 = \cos\frac{\pi}{6} + \sin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + i\frac{1}{2}$$

$$w_2 = \cos\frac{5\pi}{6} + \sin\frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + i\frac{1}{2}$$

$$w_3 = \cos\frac{3\pi}{2} + \sin\frac{3\pi}{2} = -i$$