# 06. Initial and final topology

We consider the following problem:

Given a set (!) X and a family  $(Y_i, \sigma_i)$  of spaces and corresponding functions  $f_i : X \to Y_i$ ,  $i \in I$ .

Find a topology  $\tau$  on X such that all functions  $f_i: (X, \tau) \to (Y_i, \sigma_i)$  become continuous.

It is obvious that the discrete topology on X fulfills the requirement. Therefore we look for the possibly coarsest topology on X that fulfills the requirement.

Since continuity means that the inverse images of open sets are open, we consider the family

 $\mathcal{S} = \{ f_i^{-1}(V_i) : V_i \text{ open in } Y_i, i \in I \}$ 

From a previous discussion we know that there is a unique topology  $\tau$  on X having S as a subbase, and that it is the coarsest topology making all sets of S open.

**Definition.**  $\tau$  is called the **initial topology** on X with respect to the functions  $f: X \to Y_i$ ,  $i \in I$ .

# Remarks.

1) Let X be a set and  $(Y, \sigma)$  a space and  $f: X \to Y$ .

Then the initial topology  $\tau$  on X with respect to f is

$$au = \{ f^{-1}(V) : V \in \sigma \}$$

2) Let  $(X, \|\cdot\|)$  be a normed space over  $\mathbb{K}$ . Then

 $X' = \{ f : X \to \mathbb{K} : f \text{ is linear and bounded} \}$ 

is called the dual space of X.

The initial topology on X with respect to all  $f \in X'$  is called the **weak** 

**topology** on X (it is, in general, coarser than the topology induced by the norm and not metrizable).

The initial topology has the following "universal property":

Let  $\tau$  be the initial topology on X with respect to the family of functions  $\{f_i: X \to (Y_i, \sigma)\}$ ,  $i \in I\}$ .

Let  $(Z, \rho)$  be a space and  $g: Z \to X$  a function. Then

g is continuous  $\Leftrightarrow f_i \circ g : Z \to Y_i$  is continuous  $\forall i \in I$ 

#### Proof.

If g is continuous then  $f_i \circ g$  is continuous for each  $i \in I$  since each  $f_i$  is continuous.

Conversely,  $\{f_i^{-1}(V_i) : V_i \text{ open in } Y_i, i \in I\}$  is a subbase of  $(X, \tau)$ .

By assumption, each  $g^{-1}(f_i^{-1}(V_i)) = (f_i \circ g)^{-1}(V_i)$  is open in Z.

Therefore, by a previous theorem, g is continuous.  $\Box$ 

#### The subspace topology

Let  $(X, \tau)$  be a space and  $A \subseteq X$ .

The initial topology on A with respect to the inclusion function  $j: A \to X$ where  $j(x) = x \quad \forall x \in A$ , is called the **subspace topology** on A and denoted by  $\tau|_A$ .

Obviously,  $\tau|_A = \{j^{-1}(O) = O \cap A : O \in \tau\}$ .

 $(A,\tau|_A)$  is called a subspace of  $(X,\tau)$  , and  $~G\subseteq A~$  is called open in A~ if  $~G\in\tau|_A$  .

(So the sets open in A can be represented as an intersection of an open set in X and A.)

**Example.** Let  $X = \mathbb{R}$  with the usual topology and A = [0, 2). Then  $[0, 1) = (-1, 1) \cap A$  is open in A but not in X. The proof of the following result is left as an exercise.

**Proposition.** Let  $(X, \tau)$  be a space and  $A \subseteq X$ .

1)  $B \subseteq A$  is closed in  $A \Leftrightarrow$ 

there exists  $F \subseteq X$  closed in X such that  $B = F \cap A$ .

2) For  $B \subseteq A$ , the closure of B with respect to  $(A, \tau|_A)$  is denoted by  $\overline{B}^A$ .

Then  $\overline{B}^A = \overline{B} \cap A$ .

