04. Base, Subbase, Neighbourhood base

The collection of all open sets in a topological space may be quite complicated or difficult to define. Therefore it is desirable to have simpler "building blocks" for the topology.

Definition. Let (X, τ) be a topological space.

A subcollection $\mathcal{B} \subseteq \tau$ is called a **base** of (X, τ) if

 $\forall O \in \tau \ \forall x \in O \ \exists B_x \in \mathcal{B} \text{ such that } x \in B_x \subseteq O$

or, equivalently, if every nonempty open set is the union of certain members of $\ {\cal B}$.

Remark. Of course, τ itself is a base for (X, τ) .

Remark. Every base \mathcal{B} for (X, τ) has a certain cardinality $|\mathcal{B}|$.

 $w(X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a base for } (X, \tau)\}$

is called the **weight** of (X, τ) .

If $w(X) \leq \aleph_0$, i.e. there exists a countable base, then (X, τ) is called **second countable** or an A_2 -**space**.

Examples.

1) If (X, d) is a metric space with topology τ_d , then

 $\mathcal{B} = \{ K(x,\varepsilon) : x \in X, \varepsilon > 0 \}$

is a base for (X, τ_d) .

2) Consider \mathbb{R} (resp. \mathbb{R}^n) with the usual metric and topology. Then $\mathcal{B} = \{(q - \frac{1}{n}, q + \frac{1}{n}) : q \in \mathbb{Q}, n \in \mathbb{N}\}$ (resp. $\mathcal{B} = \{K(q, \frac{1}{n}) : q \in \mathbb{Q}^n, n \in \mathbb{N}\}$) is a countable base, therefore each \mathbb{R}^n (with the usual topology) is second countable.

We observe that $\aleph_0 = w(X) < |\mathbb{R}^n| = c$.

3) Let τ be the discrete topology on X.

Every base \mathcal{B} for (X, τ) must contain the sets $\{x\}$, $x \in X$.

This family $\{\{x\}, x \in X\}$ is obviously a base, therefore w(X) = |X|.

Proposition. Let $w(X) \leq \alpha$ and let $\{O_i : i \in I\}$ be a family of open sets in (X, τ) .

Then there is a subset $I_0 \subseteq I$ such that $|I_0| \leq \alpha$ such that

$$\bigcup_{i \in I_0} O_i = \bigcup_{i \in I} O_i$$

Proof. Clearly $\bigcup_{i \in I_0} O_i \subseteq \bigcup_{i \in I} O_i$ for each $I_0 \subseteq I$.

Now let \mathcal{B} be a base with $|\mathcal{B}| \leq \alpha$.

Let $\mathcal{B}_0 = \{B \in \mathcal{B} : \exists i \in I \text{ such that } B \subseteq O_i\}$ and for each $B \in \mathcal{B}_0$ choose $i_B \in I$ such that $B \subseteq O_{i_B}$.

If $I_0 = \{i_B : B \in \mathcal{B}_0\}$ then $|I_0| \le \alpha$.

Now let $x \in \bigcup_{i \in I} O_i$. Then there exists $j \in I$ such that $x \in O_j$ and $B \in \mathcal{B}$ such that $x \in B \subseteq O_j$.

Then $B \in \mathcal{B}_0$, $i_B \in I_0$ and $x \in B \subseteq O_{i_B} \subseteq \bigcup_{i \in I_0} O_i$.

Therefore $\bigcup_{i\in I_0} O_i = \bigcup_{i\in I} O_i$. \Box

Theorem. Let $\aleph_0 \leq w(X) \leq \alpha$ and \mathcal{B} be a base for (X, τ) . Then there exists a base \mathcal{B}_0 such that $\mathcal{B}_0 \subseteq \mathcal{B}$ and $|\mathcal{B}_0| \leq \alpha$.

Proof. Let $\mathcal{B} = \{B_i : i \in I\}$.

Choose a base $\mathcal{B}_1 = \{W_j : j \in J\}$ with $|J| \le \alpha$.

