06. Initial and final topology

We consider the following problem:

Given a set (1) X and a family (Y;,0;) of spaces and corresponding
functions f;: X =Y, , 1€ 1.

Find a topology 7 on X such that all functions f; : (X,7) — (Y}, 0;)
become continuous.

It is obvious that the discrete topology on X fulfills the requirement.
Therefore we look for the possibly coarsest topology on X that fulfills the
requirement.

Since continuity means that the inverse images of open sets are open, we
consider the family

S:{fi_l(‘/;) : V; openin Y;, 1€}

From a previous discussion we know that there is a unique topology 7 on
X having S as a subbase, and that it is the coarsest topology making
all sets of S open.

Definition. 7 is called the initial topology on X with respect to the
functions f: X =Y, ,i1€e1.

Remarks.
1) Let X beasetand (Y,0) aspaceand f: X —Y .
Then the initial topology 7 on X with respect to f is
r={fY(V): Veog}.
2) Let (X,||-||) be a normed space over K . Then
X'={f: X =K : fislinear and bounded}
is called the dual space of X .
The initial topology on X with respect to all f € X' is called the weak



topology on X (it is, in general, coarser than the topology induced by
the norm and not metrizable).

The initial topology has the following ”universal property”:

Let 7 be the initial topology on X with respect to the family of functions
{fi: X = Y,o0)} ,iel}.

Let (Z,p) be aspace and ¢g:Z — X a function. Then

g is continuous <« fiog:Z — Y, is continuous Vi€ [

Proof.

If g is continuous then f;og is continuous for each ¢ € I since each f;
1s continuous.

Conversely, {f;'(V;) : V; openin Y;, i € I} is a subbase of (X,7) .
By assumption, each ¢~ }(f;1(V;)) = (fiog)~'(V;) is openin Z .

Therefore, by a previous theorem, ¢ is continuous. [

The subspace topology
Let (X,7) be aspace and A C X .

The initial topology on A with respect to the inclusion function j: A — X
where j(x) =x V x € A, is called the subspace topology on A and
denoted by 7|4 .

Obviously, 7|4 ={;7}(O)=0nNA : Oer}.

(A,7|4) is called a subspace of (X,7),and G C A is called open in
A if Ge 7_|A .

(So the sets open in A can be represented as an intersection of an open
setin X and A.)

Example. Let X =R with the usual topology and A =10,2) .
Then [0,1) =(—-1,1)N A isopenin A but notin X .



The proof of the following result is left as an exercise.

Proposition. Let (X,7) be aspace and A C X .
1) BC A isclosedin A <
there exists ' C X closed in X such that B=FNA.

2) For B C A, the closure of B with respect to (A, 7|4) is denoted by
B
—A =
Then B =BnNA.
However, we only have intBN A C int4B in general.

(int4 B is the interior of B with respect to (A, 7|4)) -

3) Let (X,d) be a metric space and A C X .

Then A itself is a metric space by the induced metric d|4x4 -

It holds that the topology on A generated by d|ax4 coincides with the
subspace topology 4|4 -

4) Let BCACX .

If B isopen (resp. closed) in X then B is open (resp. closed) in A .
If A isopenin X and B isopenin A then B isopenin X .

If A isclosedin X and B isclosed in A then B isclosed in X .

Definition. A C X is called a discrete subspace of (X, 7) if 7|4 is
the discrete topology on A .

Exercise. Show that R with the usual topology has a countable discrete
subspace but not an uncountable discrete subspace.

Show that the Niemitzky plane has an uncountable discrete subspace.

The product topology



For each i€ I let (X;,7;) be a space.

The product set X = []X; is (by definition) the set of all functions
el

x:I— |JX; such that z(j)e X; Vjel.

i€l

(An element of the product set is obtained by ”choosing” an element from
each set X; .)

We use the notation = = (x;);e; or = = (x;) where z; = (i) .
x; is called the ith coordinate (or component) of =z .

If I is finite, say [ = {1,2,...,n} we write X = X7 x Xy x...x X,
and = = (r1,%2,...,T,) .

For each ¢ € I there exists a canonical function, the ith projection

pi: X =]]X; = X; where p;j(z)=ux; .

el

Note that each p; is surjective.

