
06. Initial and final topology

We consider the following problem:

Given a set (!) X and a family (Yi, σi) of spaces and corresponding
functions fi : X → Yi , i ∈ I .

Find a topology τ on X such that all functions fi : (X, τ) → (Yi, σi)
become continuous.

It is obvious that the discrete topology on X fulfills the requirement.
Therefore we look for the possibly coarsest topology on X that fulfills the
requirement.

Since continuity means that the inverse images of open sets are open, we
consider the family

S = {f−1
i (Vi) : Vi open in Yi , i ∈ I}

From a previous discussion we know that there is a unique topology τ on
X having S as a subbase, and that it is the coarsest topology making
all sets of S open.

Definition. τ is called the initial topology on X with respect to the
functions f : X → Yi , i ∈ I .

Remarks.

1) Let X be a set and (Y, σ) a space and f : X → Y .

Then the initial topology τ on X with respect to f is

τ = {f−1(V ) : V ∈ σ} .

2) Let (X, ∥ · ∥) be a normed space over K . Then

X ′ = {f : X → K : f is linear and bounded}

is called the dual space of X .

The initial topology on X with respect to all f ∈ X ′ is called the weak
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topology on X (it is, in general, coarser than the topology induced by
the norm and not metrizable).

The initial topology has the following ”universal property”:

Let τ be the initial topology on X with respect to the family of functions
{fi : X → (Yi, σ)} , i ∈ I} .

Let (Z, ρ) be a space and g : Z → X a function. Then

g is continuous ⇔ fi ◦ g : Z → Yi is continuous ∀ i ∈ I

Proof.

If g is continuous then fi ◦ g is continuous for each i ∈ I since each fi
is continuous.

Conversely, {f−1
i (Vi) : Vi open in Yi , i ∈ I} is a subbase of (X, τ) .

By assumption, each g−1(f−1
i (Vi)) = (fi ◦ g)−1(Vi) is open in Z .

Therefore, by a previous theorem, g is continuous. �

The subspace topology

Let (X, τ) be a space and A ⊆ X .

The initial topology on A with respect to the inclusion function j : A → X
where j(x) = x ∀ x ∈ A , is called the subspace topology on A and
denoted by τ |A .

Obviously, τ |A = {j−1(O) = O ∩ A : O ∈ τ} .

(A, τ |A) is called a subspace of (X, τ) , and G ⊆ A is called open in
A if G ∈ τ |A .

(So the sets open in A can be represented as an intersection of an open
set in X and A .)

Example. Let X = R with the usual topology and A = [0, 2) .

Then [0, 1) = (−1, 1) ∩ A is open in A but not in X .
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The proof of the following result is left as an exercise.

Proposition. Let (X, τ) be a space and A ⊆ X .

1) B ⊆ A is closed in A ⇔

there exists F ⊆ X closed in X such that B = F ∩ A .

2) For B ⊆ A , the closure of B with respect to (A, τ |A) is denoted by

B
A
.

Then B
A
= B ∩ A .

However, we only have intB ∩ A ⊆ intAB in general.

(intAB is the interior of B with respect to (A, τ |A)) .

3) Let (X, d) be a metric space and A ⊆ X .

Then A itself is a metric space by the induced metric d|A×A .

It holds that the topology on A generated by d|A×A coincides with the
subspace topology τd|A .

4) Let B ⊆ A ⊆ X .

If B is open (resp. closed) in X then B is open (resp. closed) in A .

If A is open in X and B is open in A then B is open in X .

If A is closed in X and B is closed in A then B is closed in X .

Definition. A ⊆ X is called a discrete subspace of (X, τ) if τ |A is
the discrete topology on A .

Exercise. Show that R with the usual topology has a countable discrete
subspace but not an uncountable discrete subspace.

Show that the Niemitzky plane has an uncountable discrete subspace.

The product topology
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For each i ∈ I let (Xi, τi) be a space.

The product set X =
∏
i∈I

Xi is (by definition) the set of all functions

x : I →
∪
i∈I

Xi such that x(j) ∈ Xj ∀ j ∈ I .

(An element of the product set is obtained by ”choosing” an element from
each set Xi .)

We use the notation x = (xi)i∈I or x = (xi) where xi = x(i) .

xi is called the ith coordinate (or component) of x .

If I is finite, say I = {1, 2, . . . , n} we write X = X1 ×X2 × . . . ×Xn

and x = (x1, x2, . . . , xn) .

For each i ∈ I there exists a canonical function, the ith projection

pi : X =
∏
i∈I

Xi → Xi where pi(x) = xi .

Note that each pi is surjective.

Definition. The initial topology on X =
∏
i∈I

Xi with respect to the

family {pi : i ∈ I} is called the product topology τ on X .

Remark. According to previous results

1) Each pi is continuous.