For each $j \in J$ let $I_j = \{i \in I : B_i \subseteq W_j\}$, i.e. $W_j = \bigcup_{i \in I_j} B_i$.

According to the previous proposition there exists $I_j^* \subseteq I_j$ such that $|I_j^*| \leq \alpha$ and $W_j = \bigcup_{i \in I_j^*} B_i$.

Let
$$\mathcal{B}_0 = \{B_i : i \in I_j^*, j \in J\}$$
. Then $|\mathcal{B}_0| \le \alpha$.

We claim that \mathcal{B}_0 is a basis. Let $O \subseteq X$ be open and $x \in O$. Then there exists $j \in J$ such that $x \in W_j \subseteq O$.

Consequently there is $i \in I_j^*$ such that $x \in B_i \subseteq W_j \subseteq O$. Since $B_i \in \mathcal{B}_0$ we are done. \Box .

Every base \mathcal{B} for a space (X, τ) obviously has the following properties. (B1) $\forall x \in X \exists B \in \mathcal{B} : x \in B$ (B2) $\forall B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

((B1) holds because X is open, and (B2) holds because $B_1 \cap B_2$ is open.)

These properties can be utilized for the **construction** of topologies on a given set.

Let X be a set (!) and let \mathcal{B} be a family of subsets of X that satisfies (B1) and (B2).

Then there is a unique topology τ on X such that \mathcal{B} is a base for (X, τ) .

(This resembles the construction of the topology of a metric space.)

Let $\tau = \{\emptyset\} \cup \{O \subseteq X : \forall x \in O \exists B_x \in \mathcal{B} \text{ such that } x \in B_x \subseteq O\}$.

We first show that τ is a topology on X. Clearly, $\emptyset \in \tau$ and $X \in \tau$ (since (B1)).

Let $O_1, O_2 \in \tau$ and $x \in O_1 \cap O_2$.

Then there exist $B_1, B_2 \in \mathcal{B}$ with $x \in B_1 \subseteq O_1$ and $x \in B_2 \subseteq O_2$. By (B2), there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2 \subseteq O_1 \cap O_2$. Therefore $O_1 \cap O_2 \in \tau$.

Let $O_i \in \tau$, $i \in I$ and let $O = \bigcup_{i \in I} O_i$.

For each $x \in O$ there exists $j \in I$ such that $x \in O_j$ and $B \in \mathcal{B}$ such that $x \in B \subseteq O_j \subseteq O$. Thus $O \in \tau$.

According to the construction of τ , \mathcal{B} is obviously a base for (X, τ) .

Let σ be another topology on X for which \mathcal{B} is a base.

If $O \in \sigma$ then O is the union of sets of \mathcal{B} , therefore $O \in \tau$ and thus $\sigma \subseteq \tau$. In the same manner one shows that $\tau \subseteq \sigma$, therefore $\sigma = \tau$.

Example. (Sorgenfrey line)

Let $X = \mathbb{R}$ and consider $\mathcal{B} = \{[a, b) : a, b \in \mathbb{R} \text{ and } a < b\}$.

It is easy to see that (B1) and (B2) are satisfied therefore exists a unique topology τ for which \mathcal{B} is a base.

This space is called the **Sorgenfrey line**.

Some of the properties of the Sorgenfrey line are:

- 1) Each half-open interval [a, b) is open and closed in (X, τ) .
- 2) $\tau_d \subseteq \tau$ but $\tau_d \neq \tau$.
- 3) $\overline{\mathbb{Q}} = \mathbb{R}$
- 4) (X, τ) is **not** second countable.

(Proofs as exercise)

Definition. Let (X, τ) be a topological space.

A subcollection $S \subseteq \tau$ is called a **subbase** of (X, τ) , if the family of finite intersections of members of S is a base of (X, τ) .

This means, whenever $O \in \tau$ and $x \in O$ there exist $S_1, S_2, \ldots, S_k \in S$ such that $x \in S_1 \cap S_2 \cap \ldots \cap S_k \subseteq O$.

Remarks.

1) Every base of (X, τ) is also a subbase.

2) Let $X = \mathbb{R}$ have the usual topology.