However, we only have  $\operatorname{int} B \cap A \subseteq \operatorname{int}_A B$  in general.

 $(\operatorname{int}_A B \text{ is the interior of } B \text{ with respect to } (A, \tau|_A))$ .

3) Let (X,d) be a metric space and  $A \subseteq X$ .

Then A itself is a metric space by the induced metric  $d|_{A \times A}$ .

It holds that the topology on A generated by  $d|_{A\times A}$  coincides with the subspace topology  $\tau_d|_A$  .

4) Let  $B \subseteq A \subseteq X$ .

If B is open (resp. closed) in X then B is open (resp. closed) in A.

If A is open in X and B is open in A then B is open in X.

If A is closed in X and B is closed in A then B is closed in X.

**Definition.**  $A \subseteq X$  is called a **discrete subspace** of  $(X, \tau)$  if  $\tau|_A$  is the discrete topology on A.

**Exercise.** Show that  $\mathbb{R}$  with the usual topology has a countable discrete subspace but **not** an uncountable discrete subspace.

Show that the Niemitzky plane has an uncountable discrete subspace.

#### The product topology

For each  $i \in I$  let  $(X_i, \tau_i)$  be a space.

The **product set**  $X = \prod_{i \in I} X_i$  is (by definition) the set of all functions  $x: I \to \bigcup_{i \in I} X_i$  such that  $x(j) \in X_j \quad \forall \ j \in I$ .

(An element of the product set is obtained by "choosing" an element from each set  $X_i$ .)

We use the notation  $x = (x_i)_{i \in I}$  or  $x = (x_i)$  where  $x_i = x(i)$ .

 $x_i$  is called the *i*th coordinate (or component) of x.

If I is finite, say  $I = \{1, 2, ..., n\}$  we write  $X = X_1 \times X_2 \times ... \times X_n$ and  $x = (x_1, x_2, ..., x_n)$ .

For each  $i \in I$  there exists a canonical function, the *i*th projection

$$p_i: X = \prod_{i \in I} X_i \to X_i$$
 where  $p_i(x) = x_i$ .

Note that each  $p_i$  is surjective.

**Definition.** The initial topology on  $X = \prod_{i \in I} X_i$  with respect to the family  $\{p_i : i \in I\}$  is called the **product topology**  $\tau$  on X.

Remark. According to previous results

1) Each  $p_i$  is continuous.

2) A function  $f: Y \to \prod_{i \in I} X_i$  is continuous if and only if the "component functions"  $p_i \circ f: Y \to X_i$  are continuous for each  $i \in I$ .

The function  $f : \mathbb{R} \to \mathbb{R} \times \mathbb{R}$  with  $f(t) = (\cos t, t^2)$  is continuous because the functions  $f_1(t) = \cos t$  and  $f_2(t) = t^2$  are continuous.

**Definition.** A function  $f: (X, \tau) \to (Y, \sigma)$  between any spaces is an **open** function (resp. a **closed** function) if

 $\forall \ O \in \tau \ : \ f(O) \in \sigma$ 

(resp.  $\forall A \text{ closed in } (X, \tau) : f(A) \text{ is closed in } (Y, \sigma)$ )

**Remark.** (Proof as exercise)

Let  $\mathcal{B}$  be a base for  $(X, \tau)$ . Then  $f : (X, \tau) \to (Y, \sigma)$  is open if and only if  $f(B) \in \sigma \quad \forall B \in \mathcal{B}$ .

Let  $X = \prod_{i \in I} X_i$  have the product topology  $\tau$ .

Then  $\mathcal{S} = \{p_i^{-1}(O_i) : i \in I \text{ and } O_i \subseteq X_i \text{ open in } X_i\}$  is subbase for  $(X, \tau)$ .

Note that  $p_i^{-1}(O_i) = \{x \in X : x_i \in O_i\}$ .