Definition. The initial topology on X = J[X; with respect to the
el

family {p; : i € I} is called the product topology 7 on X .

Remark. According to previous results

1) Each p; is continuous.

2) A function f:Y — []X; is continuous if and only if the ”component

el
functions” p;o f:Y — X, are continuous for each i€ I .

The function f:R — RxR with f(#) = (cost, t?) is continuous because
the functions fi(t) = cost and fo(t) =t* are continuous.

Definition. A function f : (X,7) — (Y,0) between any spaces is an
open function (resp. a closed function) if

VOerT : f(O)€o
(resp. V A closed in (X,7) : f(A) is closed in (Y,0))
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Remark. (Proof as exercise)

Let B be a base for (X,7). Then f:(X,7) — (Y,0) is open if and
only if f(B)eo VBeB.

Let X =[] X; have the product topology 7 .

el
Then 8 = {p;*(0;) : i €1 and O; C X; openin X;} is subbase for
(X,7) .

Note that p;'(O;)) ={r € X : z; € O;} .

A typical member of the resulting base for (X, 7) has the form
B = pz_ll(O“) MN... ﬂpi_kl(Oik) = {a: c X : T € in ce, T, € Ozk}

where i1,...,5, € I and O;; C X, openin X; .

(In the finite case X = X7 x ... x X,, we have
B:pfl(Ol)ﬂ...ﬂpgl(On) =01 x... xOn)

Now let B =p; '(O;)N...Np; ' (0;,) and i€l .

If i =4d; € {i,...,ix} then p;(B) CO;. If x; € O; it is possible to
"construct” an element xz € B having x; as its ¢th coordinate.

Therefore p;(B) = O; .

If i¢ {i,...,ix} then, taking any z; € X;, it is possible to ”construct”
an element x € B having x; as its ith coordinate.

Therefore p;(B) = X; . Now we have

Proposition. Each projection p; : X — X; is an open function.

Remark. If X; =Y foreach i€ I, we write for the product space
X=Yl={2x:T-Y}.

Hence the set of all functions = : R — R can be written as the product
set RE .



The resulting product topology is called the topology of pointwise con-
vergence.

Examples.
1) Consider R"=R x ... xR .

One the one hand we have the topology generated by the metric on R" |
and on the other hand we have the product topology (where R has the
usual topology).

Those two topologies coincide!

(Hint for the proof in the case n = 2 : each open ball contains an open
square and conversely)

2) For each i€ [ let 7; be the discrete topology on X; .
Then the product topology 7 is discrete if and only if [ is finite.

Proof. Let I be finite,ie. X =X; x ... x X, .
Then {z} ={z} x...x{x,} isopenin X for z = (x1,...,2,) .

Conversely, suppose that [ is infinite and assume that {z} € 7 for
reX.

Then there exist 1,...,% € I and corresponding open sets O;,,...,0;,
such that

{z} =p; " (O;,)N...0p; ' (O;,)
It is possible to choose j ¢ {i,...,ix} and y; € X; with y; #z; .
"Construct” y € X with the y; and y; =; for i # 7.
Then y#a but y€p; ' (0;,)N...Np;*(O;,) , a contradiction. [

3) Foreach ne N let X, ={0,1} have the discrete topology.

Then X = [ X,, = {0,1} consists of all sequences containing only 0
neN
or 1.

This space is called the Cantor cube .
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We now consider a related problem than the previous one.

Given a set (1) Y and a family (X;,7;) of spaces and corresponding
functions f;: X; —»Y , 1€ 1.

Find a topology ¢ on Y such that all functions f; : (X;,7) — (Y, 0)
become continuous.

It is obvious that the indiscrete topology on Y fulfills the requirement.
Therefore we look for the possibly finest topology on Y that fulfills the
requirement.
It is easily checked that

c={VCY : ff'(V)er, Viel}

is, in fact, a topology, and also the finest topology on Y such that all
fi » X; = Y are continuous.

o is called the final topology on Y with respect to the functions
szz_>Y ,1e 1.

Remark. Also the final topology has a ”universal property”.
If g:Y — Z isamapping then ¢ is continuous if and only gof; : X; — Z

is continuous for each 7€ I .

Proof. If ¢ is continuous then clearly all functions go f; , ¢ € [ are
continuous.

