Determinanten - I

Eine Determinante ist eine Abbildung, welche einer quadratischen (!) Matrix eine Zahl zuordnet.

Wir verwenden in diesem Zusammenhang die Schreibweise $A = \begin{pmatrix} a_1 \\ a_2 \\ .. \\ a_n \end{pmatrix}$,

wobei a_i den *i*-ten Zeilenvektor der $n \times n$ -Matrix A bezeichnet.

Definition. Eine Abbildung det : $M(n \times n; \mathbb{K}) \to \mathbb{K}$ heißt (n-reihige) **Determinante**, wenn gilt

(D1): det ist "linear in jeder Zeile", d.h. falls $a_i = a_i' + a_i''$ bzw. $a_i = \lambda a'''$, dann ist

$$\det \begin{pmatrix} .. \\ a_i \\ .. \\ .. \end{pmatrix} = \det \begin{pmatrix} .. \\ a'_i \\ .. \\ .. \end{pmatrix} + \det \begin{pmatrix} .. \\ a''_i \\ .. \\ .. \end{pmatrix} \quad \text{bzw.}$$

$$\det \begin{pmatrix} .. \\ a_i \\ .. \\ .. \end{pmatrix} = \lambda \det \begin{pmatrix} .. \\ a_i^{"'} \\ .. \\ .. \end{pmatrix}$$

(D2) : det ist "alternierend", d.h. gilt $a_i=a_j$ für $i\neq j$, dann ist $\det A=0$.

(D3):
$$\det E_n = +1$$
.

Wir werden erst etwas später die Existenz und Eindeutigkeit von derartigen Abbildungen nachweisen, wobei die Eindeutigkeit aus der Normierungseigenschaft (D3) folgen wird.

Satz. Zu jedem $n \in \mathbb{N}$ gibt es **genau eine** Abbildung det : $M(n \times n; \mathbb{K}) \to \mathbb{K}$ mit den Eigenschaften (D1), (D2), (D3).

Aus den drei definierenden Eigenschaften können wir nun eine Reihe weiterer Eigenschaften herleiten.

(D4):
$$\det(\lambda A) = \lambda^n \det A$$
 für $\lambda \in \mathbb{K}$ und $A \in M(n \times n; \mathbb{K})$

(D5):
$$\exists i \text{ mit } a_i = (0, ..., 0) \Rightarrow \det A = 0$$

(D6): B entstehe aus A durch Vertauschen von zwei (verschiedenen) Zeilen \Rightarrow detB = -detA (Vorzeichenwechsel!)

(D7): B entstehe aus A durch Addition der λ -fachen j-ten Zeile zur i-ten Zeile $(i \neq j) \Rightarrow \det B = \det A$.

(D8): Sei A eine obere (bzw. untere) Dreiecksmatrix mit Hauptdiagonalelementen $\lambda_1, \lambda_2, ..., \lambda_n$. Dann ist $\det A = \lambda_1 \cdot \lambda_2 \cdot ... \cdot \lambda_n$.

(D9): $\det A = 0 \Leftrightarrow a_1, a_2, ..., a_n$ sind linear abhängig.

(D10): $\det A \neq 0 \Leftrightarrow A \text{ ist invertierbar}.$

(D11): $A, B \in M(n \times n; \mathbb{K}) \Rightarrow \det(A \cdot B) = \det A \cdot \det B$

Folgerung. Ist A invertierbar, d.h. $\exists A^{-1}$, dann $\det(A^{-1}) = \frac{1}{\det A}$.