A typical member of the resulting base for  $(X, \tau)$  has the form

$$B = p_{i_1}^{-1}(O_{i_1}) \cap \ldots \cap p_{i_k}^{-1}(O_{i_k}) = \{ x \in X : x_{i_1} \in O_{i_1}, \ldots, x_{i_k} \in O_{i_k} \}$$
  
where  $i_1, \ldots, i_k \in I$  and  $O_{i_j} \subseteq X_{i_j}$  open in  $X_{i_j}$ .

(In the finite case  $X = X_1 \times \ldots \times X_n$  we have

$$B = p_1^{-1}(O_1) \cap \ldots \cap p_n^{-1}(O_n) = O_1 \times \ldots \times O_n$$

Now let  $B = p_{i_1}^{-1}(O_{i_1}) \cap \ldots \cap p_{i_k}^{-1}(O_{i_k})$  and  $i \in I$ .

If  $i = i_j \in \{i_1, \ldots, i_k\}$  then  $p_i(B) \subseteq O_i$ . If  $x_i \in O_i$  it is possible to "construct" an element  $x \in B$  having  $x_i$  as its *i*th coordinate.

Therefore  $p_i(B) = O_i$ .

If  $i \notin \{i_1, \ldots, i_k\}$  then, taking any  $x_i \in X_i$ , it is possible to "construct" an element  $x \in B$  having  $x_i$  as its *i*th coordinate.

Therefore  $p_i(B) = X_i$ . Now we have

**Proposition.** Each projection  $p_i: X \to X_i$  is an open function.

**Remark.** If  $X_i = Y$  for each  $i \in I$ , we write for the product space  $X = Y^I = \{x : I \to Y\}$ .

Hence the set of all functions  $x: \mathbb{R} \to \mathbb{R}$  can be written as the product set  $\mathbb{R}^{\mathbb{R}}$ .

The resulting product topology is called the **topology of pointwise con-vergence**.

# Examples.

1) Consider  $\mathbb{R}^n = \mathbb{R} \times \ldots \times \mathbb{R}$ .

One the one hand we have the topology generated by the metric on  $\mathbb{R}^n$ , and on the other hand we have the product topology (where  $\mathbb{R}$  has the usual topology).

Those two topologies coincide!

(Hint for the proof in the case n = 2: each open ball contains an open square and conversely)

2) For each  $i \in I$  let  $\tau_i$  be the discrete topology on  $X_i$ .

Then the product topology  $\tau$  is discrete if and only if I is finite.

**Proof.** Let I be finite, i.e.  $X = X_1 \times \ldots \times X_n$ .

Then  $\{x\} = \{x_1\} \times \ldots \times \{x_n\}$  is open in X for  $x = (x_1, \ldots, x_n)$ .

Conversely, suppose that  $\ I \$  is infinite and assume that  $\ \{x\} \in \tau \$  for  $x \in X$  .

Then there exist  $i_1, \ldots, i_k \in I$  and corresponding open sets  $O_{i_1}, \ldots, O_{i_k}$  such that

 $\{x\} = p_{i_1}^{-1}(O_{i_1}) \cap \ldots \cap p_{i_k}^{-1}(O_{i_k})$ 

It is possible to choose  $j \notin \{i_1, \ldots, i_k\}$  and  $y_j \in X_j$  with  $y_j \neq x_j$ . "Construct"  $y \in X$  with the  $y_j$  and  $y_i = x_i$  for  $i \neq j$ .

Then 
$$y \neq x$$
 but  $y \in p_{i_1}^{-1}(O_{i_1}) \cap \ldots \cap p_{i_k}^{-1}(O_{i_k})$ , a contradiction.  $\Box$ 

3) For each  $n \in \mathbb{N}$  let  $X_n = \{0, 1\}$  have the discrete topology.

Then  $X = \prod_{n \in \mathbb{N}} X_n = \{0, 1\}^{\mathbb{N}}$  consists of all sequences containing only 0 or 1.