Conversely, suppose that all go f; are continuous. Let W C Z be open
in Z andlet V=g t(W)CY.

Since f, (V) = £ (gt(W)) = (go fi)"{(W) € 7, for each i € I it
follows that V' € ¢ and that ¢ is continuous. [J

The sum topology

Let (X;,7) , ¢ € I be a family of spaces such that X; N X, = 0
whenever 11 # i .

Consider X = X; .

el



For each 72 € I we have the canonical inklusion j; : X; — X where
ji(z) = x for each z € X.

The final topology 7 on X with respect to {j; : ¢ € I} is called the
sum topology .

We also write X =@ X; or X => X;.

el el

Let * € I . Then for each i € I we have j; '(X;-) = X whenever
i=1i",and j;'(X;) =0 whenever i#i*.

Consequently, each subset X; C X is open and closed in (X, 7) .
Furthermore, a subset V C X isopenin (X,7) if and only if VNX; €
 Viel.

Remark. Sometimes it is desirable to consider sums of the same spaces,

for example R R .

In such a case we can construct the sum of the spaces X; =R x {1} and
X2 =R x {2} .

The quotient topology
Let (X,7) be aspace and ” ~ 7 be an equivalence relation X .

Then the set of all (different) equivalence classses is denoted by

X/o={[x] : € X} where [z]={yeX : y~uz}.

We have also a canonical surjective function = : X — X/. defined by
m(x) = [x] .

The final topology ¢ on X/. with respect to the function 7 is called
the quotient topology.
(X/~,0) is called quotient space.

Clearly, o = {W C X/, : m1(W)er}.

Examples.



1) Let X =10,1] CR have the usual topology.

Only 0 and 1 are equivalent to each other and, of course, each point is
equivalent to itself.

N

3 .
A

We obtain, at least ”geometrically”, X/. ~ S! where

n+1
St={zeR" . Y 2? =1}
i=1

is the n—dimensional sphere .

2) Let X =R? have the usual topology and
(z1,y1) ~ (22,92) & z1—22€Z and yy—ys € Z

An equivalence class is a lattice of points in the plane. One can show that
R?/. ~ Sl x S!

for which a geometrical interpretation is the 2-dimensional Torus.

3) Let X =][0,1] x [0,1] be the unit square.

If we ”identify” all points of the boundary then X/. can be interpreted
geometrically as the surface of the sphere S? .

In a similar way one can obtain the surface of a cylinder and the Moebius
strip.

Equivalence relations can be obtained by functions.

Let f:(X,7) — (Y,0) be a function. Then there is a natural equivalence
relation on X |, namely



vy~ w & f(rn) = f(2)

We observe also that the function

fiX)o=Y | f(2]) = f(x)
is well-defined (!), therefore the diagram

x —t—> ¥
Py

(_-. /
7 A
7~
n\/ f
ye
is commutative, i.e. f = fo .
By a previous result, f is continuous if and only if f is continuous.

Furthermore, f is surjective if and only if f is surjective.

Next we observe that J? is injective:

~

Fllz)) = f([za]) = flz1) = fz2) = 21~ 20 = [21] = 2]
Hence: If f is surjective and continuous, then ]? is bijective and

continuous.

However, the inverse function (f)~!:Y — X/. need not be continuous
in general (i.e. Y and X/. need not be homeomorphic).

Proposition. If f is surjective, continuous and, in addition, an open
function (or a closed function) then (f)~! is continuous.

Proof. (For the case that f is an open function)

~

First observe that f(W) = f(z=Y(W)) for W C X/ .
If W C X/. isopenthen 7 }(W)C X is open.

-~

Since f is an open function, f(7~'(W))= f(W)CY is open.

Therefore f is an open function.
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But this means that (f)™' : Y — X/. must be continuous because
() )W) = f(W) (ie. the inverse image of an open set in  X/.
under the function (f)~! isopenin Y ).

Example. Consider f:[0,1] — S CR? | f(t) = (cos 27t,sin 2nt) .
Then f is surjective and continuous.
We will see later that f is a closed function.

-1

Thus [ is bijective and continuous and (f)~! is continuous.

Observe that f(t1) = f(t2) < t1=0,t5=1 or t; =1,to=0.
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