Then $\mathcal{S} = \{(-\infty, b) : b \in \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\}$ is a subbase but not a base.

Now let (X, τ) be a space and \mathcal{S} be a subbase. Then

(SB) $\forall x \in X \exists S \in \mathcal{S}$ such that $x \in S$

(SB) holds because X is open. So a subbase is, in particular, a so-called **covering** of X.

The property (SB) can again be utilized for the construction of topological spaces.

Let X be a set and S be a family of subsets of X satisfying (SB).

Then there is a unique topology τ on X such that S is a subbase of (X, τ) .

Proof. Let \mathcal{B} be the family of finite intersections of members of \mathcal{S} . In particular, $\mathcal{S} \subseteq \mathcal{B}$.

If $x \in X$ there exists $S \in S$ such that $x \in S$, therefore (B1) holds.

Let $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$.

Then there exist $S_1, \ldots, S_n, S_{n+1}, \ldots, S_{n+m} \in \mathcal{S}$ such that

 $B_1 = S_1 \cap \ldots \cap S_n$ and $B_2 = S_{n+1} \cap \ldots \cap S_{n+m}$

Since $B_3 = S_1 \cap \ldots S_{n+m} = B_1 \cap B_2$ and $x \in B_3$, (B2) holds.

Hence there is a unique topology τ on X having \mathcal{B} as a base, and obviously \mathcal{S} as a subbase. \Box

Remark. τ is the coarsest topology on X where all sets of S are open. We also say that τ is "generated" by S.

Proof. Let σ be a topology on X with $S \subseteq \sigma$. Then $B \subseteq \sigma$ and consequently $\tau \subseteq \sigma$. \Box

Examples.

1) Let $X = \mathbb{R}$ and S be the family of **all** halfopen Intervals.

Then \mathcal{S} generates the discrete topology τ .

For $x \in \mathbb{R}$ we have $[x, x + 1) \cap (x - 1, x] = \{x\} \in \tau$, i.e. each singleton is open.

For $A \subseteq \mathbb{R}$, $A = \bigcup_{x \in A} \{x\} \in \tau$.

2) Let (X, <) be a linearly ordered set (|X| > 1).

For each $x \in X$ let

 $(\leftarrow, x) = \{y \in X : y < x\}$ and $(x, \rightarrow) = \{y \in X : y > x\}$.

Then $\mathcal{S} = \{(\leftarrow, x), (x, \rightarrow) : x \in X\}$ generates the so-called **order topology** on (X, <).

Remarks.

(a) The order topology on \mathbb{R} (with the usual order) is the usual topology (generated by the metric). The order topology on \mathbb{N} (with the usual order) is the discrete topology.

(b) Typical open neighbourhoods (depending on the order) can be intervals of the form (a, b), [x, a), (a, x].

3) The **product topology** (see later).

4) The weak topology with respect to a family of functions (see later).

Let X be a set and $\{f_i : X \to \mathbb{R} : i \in I\}$ be a family of functions.

The weak topology on X with respect to the given family of functions is

the coarsest topology on X which makes all f_i continuous.

Obviously, $S = \{f_i^{-1}(O) : O \text{ open in } \mathbb{R}, i \in I\}$ is a subbase for this topology.

Definition. Let (X, τ) be a space and let $x \in X$.

A family $\mathcal{B}(x) \subseteq \mathcal{U}(x)$ of neighbourhoods of x is called a **neighbourhood base** in x if

 $\forall U \in \mathcal{U}(x) \exists B \in \mathcal{B}(x) \text{ such that } B \subseteq U$.

If all members of $\mathcal{B}(x)$ are open (resp. closed) we speak of an **open** neighbourhood base (resp. closed neighbourhood base).

Example. For a metric space (X, d) and $x \in X$ is

 $\mathcal{B}(x) = \{ K(x, \frac{1}{n}) : n \in \mathbb{N} \}$

a countable (!) open neighbourhood base in x.

Definition. (X, τ) is called **first countable** or A_1 -space if each point has a countable open neighbourhood base.