Beweis.

zu (D4) :
$$A = \begin{pmatrix} a_1 \\ .. \\ .. \\ a_n \end{pmatrix} \Rightarrow \lambda A = \begin{pmatrix} \lambda a_1 \\ .. \\ .. \\ \lambda a_n \end{pmatrix}$$
. Mit (D1) folgt

$$\det(\lambda A) = \lambda \det \begin{pmatrix} a_1 \\ \lambda a_2 \\ .. \\ \lambda a_n \end{pmatrix} = \lambda^2 \det \begin{pmatrix} a_1 \\ a_2 \\ .. \\ \lambda a_n \end{pmatrix} = ... = \lambda^n \det A .$$

zu (D5) : Sei
$$a_i = (0, ..., 0) \Rightarrow a_i = 0 \cdot a_i$$
 . Mit (D1) : $\det A = 0$.

zu (D6) : Sei $i \neq j$.

$$0 \stackrel{(D2)}{=} \det \begin{pmatrix} \dots \\ a_i + a_j \\ \dots \\ a_i + a_j \\ \dots \end{pmatrix} \stackrel{i}{j} = \det \begin{pmatrix} \dots \\ a_i \\ \dots \\ a_i + a_j \\ \dots \end{pmatrix} + \det \begin{pmatrix} \dots \\ a_j \\ \dots \\ a_i + a_j \\ \dots \end{pmatrix} =$$

$$= \det \begin{pmatrix} .. \\ a_i \\ .. \\ a_i \\ .. \end{pmatrix} + \det \begin{pmatrix} .. \\ a_i \\ .. \\ a_j \\ .. \end{pmatrix} + \det \begin{pmatrix} .. \\ a_j \\ .. \\ a_i \\ .. \end{pmatrix} + \det \begin{pmatrix} .. \\ a_j \\ .. \\ a_j \\ .. \end{pmatrix} =$$

$$= \det \begin{pmatrix} .. \\ a_i \\ .. \\ a_j \\ .. \end{pmatrix} + \det \begin{pmatrix} .. \\ a_j \\ .. \\ a_i \\ .. \end{pmatrix}.$$

Damit gilt
$$\det \begin{pmatrix} .. \\ a_j \\ .. \\ a_i \end{pmatrix} \begin{array}{c} i \\ .. \\ j \end{array} = -\det \begin{pmatrix} .. \\ a_i \\ .. \\ a_j \\ .. \end{pmatrix}.$$

zu (D7):

$$\det \begin{pmatrix} \dots \\ a_i + \lambda a_j \\ \dots \\ a_j \\ \dots \end{pmatrix} \begin{array}{c} i \\ \stackrel{(D1)}{=} \det \begin{pmatrix} \dots \\ a_i \\ \dots \\ a_j \\ \dots \end{pmatrix} + \lambda \det \begin{pmatrix} \dots \\ a_j \\ \dots \\ a_j \\ \dots \end{pmatrix} \stackrel{(D2)}{=} \det A .$$

zu (D8): (für obere Dreiecksmatrix)

i) Ist $\lambda_i = 0$ für ein $i \in \{1, 2, ..., n\}$, dann kann A durch elementare Zeilenumformungen vom Typ III und Typ IV in eine obere Dreiecksmatrix B übergeführt werden, bei der die n-te Zeile eine Nullzeile ist.

Dann ist $\det A = \pm \det B = 0$.

ii) Sonst gilt $\;\lambda_i\neq 0\;\;\forall\;i$. Mit (D1) ist dann $\;\det A=\lambda_1\lambda_2...\lambda_n\det B$

wobei
$$B = \begin{pmatrix} 1 & * & * & * \\ 0 & 1 & \dots \\ 0 & & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
.

B kann durch elementare Zeilenumformungen vom Typ III in die Einheitsmatrix E_n übergeführt werden.

Wegen (D7) ist det $B = \det E_n = 1$ und damit det $A = \lambda_1 \cdot \lambda_2 \cdot ... \cdot \lambda_n$.

Folgerung.

Ist A eine "Block-Matrix" der Form $A=\begin{pmatrix}A_1&C\\0&A_2\end{pmatrix}$, wobei A_1 und A_2 quadratisch sind, dann gilt

$$\det A = \det A_1 \cdot \det A_2 .$$

Beweis. Durch Zeilenumformungen vom Typ III und Typ IV führe A_1 in eine obere Dreiecksmatrix B_1 über. Aus C werde dabei C'. A_2 bleibt dabei unverändert.

$$\left(\begin{array}{cc} A_1 & C \\ 0 & A_2 \end{array}\right) \hookrightarrow \left(\begin{array}{cc} B_1 & C' \\ 0 & A_2 \end{array}\right)$$

Dann ist $\det A_1 = (-1)^k \det B_1$ (k... Anzahl der Zeilenvertauschungen).

