Koordinatensysteme

Sei V ein \mathbb{K} -Vektorraum mit dimV=n, und sei $\mathcal{B}=(v_1,v_2,...,v_n)$ eine Basis. Dann gilt

$$\forall v \in V \stackrel{1}{\exists} (x_1, x_2, ..., x_n) \in \mathbb{K}^n \text{ mit } v = x_1 v_1 + x_2 v_2 + ... + x_n v_n .$$

Betrachten wir die Abbildung $\Phi_{\mathcal{B}}: \mathbb{K}^n \to V$ mit

$$\Phi_{\mathcal{B}}((x_1, x_2, ..., x_n)) = x_1 v_1 + x_2 v_2 + ... + x_n v_n ,$$

dann ist $\Phi_{\mathcal{B}}$ ein Isomorphismus.

Beweis. Weil \mathcal{B} eine Basis ist, ist $\Phi_{\mathcal{B}}$ bijektiv. Seien nun $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{K}^n$ und $\lambda \in \mathbb{K}$. Dann ist $\Phi_{\mathcal{B}}(x + y) = (x_1 + y_1)v_1 + ... + (x_n + y_n)v_n = (x_1v_1 + ... + x_nv_n) + (y_1v_1 + ... + y_nv_n) = \Phi_{\mathcal{B}}(x) + \Phi_{\mathcal{B}}(y)$ und $\Phi_{\mathcal{B}}(\lambda x) = (\lambda x_1)v_1 + ... + (\lambda x_n)v_n = \lambda(x_1v_1 + ... + x_nv_n) = \lambda\Phi_{\mathcal{B}}(x)$. Damit ist $\Phi_{\mathcal{B}}$ auch linear. \square

Bemerkung. Sind $e_1,...,e_n$ die kanonischen Basisvektoren in \mathbb{K}^n , dann gilt offenbar $\Phi_{\mathcal{B}}(e_i) = v_i$.

Der Isomorphismus $\Phi_{\mathcal{B}}$ heißt auch ein Koordinatensystem in V.

Somit: Sei V ein \mathbb{K} -Vektorraum mit $\dim V = n$. Durch Wahl einer Basis \mathcal{B} in V erhalten wir ein Koordinatensystem $\Phi_{\mathcal{B}} : \mathbb{K}^n \to V$.

Zu $v \in V$ heißt $x = (x_1, ..., x_n) = \Phi_{\mathcal{B}}^{-1}(v)$ der Koordinatenvektor von v bzgl. \mathcal{B} . Dabei gilt $v = x_1v_1 + ... + x_nv_n$.

Beispiele.

1) $\mathcal{B} = (v_1, v_2, v_3)$ mit $v_1 = (2, -1, 3)$, $v_2 = (0, 1, 1)$, $v_3 = (1, -1, 0)$ ist eine Basis des \mathbb{R}^3 .

Gesucht ist der Koordinatenvektor von v = (1, -1, 2) bzgl. \mathcal{B} .

$$v = x_1v_1 + x_2v_2 + x_3v_3 \implies (1, -1, 2) = x_1(2, -1, 3) + x_2(0, 1, 1) + x_3(1, -1, 0)$$

Daraus folgt durch Vergleich der Komponenten

 $1=2x_1+x_3$, $-1=-x_1+x_2-x_3$, $2=3x_1+x_2$, und weiters $x_1=1$, $x_2=-1$, $x_3=-1$. Somit ist x=(1,-1,-1) der Koordinatenvektor von v bzgl. $\mathcal B$.

- 2) Ist \mathcal{B} die kanonische Basis im \mathbb{R}^3 , dann ist der Koordinatenvektor von $v=(v_1,v_2,v_3)$ bzgl. \mathcal{B} offenbar gleich (v_1,v_2,v_3) , weil $v=v_1(1,0,0)+v_2(0,1,0)+v_3(0,0,1)$.
- 3) In $V = \mathbb{P}_2$ sei die Basis $\mathcal{B} = (1, 1+t, 1+t+t^2)$ gegeben.

Gesucht ist der Koordinatenvektor von $v=6-t^2$.

Für alle $t \in \mathbb{R}$ muß damit gelten:

$$6 - t^2 = x_1 \cdot 1 + x_2 \cdot (1+t) + x_3 \cdot (1+t+t^2) = (x_1 + x_2 + x_3) + (x_2 + x_3) \cdot t + x_3 \cdot t^2$$

Koeffizientenvergleich ergibt $x_3=-1$, damit $x_2+x_3=0 \Rightarrow x_2=1$. Aus $x_1+x_2+x_3=6$ folgt schließlich $x_1=6$. Also ist x=(6,1,-1).