Remarks. Let $X = \mathbb{R}$.

(a) If τ_d is the usual topology then (X, τ_d) is first countable.

(b) If σ is the topology of the Sorgenfrey line then (X, σ) is first countable.

(c) If ρ is the cofinite topology then (X, ρ) is **not** first countable.

(d) If τ is the discrete topology then (X, τ) is first countable but **not** second countable.

Remark. Let $\mathcal{B}(x) = (B_n)_{n \in \mathbb{N}}$ be a countable neighbourhood base in $x \in X$. Then there exists a **nested** neighbourhood base in x.

Let $U_n = B_1 \cap \ldots \cap B_n$ for each $n \in \mathbb{N}$. Since the finite intersection of

neighbourhoods is a neighbourhood, $(U_n)_{n\in\mathbb{N}}$ is clearly also a neighbourhood base satisfying $U_{n+1} \subseteq U_n \subseteq B_n$ for each $n \in \mathbb{N}$.

Now let (X, τ) be a space and for each $x \in X$ let $\mathcal{B}(x)$ be an **open** neighbourhood base in x.

Then the following properties obviously hold

(UB 1) $\mathcal{B}(x) \neq \emptyset \quad \forall x \in X \text{ and } x \in B \quad \forall B \in \mathcal{B}(x)$ (UB 2) $B_1, B_2 \in \mathcal{B}(x) \Rightarrow \exists B_3 \in \mathcal{B}(x) \text{ such that } B_3 \subseteq B_1 \cap B_2$ (UB 3) $y \in B \text{ and } B \in \mathcal{B}(x) \Rightarrow \exists B^* \in \mathcal{B}(y) \text{ such that } B^* \subseteq B$.

Again these properties can be utilized for the construction of topologies.

Let X be a set. For each $x \in X$ let $\mathcal{B}(x)$ be a family of sets such that (UB 1) - (UB3) are satisfied.

Then there is a unique topology τ on X such that for each x, $\mathcal{B}(x)$ is an open neighbourhood base in x.

Proof.

Let $\tau = \{\emptyset\} \cup \{O \subseteq X : \forall x \in O \exists B_x \in \mathcal{B}(x) \text{ such that } B_x \subseteq O\}$.

Then (TR 1) and (TR 3) obviously hold.

Let $O_1, O_2 \in \tau$ and let $x \in O_1 \cap O_2$. Then there exist $B_1, B_2 \in \mathcal{B}(x)$ such that $x \in B_1 \subseteq O_1$ and $x \in B_2 \subseteq O_2$.

(UB 2) $\Rightarrow \exists B_3 \in \mathcal{B}(x)$ such that $B_3 \subseteq B_1 \cap B_2 \subseteq O_1 \cap O_2$.

Therefore $O_1 \cap O_2 \in \tau$ and (TR2) holds and τ is a topology on X.

 $(\text{UB 3}) \Rightarrow B \in \tau \ \forall B \in \mathcal{B}(x)$

According to the definition of τ , each family $\mathcal{B}(x)$ is an open neighbourhood base in x.

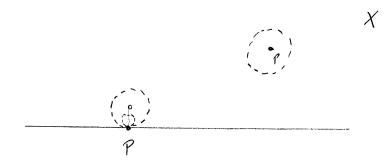
It is easy to see that τ is uniquely determined. \Box

Example. (Niemitzky plane)

Let $X = \{(x,y) \in \mathbb{R}^2 : y \ge 0\}$ be the upper half plane in \mathbb{R}^2 . Let $p = (x,y) \in X$.

If y > 0 then $\mathcal{B}(p)$ consists of all open discs with center p and radius $\frac{1}{n}$ that do **not** intersect the x-axis.

If y = 0 then $\mathcal{B}(p)$ consists of all sets which are the union of $\{p\}$ and an open disc with center $(x, \frac{1}{n})$ and radius $\frac{1}{n}$.



Obviously, (UB 1) - (UB 3) are satisfied.

The resulting space is called the **Niemitzky plane**. Clearly it is first countable but **not** second countable (Exercise!).