Im nächsten Schritt führe A_2 in eine obere Dreiecksmatrix B_2 über. Dabei bleiben B_1 und C' unverändert.

$$\left(\begin{array}{cc} B_1 & C' \\ 0 & A_2 \end{array}\right) \hookrightarrow \left(\begin{array}{cc} B_1 & C' \\ 0 & B_2 \end{array}\right) = B$$

Dann ist $\det A_2 = (-1)^l \det B_2$ (l.. Anzahl der Zeilenvertauschungen).

Die Matrix B ist offenbar eine obere Dreiecksmatrix, für die gilt

$$\det B = \det B_1 \cdot \det B_2 .$$

Dann ist $\det A = (-1)^{k+l} \det B = (-1)^k \det B_1 \cdot (-1)^l \det B_2 = \det A_1 \cdot \det A_2$. \Box

zu (D9) : Man führe A durch Zeilenumformungen vom Typ III und Typ IV in eine Matrix B in **Zeilenstufenform** über.

Dann ist $\det A = \pm \det B$ und Zeilenrang von B = Zeilenrang von A.

B habe die Zeilenvektoren $b_1, b_2, ..., b_n$. Dann gilt

 $(b_1,...,b_n)$ linear unabhängig \Leftrightarrow Zeilenrang von B=n \Leftrightarrow

B ist obere Dreiecksmatrix, wo alle Hauptdiagonalelemente $\lambda_1, ..., \lambda_n \neq 0$ sind $\Leftrightarrow \det B \neq 0$ (wegen (D8)).

Somit gilt $(a_1, ..., a_n)$ linear unabhängig $\Leftrightarrow (b_1, ..., b_n)$ linear unabhängig $\Leftrightarrow \det A = \pm \det B \neq 0$ bzw.

 $\det A = 0 \iff (a_1, ..., a_n)$ ist linear abhängig.

zu (D10) : folgt aus (D9) .

A ist invertierbar $\Leftrightarrow \operatorname{Rg} A = n \Leftrightarrow \det A \neq 0$.

zu (D11) : Ist RgA < n (und damit det A = 0) oder RgB < n (und damit det B = 0) , dann ist nach der Ungleichung von Sylvester Rg $(A \cdot B) < n$, also det $(A \cdot B) = 0$.

Ist $\det(A \cdot B) = 0$, dann ist $\operatorname{Rg}(A \cdot B) < n$, und wiederum folgt mit der Ungleichung von Sylvester , dass $\operatorname{Rg} A < n$ oder $\operatorname{Rg} B < n$ bzw. $\det A = 0$ oder $\det B = 0$ und damit $\det A \cdot \det B = 0$.

Sei also RgA = n und RgB = n.

Man überlegt sich zuerst leicht : ist C eine beliebige $n \times n$ Matrix und C_1 eine Elementarmatrix der Form $S_i(\lambda)$ oder Q_i^j oder $Q_i^j(-1)$, dann ist $\det(C_1 \cdot C) = \det C_1 \cdot \det C$.

Die Matrix A kann nun durch Zeilenumformungen vom Typ I und Typ II in die Einheitsmatrix E_n übergeführt werden, und, wie wir wissen, entspricht derartigen Zeilenumformungen die Multiplikation von links mit einer Elementarmatrix $S_i(\lambda)$ oder Q_i^j .

Also gibt es Elementarmatrizen D_i (vom Typ I bzw. Typ II), sodass

$$D_s \cdot ... \cdot D_1 \cdot A = E_n$$
 bzw. $A = D_1^{-1} \cdot ... \cdot D_s^{-1} = C_1 \cdot ... \cdot C_s$,

wobei $C_i = D_i^{-1}$ vom Typ I, Typ II oder vom Typ $Q_i^j(-1)$ ist.

