
05. Continuous functions

Definition. Let (X, τ) , (Y, σ) be topological spaces , f : X → Y a
function and x0 ∈ X .

1) f is called continuous at x0 ∈ X if

∀ V ∈ U(f(x0)) ∃ U ∈ U(x0) such that f(U) ⊆ V .

2) f is called (globally) continuous if f is continuous at each x ∈ X .

Remark. If (X, d) and (Y, ρ) are metric spaces with topologies τd
and σρ then a function f : X → Y is continuous at x0 ∈ X if and only
if for each ε > 0 there exists δ = δ(x0, ε) such that

d(x0, x) < δ ⇒ ρ(f(x0), f(x)) < ε .

Theorem. Let (X, τ) , (Y, σ) be spaces and f : X → Y . Then the
following are equivalent:

1) f is continuous

2) ∀ V ∈ σ : f−1(V ) ∈ τ (i.e. preimages of open sets are open)

3) If S is a subbase of (Y, σ) then f−1(S) ∈ τ for each S ∈ S

4) B ⊆ Y closed in (Y, σ) ⇒ f−1(B) ⊆ X is closed in (X, τ)

5) ∀ A ⊆ X : f(A) ⊆ f(A)

6) ∀ B ⊆ Y : f−1(B) ⊆ f−1(B)

Proof.

1) ⇒ 2) : If V ∈ σ and x ∈ f−1(V ) then f(x) ∈ V and therefore
V ∈ U(f(x)) .

By assumption, there exists Ux ∈ U(x) with f(Ux) ⊆ V .

Then Ux ⊆ f−1(V ) and f−1(V ) ∈ U(x) . Therefore f−1(V ) ∈ τ .
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2) ⇒ 3) : Is trivial.

3) ⇒ 2) : Let S be a subbase of (Y, σ) such that f−1(S) ∈ τ for each
S ∈ S .

If V ∈ σ and x ∈ f−1(V ) then f(x) ∈ V .

Then there exist S1, S2, . . . , Sk ∈ S such that

f(x) ∈ S1 ∩ S2 ∩ . . .∩ Sk ⊆ V ⇒ x ∈ f−1(S1)∩ . . .∩ f−1(Sk) ⊆ f−1(V )

By assumption, f−1(S1) ∩ . . . ∩ f−1(Sk) ∈ τ .

Therefore f−1(V ) ∈ U(x) and consequently f−1(V ) ∈ τ .

2) ⇒ 4) : Let B ⊆ Y be closed. Then Y \B ∈ σ and

f−1(Y \B) = X \ f−1(B) ∈ τ . Thus f−1(B) ⊆ X is closed.

4) ⇒ 5) : Let A ⊆ X . If B = f(A) then B is closed and f(A) ⊆ B .

By assumption, f−1(B) is closed and A ⊆ f−1(f(A)) ⊆ f−1(B) .

Hence A ⊆ f−1(B) and f(A) ⊆ B = f(A) .

5) ⇒ 6) : Let B ⊆ Y and let A = f−1(B) .

By assumption, f(A) ⊆ f(A) , i.e. f(f−1(B)) ⊆ f(f−1(B)) ⊆ B .

Thus f−1(B) ⊆ f−1(B) .

6) ⇒ 1) : Let x0 ∈ V , V ∈ U(f(x0)) and let B = Y \ V .

Since f(x0) ∈ intV we have f(x0) /∈ Y \ intV = Y \ V = B .

So x0 /∈ f−1(B) and, by assumption, x0 /∈ f−1(B) .

Hence there exists U ∈ U(x) such that U ∩ f−1(B) = ∅ .

Consequently ∅ = f(U) ∩B = f(U) ∩ (Y \ V ) and f(U) ⊆ V .

Thus f is continuous at an arbitrary point x0 ∈ X . �

Corollary. Let X,Y, Z be spaces and f : X → Y and g : Y → Z be
continuous.
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Then g ◦ f : X → Z is continuous.

Proof. Let W ⊆ Z be open in Z . Then g−1(W ) ⊆ Y is open in Y

and f−1(g−1(W ) = (g ◦ f)−1(W ) ⊆ X is open in X . �

In a similar manner one can show that if f is continuous at x0 ∈ X and
g is continuous at y0 = f(x0) ∈ Y then g ◦ f is continuous at x0 .

Examples.

1) If τ is the discrete topology on X .

Then every function f : (X, τ) → (Y, σ) is continuous.

2) Let τ, σ be topologies on X .

Then τ ⊆ σ if and only if the identity function id : (X, σ) → (X, τ) is
continuous.

3) Constant functions are always continuous.

Let f : (X, τ) → (Y, σ) with f(x) = y0 ∀ x ∈ X .

If V ∈ σ then f−1(V ) = X if y0 ∈ V and f−1(V ) = ∅ if y0 /∈ V .

4) Let (X, τ) be a space and let have R the usual topology.

Consider C(X) = {f : X → R : f is continuous} .

One can show that for f, g ∈ C(X) and λ ∈ R that

f + g , f − g , fg , λf ∈ C(X)

f
g ∈ C(X) whenever g(x) ̸= 0 for all x ∈ X

|f | , min{f, g} , max{f, g} ∈ C(X)

C(X) is called the ring of continuous functions on X .

5) (Exercise) Characterize the continuous functions f : (X, τ) → R where
τ is the cofinite topology on X .
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Definition. Let (X, τ) be a space.

A sequence (fn) of functions fn : X → R converges uniformly to a
function f : X → R if

∀ ε > 0 ∃ N ∈ N such that |f(x)− fn(x)| < ε ∀ x ∈ X , ∀ n ≥ N

Theorem. If the fn : X → R are continuous and converge uniformly to
f : X → R then f is continuous.

Proof. Let x0 ∈ X and ε > 0 .

Then ∃ N ∈ N with |f(x)− fn(x)| < ε
3 ∀ x ∈ X , ∀ n ≥ N .

Since fN is continuous there exists U ∈ U(x0) such that

|fN(x0)− fN(x)| < ε
3 ∀ x ∈ U

For x ∈ U we now have

|f(x0)− f(x)| = |(f(x0)− fN(x0))+ (fN(x0)− fN(x))+ (fN(x)− f(x))| ≤

|f(x0)− fN(x0)|+ |fN(x0)− fN(x)|+ |fN(x)− f(x)| <
ε
3 +

ε
3 +

ε
3 = ε

Therefore f is continuous at x0 ∈ X . �
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