2) A function f : Y →
∏
i∈I

Xi is continuous if and only if the ”component

functions” pi ◦ f : Y → Xi are continuous for each i ∈ I .

The function f : R → R×R with f(t) = (cos t, t2) is continuous because
the functions f1(t) = cos t and f2(t) = t2 are continuous.

Definition. A function f : (X, τ) → (Y, σ) between any spaces is an
open function (resp. a closed function) if

∀ O ∈ τ : f(O) ∈ σ

(resp. ∀ A closed in (X, τ) : f(A) is closed in (Y, σ))
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Remark. (Proof as exercise)

Let B be a base for (X, τ) . Then f : (X, τ) → (Y, σ) is open if and
only if f(B) ∈ σ ∀ B ∈ B .

Let X =
∏
i∈I

Xi have the product topology τ .

Then S = {p−1
i (Oi) : i ∈ I and Oi ⊆ Xi open in Xi} is subbase for

(X, τ) .

Note that p−1
i (Oi) = {x ∈ X : xi ∈ Oi} .

A typical member of the resulting base for (X, τ) has the form

B = p−1
i1
(Oi1) ∩ . . . ∩ p−1

ik
(Oik) = {x ∈ X : xi1 ∈ Oi1, . . . , xik ∈ Oik}

where i1, . . . , ik ∈ I and Oij ⊆ Xij open in Xij .

(In the finite case X = X1 × . . .×Xn we have

B = p−1
1 (O1) ∩ . . . ∩ p−1

n (On) = O1 × . . .×On )

Now let B = p−1
i1
(Oi1) ∩ . . . ∩ p−1

ik
(Oik) and i ∈ I .

If i = ij ∈ {i1, . . . , ik} then pi(B) ⊆ Oi . If xi ∈ Oi it is possible to
”construct” an element x ∈ B having xi as its ith coordinate.

Therefore pi(B) = Oi .

If i /∈ {i1, . . . , ik} then, taking any xi ∈ Xi, it is possible to ”construct”
an element x ∈ B having xi as its ith coordinate.

Therefore pi(B) = Xi . Now we have

Proposition. Each projection pi : X → Xi is an open function.

Remark. If Xi = Y for each i ∈ I , we write for the product space

X = Y I = {x : I → Y } .

Hence the set of all functions x : R → R can be written as the product
set RR .
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The resulting product topology is called the topology of pointwise con-
vergence.

Examples.

1) Consider Rn = R× . . .× R .

One the one hand we have the topology generated by the metric on Rn ,
and on the other hand we have the product topology (where R has the
usual topology).

Those two topologies coincide!

(Hint for the proof in the case n = 2 : each open ball contains an open
square and conversely)

2) For each i ∈ I let τi be the discrete topology on Xi .

Then the product topology τ is discrete if and only if I is finite.

Proof. Let I be finite, i.e. X = X1 × . . .×Xn .

Then {x} = {x1} × . . .× {xn} is open in X for x = (x1, . . . , xn) .

Conversely, suppose that I is infinite and assume that {x} ∈ τ for
x ∈ X .

Then there exist i1, . . . , ik ∈ I and corresponding open sets Oi1, . . . , Oik

such that

{x} = p−1
i1
(Oi1) ∩ . . . ∩ p−1

ik
(Oik)

It is possible to choose j /∈ {i1, . . . , ik} and yj ∈ Xj with yj ̸= xj .

”Construct” y ∈ X with the yj and yi = xi for i ̸= j .

Then y ̸= x but y ∈ p−1
i1
(Oi1) ∩ . . . ∩ p−1

ik
(Oik) , a contradiction. �

3) For each n ∈ N let Xn = {0, 1} have the discrete topology.

Then X =
∏
n∈N

Xn = {0, 1}N consists of all sequences containing only 0

or 1 .

This space is called the Cantor cube .

6



We now consider a related problem than the previous one.

Given a set (!) Y and a family (Xi, τi) of spaces and corresponding
functions fi : Xi → Y , i ∈ I .

Find a topology σ on Y such that all functions fi : (Xi, τi) → (Y, σ)
become continuous.

It is obvious that the indiscrete topology on Y fulfills the requirement.
Therefore we look for the possibly finest topology on Y that fulfills the
requirement.

It is easily checked that

σ = {V ⊆ Y : f−1
i (V ) ∈ τi ∀ i ∈ I}

is, in fact, a topology, and also the finest topology on Y such that all
fi : Xi → Y are continuous.

σ is called the final topology on Y with respect to the functions
fi : Xi → Y , i ∈ I .

Remark. Also the final topology has a ”universal property”.

If g : Y → Z is a mapping then g is continuous if and only g◦fi : Xi → Z

is continuous for each i ∈ I .

Proof. If g is continuous then clearly all functions g ◦ fi , i ∈ I are
continuous.

Conversely, suppose that all g ◦ fi are continuous. Let W ⊆ Z be open
in Z and let V = g−1(W ) ⊆ Y .