This space is called the **Cantor cube**.

We now consider a related problem than the previous one.

Given a set (!) Y and a family  $(X_i, \tau_i)$  of spaces and corresponding functions  $f_i : X_i \to Y$ ,  $i \in I$ .

Find a topology  $\sigma$  on Y such that all functions  $f_i : (X_i, \tau_i) \to (Y, \sigma)$  become continuous.

It is obvious that the indiscrete topology on Y fulfills the requirement. Therefore we look for the possibly finest topology on Y that fulfills the requirement.

It is easily checked that

 $\sigma = \{ V \subseteq Y : f_i^{-1}(V) \in \tau_i \quad \forall \ i \in I \}$ 

is, in fact, a topology, and also the finest topology on Y such that all  $f_i: X_i \to Y$  are continuous.

 $\sigma$  is called the **final topology** on Y with respect to the functions  $f_i: X_i \to Y$  ,  $i \in I$  .

Remark. Also the final topology has a "universal property".

If  $g: Y \to Z$  is a mapping then g is continuous if and only  $g \circ f_i : X_i \to Z$  is continuous for each  $i \in I$ .

**Proof.** If g is continuous then clearly all functions  $g \circ f_i$ ,  $i \in I$  are continuous.

Conversely, suppose that all  $g \circ f_i$  are continuous. Let  $W \subseteq Z$  be open in Z and let  $V = g^{-1}(W) \subseteq Y$ .

Since  $f_i^{-1}(V) = f_i^{-1}(g^{-1}(W)) = (g \circ f_i)^{-1}(W) \in \tau_i$  for each  $i \in I$  it follows that  $V \in \sigma$  and that g is continuous.  $\Box$ 

# The sum topology

Let  $(X_i, \tau_i)$ ,  $i \in I$  be a family of spaces such that  $X_{i_1} \cap X_{i_2} = \emptyset$ whenever  $i_1 \neq i_2$ .

Consider  $X = \bigcup_{i \in I} X_i$ .

For each  $i \in I$  we have the canonical inklusion  $j_i : X_i \to X$  where  $j_i(x) = x$  for each  $x \in X_i$ .

The final topology  $\tau$  on X with respect to  $\{j_i : i \in I\}$  is called the **sum topology**.

We also write  $X = \bigoplus_{i \in I} X_i$  or  $X = \sum_{i \in I} X_i$ .

Let  $i^* \in I$ . Then for each  $i \in I$  we have  $j_i^{-1}(X_{i^*}) = X_{i^*}$  whenever  $i = i^*$ , and  $j_i^{-1}(X_{i^*}) = \emptyset$  whenever  $i \neq i^*$ .

Consequently, each subset  $X_i \subseteq X$  is open and closed in  $(X, \tau)$ .

Furthermore, a subset  $V \subseteq X$  is open in  $(X, \tau)$  if and only if  $V \cap X_i \in \tau_i \quad \forall i \in I$ .

**Remark.** Sometimes it is desirable to consider sums of the same spaces, for example  $\mathbb{R} \oplus \mathbb{R}$ .

In such a case we can construct the sum of the spaces  $X_1 = \mathbb{R} \times \{1\}$  and  $X_2 = \mathbb{R} \times \{2\}$ .

# The quotient topology

Let  $(X, \tau)$  be a space and " ~ " be an equivalence relation X.

Then the set of all (different) equivalence classes is denoted by

 $X/_{\sim} = \{ [x] : x \in X \}$  where  $[x] = \{ y \in X : y \sim x \}$ .

We have also a canonical surjective function  $\pi: X \to X/_{\sim}$  defined by  $\pi(x) = [x]$ .

The final topology  $\sigma$  on  $X/_{\sim}$  with respect to the function  $\pi$  is called the **quotient topology**.

 $(X/_{\sim}, \sigma)$  is called **quotient space**.

Clearly,  $\sigma = \{ W \subseteq X/_{\sim} : \pi^{-1}(W) \in \tau \}$ .