Damit ist $\det(A \cdot B) = \det(C_1 \cdot ... \cdot C_s \cdot B) = \det(C_1 \cdot \det(C_2 \cdot ... \cdot C_s \cdot B) =$

 $= \det C_1 \cdot \det C_2 \cdot \det (C_3 \cdot \dots \cdot C_s \cdot B) = \dots = \det C_1 \cdot \det C_2 \cdot \dots \cdot \det C_s \cdot \det B$

Wegen $A=C_1\cdot\ldots\cdot C_s$ erhält man in analoger Weise $\det A=\det C_1\cdot\det C_2\cdot\ldots\cdot\det C_s$.

Insgesamt ergibt sich somit $\det(A \cdot B) = \det A \cdot \det B$.

Ist A invertierbar, dann ist $\det A \neq 0$ und $A \cdot A^{-1} = E_n$. Folglich ist $1 = \det E_n = \det(A \cdot A^{-1}) = \det A \cdot \det(A^{-1})$, und damit

$$\det A^{-1} = \frac{1}{\det A} \ . \qquad \Box$$

Wir zeigen nun die Existenz der Determinantenfunktion und dass sie eindeutig bestimmt ist.

Satz. $\stackrel{1}{\exists}$ Abbildung det : $M(n \times n; \mathbb{K}) \to \mathbb{K}$, welche (D1), (D2) und (D3) erfüllt, und

$$\det A = \sum_{\sigma \in S_n} \operatorname{sign} \sigma \ a_{1\sigma(1)} a_{2\sigma(2)} ... a_{n\sigma(n)} \ .$$

Beweis.

i) (**Eindeutigkeit**) Jede Determinante, falls sie überhaupt existiert, hat notwendigerweise obige Form.

Sei
$$A = \begin{pmatrix} a_1 \\ a_2 \\ .. \\ a_n \end{pmatrix}$$
. Dann ist $a_i = a_{i1}e_1 + a_{i2}e_2 + ... + a_{in}e_n \ \forall i$.

$$\det A \stackrel{(D1)}{=} \sum_{i_1=1}^n a_{1i_1} \det \begin{pmatrix} e_{i_1} \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \sum_{i_1=1}^n a_{1i_1} \sum_{i_2=1}^n a_{2i_2} \det \begin{pmatrix} e_{i_1} \\ e_{i_2} \\ \vdots \\ a_n \end{pmatrix} = \dots =$$

$$= \sum_{i_1, i_2, \dots, i_n = 1}^{n} a_{1i_1} a_{2i_2} \dots a_{ni_n} \det \begin{pmatrix} e_{i_1} \\ e_{i_2} \\ \vdots \\ e_{i_n} \end{pmatrix}.$$

Wegen (D2) ist
$$\det \begin{pmatrix} e_{i_1} \\ e_{i_2} \\ .. \\ e_{i_n} \end{pmatrix} = 0$$
, wenn $(i_1, i_2, ..., i_n)$ **keine** Permutation von $(1, 2, ..., n)$ ist.

Damit
$$\det A = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} \det \begin{pmatrix} e_{\sigma(1)} \\ e_{\sigma(2)} \\ \vdots \\ e_{\sigma(n)} \end{pmatrix}$$
.

Weil jeder Zeilenvertauschung eine Transposition entspricht, ist

$$\det \begin{pmatrix} e_{\sigma(1)} \\ e_{\sigma(2)} \\ .. \\ e_{\sigma(n)} \end{pmatrix} = \mathrm{sign}\sigma \ \det \begin{pmatrix} e_1 \\ e_2 \\ .. \\ e_n \end{pmatrix} = \mathrm{sign}\sigma \ \mathrm{und\ damit}$$

$$\det A = \sum_{\sigma \in S_n} \operatorname{sign} \sigma \ a_{1\sigma(1)} a_{2\sigma(2)} ... a_{n\sigma(n)} \ .$$

ii) (Existenz) Wir zeigen nun, dass die Abbildung

 $\det A=\sum\limits_{\sigma\in S_n}{\rm sign}\sigma~a_{1\sigma(1)}a_{2\sigma(2)}...a_{n\sigma(n)}~$ tatschlich die Eigenschaften (D1) , (D2) und (D3) erfüllt.