Since f−1
i (V ) = f−1

i (g−1(W )) = (g ◦ fi)
−1(W ) ∈ τi for each i ∈ I it

follows that V ∈ σ and that g is continuous. �

The sum topology

Let (Xi, τi) , i ∈ I be a family of spaces such that Xi1 ∩ Xi2 = ∅
whenever i1 ̸= i2 .

Consider X =
∪
i∈I

Xi .
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For each i ∈ I we have the canonical inklusion ji : Xi → X where
ji(x) = x for each x ∈ Xi.

The final topology τ on X with respect to {ji : i ∈ I} is called the
sum topology .

We also write X =
⊕
i∈I

Xi or X =
∑
i∈I

Xi .

Let i∗ ∈ I . Then for each i ∈ I we have j−1
i (Xi∗) = Xi∗ whenever

i = i∗ , and j−1
i (Xi∗) = ∅ whenever i ̸= i∗ .

Consequently, each subset Xi ⊆ X is open and closed in (X, τ) .

Furthermore, a subset V ⊆ X is open in (X, τ) if and only if V ∩Xi ∈
τi ∀ i ∈ I .

Remark. Sometimes it is desirable to consider sums of the same spaces,
for example R⊕ R .

In such a case we can construct the sum of the spaces X1 = R×{1} and
X2 = R× {2} .

The quotient topology

Let (X, τ) be a space and ” ∼ ” be an equivalence relation X .

Then the set of all (different) equivalence classses is denoted by

X/∼ = {[x] : x ∈ X} where [x] = {y ∈ X : y ∼ x} .

We have also a canonical surjective function π : X → X/∼ defined by
π(x) = [x] .

The final topology σ on X/∼ with respect to the function π is called
the quotient topology.

(X/∼, σ) is called quotient space.

Clearly, σ = {W ⊆ X/∼ : π−1(W ) ∈ τ} .

Examples.
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1) Let X = [0, 1] ⊆ R have the usual topology.

Only 0 and 1 are equivalent to each other and, of course, each point is
equivalent to itself.

We obtain, at least ”geometrically”, X/∼ ≃ S1 where

Sn = {x ∈ Rn+1 :
n+1∑
i=1

x2i = 1}

is the n−dimensional sphere .

2) Let X = R2 have the usual topology and

(x1, y1) ∼ (x2, y2) ⇔ x1 − x2 ∈ Z and y1 − y2 ∈ Z

An equivalence class is a lattice of points in the plane. One can show that

R2/∼ ≃ S1 × S1

for which a geometrical interpretation is the 2-dimensional Torus.

3) Let X = [0, 1]× [0, 1] be the unit square.

If we ”identify” all points of the boundary then X/∼ can be interpreted
geometrically as the surface of the sphere S2 .

In a similar way one can obtain the surface of a cylinder and the Moebius
strip.

Equivalence relations can be obtained by functions.

Let f : (X, τ) → (Y, σ) be a function. Then there is a natural equivalence
relation on X , namely
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x1 ∼ x2 ⇔ f(x1) = f(x2)

We observe also that the function

f̂ : X/∼ → Y , f̂([x]) = f(x)

is well-defined (!), therefore the diagram

is commutative, i.e. f = f̂ ◦ π .

By a previous result, f is continuous if and only if f̂ is continuous.
Furthermore, f is surjective if and only if f̂ is surjective.

Next we observe that f̂ is injective:

f̂([x1]) = f̂([x2]) ⇒ f(x1) = f(x2) ⇒ x1 ∼ x2 ⇒ [x1] = [x2]

Hence: If f is surjective and continuous, then f̂ is bijective and
continuous.

However, the inverse function (f̂)−1 : Y → X/∼ need not be continuous
in general (i.e. Y and X/∼ need not be homeomorphic).

Proposition. If f is surjective, continuous and, in addition, an open
function (or a closed function) then (f̂)−1 is continuous.

Proof. (For the case that f is an open function)

First observe that f̂(W ) = f(π−1(W )) for W ⊆ X/∼ .

If W ⊆ X/∼ is open then π−1(W ) ⊆ X is open.

Since f is an open function, f(π−1(W )) = f̂(W ) ⊆ Y is open.

Therefore f̂ is an open function.
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But this means that (f̂)−1 : Y → X/∼ must be continuous because
((f̂)−1)−1(W ) = f̂(W ) (i.e. the inverse image of an open set in X/∼
under the function (f̂)−1 is open in Y ).

Example. Consider f : [0, 1] → S1 ⊆ R2 , f(t) = (cos 2πt, sin 2πt) .

Then f is surjective and continuous.

We will see later that f is a closed function.

Thus f̂ is bijective and continuous and (f̂)−1 is continuous.

Observe that f(t1) = f(t2) ⇔ t1 = 0, t2 = 1 or t1 = 1, t2 = 0 .
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