# Examples.

1) Let  $X = [0, 1] \subseteq \mathbb{R}$  have the usual topology.

Only 0 and 1 are equivalent to each other and, of course, each point is equivalent to itself.





We obtain, at least "geometrically",  $X/_{\sim} \simeq S^1$  where

$$S^n = \{ x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i^2 = 1 \}$$

is the n-dimensional sphere .

2) Let  $X = \mathbb{R}^2$  have the usual topology and

 $(x_1, y_1) \sim (x_2, y_2) \quad \Leftrightarrow \quad x_1 - x_2 \in \mathbb{Z} \quad \text{and} \quad y_1 - y_2 \in \mathbb{Z}$ 

An equivalence class is a lattice of points in the plane. One can show that

 $\mathbb{R}^2/_{\sim} \simeq S^1 \times S^1$ 

for which a geometrical interpretation is the 2-dimensional Torus.

3) Let  $X = [0,1] \times [0,1]$  be the unit square.

If we "identify" all points of the boundary then  $X/_{\sim}$  can be interpreted geometrically as the surface of the sphere  $S^2$ .

In a similar way one can obtain the surface of a cylinder and the Moebius strip.

Equivalence relations can be obtained by functions.

Let  $\,f:(X,\tau)\to (Y,\sigma)\,$  be a function. Then there is a natural equivalence relation on  $\,X$  , namely

 $x_1 \sim x_2 \quad \Leftrightarrow \quad f(x_1) = f(x_2)$ 

We observe also that the function

$$\widehat{f}: X/_{\sim} \to Y \quad , \quad \widehat{f}([x]) = f(x)$$

is well-defined (!), therefore the diagram



is commutative, i.e.  $f = \widehat{f} \circ \pi$  .

By a previous result, f is continuous if and only if  $\hat{f}$  is continuous. Furthermore, f is surjective if and only if  $\hat{f}$  is surjective.

Next we observe that  $\hat{f}$  is injective:

 $\widehat{f}([x_1]) = \widehat{f}([x_2]) \Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 \sim x_2 \Rightarrow [x_1] = [x_2]$ 

**Hence:** If f is surjective and continuous, then  $\hat{f}$  is bijective and continuous.

However, the inverse function  $(\widehat{f})^{-1}: Y \to X/_{\sim}$  need not be continuous in general (i.e. Y and  $X/_{\sim}$  need not be homeomorphic).

**Proposition.** If f is surjective, continuous and, in addition, an open function (or a closed function) then  $(\widehat{f})^{-1}$  is continuous.

**Proof.** (For the case that f is an open function) First observe that  $\widehat{f}(W) = f(\pi^{-1}(W))$  for  $W \subseteq X/_{\sim}$ . If  $W \subseteq X/_{\sim}$  is open then  $\pi^{-1}(W) \subseteq X$  is open.

Since f is an open function,  $f(\pi^{-1}(W)) = \widehat{f}(W) \subseteq Y$  is open.

Therefore  $\hat{f}$  is an open function.

But this means that  $(\widehat{f})^{-1}: Y \to X/_{\sim}$  must be continuous because  $((\widehat{f})^{-1})^{-1}(W) = \widehat{f}(W)$  (i.e. the inverse image of an open set in  $X/_{\sim}$  under the function  $(\widehat{f})^{-1}$  is open in Y).

**Example.** Consider  $f: [0,1] \to S^1 \subseteq \mathbb{R}^2$ ,  $f(t) = (\cos 2\pi t, \sin 2\pi t)$ .

Then f is surjective and continuous.

We will see later that f is a closed function.

Thus  $\widehat{f}$  is bijective and continuous **and**  $(\widehat{f})^{-1}$  is continuous.

Observe that  $f(t_1) = f(t_2) \iff t_1 = 0, t_2 = 1$  or  $t_1 = 1, t_2 = 0$ .