$$\det \begin{pmatrix} \cdots \\ a'_i + a''_i \end{pmatrix} = \sum_{\sigma \in S_n} \operatorname{sign}\sigma \ a_{1\sigma(1)} \dots (a'_{i\sigma(i)} + a''_{i\sigma(i)}) \dots a_{n\sigma(n)} =$$

$$= \sum_{\sigma \in S_n} \operatorname{sign}\sigma \ a_{1\sigma(1)} ... \ a'_{i\sigma(i)} ... \ a_{n\sigma(n)} + \sum_{\sigma \in S_n} \operatorname{sign}\sigma \ a_{1\sigma(1)} ... \ a''_{i\sigma(i)} ... \ a_{n\sigma(n)} =$$

$$= \det \left(\begin{array}{c} .. \\ a_i' \\ .. \end{array} \right) + \det \left(\begin{array}{c} .. \\ a_i'' \\ .. \end{array} \right) .$$

Analog zeigt man, dass
$$\det \begin{pmatrix} .. \\ \lambda a_i''' \\ .. \end{pmatrix} = \lambda \det \begin{pmatrix} .. \\ a_i''' \\ .. \end{pmatrix}.$$

Damit ist (D1) erfüllt.

Sei nun $a_k = a_l$ für k < l und τ jene Transposition, die k und l vertauscht.

Dann ist (siehe vorher) S_n die disjunkte Vereinigung $S_n = A_n \cup A_n \tau$. Durchläuft σ die Menge A_n , dann durchläuft $\sigma \circ \tau$ die Menge $A_n \tau$.

Damit erhalten wir

$$\det A = \sum_{\sigma \in A_n} a_{1\sigma(1)} a_{2\sigma(2)} ... a_{n\sigma(n)} - \sum_{\sigma \in A_n} a_{1\sigma(\tau(1))} a_{2\sigma(\tau(2))} ... a_{n\sigma(\tau(n))} .$$

Weil $a_k = a_l$ (somit $a_{k\sigma(l)} = a_{l\sigma(l)}$ und $a_{k\sigma(k)} = a_{l\sigma(k)}$), erhalten wir

$$a_{1\sigma(\tau(1))}... \ a_{k\sigma(\tau(k))}... \ a_{l\sigma(\tau(l))}... \ a_{n\sigma(\tau(n))} = a_{1\sigma(1)}... \ a_{k\sigma(l)}... \ a_{l\sigma(k)}... \ a_{n\sigma(n)} = a_{1\sigma(1)}... \ a_{k\sigma(k)}... \ a_{l\sigma(l)}... \ a_{n\sigma(n)} = a_{1\sigma(1)}... \ a_{n\sigma(n)} \ .$$

Damit heben sich die Summanden gegenseitig auf und $\det A = 0$. Also gilt (D2).

Ist $\delta_{ij} = \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{falls } i \neq j \end{cases}$ das Kronecker Symbol, dann gilt offenbar

$$\delta_{1\sigma(1)}\delta_{2\sigma(2)}...\delta_{n\sigma(n)} = \left\{ \begin{array}{ll} 1 & \text{falls} & \sigma = \text{id} \\ 0 & \text{falls} & \sigma \neq \text{id} \end{array} \right..$$

Damit ist
$$\det E_n = \det(\delta_{ij}) = \sum_{\sigma \in S_n} \operatorname{sign}\sigma \ \delta_{1\sigma(1)} \delta_{2\sigma(2)} \dots \ \delta_{n\sigma(n)} = +1 \ . \quad \Box$$

Bemerkung. Eine häufige Schreibweise ist auch

$$\det \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}.$$